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1 Macintyre’s theorem

Recall from last time

Lemma 1.1. Let K be a definable infinite field in a strongly minimal theory. Then for every
n, the nth power map K — K is surjective.

Lemma 1.2. Let K be a definable infinite field of characteristic p > 0. Then the Artin-
Schreter map

a: K — K

z— 2P —x

15 onto.

Proof. Similar: the map a : K — K has finite fibers, so dim(«a(K)) = dim(K), and therefore
|K/a(K)| < oo. As (K,+)% = (K, +), it follows a(K) = K. O

We need the following purely algebraic fact:
Fact 1.3 (Kummer, Artin-Schreier). Let L/K be a Galois extension with Gal(L/K) = Z/p.

1. If char(K) # p and K contains a primitive pth root of unity, then L = K(¥/a) for
some a € K. In particular, K # KP?.

2. If char(K) = p, then L = K(b), where b* —b € K. In particular,

a: K — K

Y ey

18 not surjective.

Lemma 1.4. Let K be a field. Suppose for every finite extension L/ K, the following maps
are surjective:



e The nth power map L™ — L* for all n > 1.
o (In characteristic p) the Artin-Schreier map L — L.
Then K is algebraically closed.

Proof. Note K is perfect. If K is not algebraically closed, take non-trivial L;/K. Take
p dividing [L; : K]. Let ¢, be a primitive pth root of unity. Then p f [K((,) : K], so
pl[L(() @ K(¢y)]- Replacing K with K((,), we may assume (, € K. Replacing L with
a larger field, we may assume L/K is Galois. Then p divides the order of Gal(L/K), so
Gal(L/K) contains a cyclic subgroup of order p. Replacing K with a larger field, we may
assume Gal(L/K) is cyclic of order p. Then Kummer theory or Artin-Schreier theory says
that the pth power map or the Artin-Schreier map on K is non-surjective. ]

Theorem 1.5. Let K be a definable infinite field in a strongly minimal theory. Then K 1is
algebraically closed.

Proof. Finite extensions of K are also definable fields. O]

2 Interpretable sets

Definition 2.1. An interpretable set in a structure M is a set of the form X/E, where X
15 a definable set and E C X xX X is a definable equivalence relation.

Example 2.2. If G is a definable group and H is a definable subgroup, the quotient G/H 1is
an interpretable set.

Given a structure M, one can form a category Def,; of definable sets and definable
functions, as well as a category Int,; of interpretable sets and interpretable functions. There
is an embedding

Def s < Inty,

One says that M has elimination of imaginarieq|if this functor is an equivalence of cate-
gories.

More concretely, this means that for any definable X and E, there is a definable surjection
f: X — Y inducing a bijection X/E — Y.

Fact 2.3. If K = ACF, then K has elimination of imaginaries.
Fact 2.4. The following structures are strongly minimal and do not eliminate imaginaries:

o An infinite set X with no structure.

!Technically we should work with the category of O-definable and O-interpretable sets (sets definable with-
out parameters, and quotients X/E where X, E are O-definable). I call the condition given here “parametric
elimination of imaginaries.” It turns out to be weaker than full elimination of imaginaries. See Corollary



* (Q+)

Theorem 2.5. If M is any structure, there is a structure M such that Def yreq is equivalent
to IIltM

If M s strongly minimal, then rank, dimension, and degree extend to M and satisfy all
the properties of yesterday’s lecture. Elements of M are called imaginaries.

Example 2.6. Macintyre’s theorem generalizes. If M 1is strongly minimal and K is an
infinite interpretable field, then K = ACF.

3 Minimal groups

Let M be a strongly minimal monster. In what follows, “definable” really means “inter-
pretable.” If you like, switch to MY,

Definition 3.1. G is connected if G = G°.
We fix some group-theoretic notation:
e H <G means H is a normal subgroup of G

e 7(a) denotes the centralizers of a:
Z(a) ={g € G | ag = ga}.
e Z(G) denotes the center of G:

Z(G) = () Z(a).

a€eG

e 4% denotes the conjugacy class of a:

a® ={glag : g € G}.

All these sets are definable. Note
a€ Z(G) <= a° = {a}.
Note G acts on itself by conjugation, and

e The orbit of a is a®

e The stabilizer of a is Z(a).

Therefore,
dim(a®) = dim(G) — dim(Z(a)).

Note Z(G) < G.



Lemma 3.2. If G is connected, and a € G has finite conjugacy class a®, then a € Z(Q).

Proof. The size of a“ is the index of Z(a) in G, which is 1 if finite, as G = G°. O
Proposition 3.3. If G is connected and H <G is a finite normal subgroup, then H < Z(Q).
Proof. If a € H then a® C H, so a“ is finite, so a € Z(G). O

Proposition 3.4. Let G be a connected definable group with Z(G) finite. Then G/Z(G) is
centerless.

Proof. Let [a] denote the image of a under G — G/Z(G). Suppose [a] € Z(G/Z(G)). Then
for every g € G,
gt a-g=a (mod Z(Q)).

Therefore a“ C a - Z(G) and a% is finite, implying a € Z(G) and [a] = 1. O

Definition 3.5. A definable group (G,-) is minimal if G is infinite, but every definable
proper subgroup s finite.

Remark 3.6. If G is definable and infinite, there is definable minimal H < G, by DCC on
definable subgroups.

Lemma 3.7. If G is minimal and H is a finite normal subgroup, then G/H is minimal.
If G is minimal, then G = G.

Proof. For the first point, note that any infinite definable proper subgroup of G/H pulls
back to an infinite definable proper subgroup of G. For the second point, note that G is an
infinite definable subgroup of G. [

Theorem 3.8 (Reineke). Let G be a minimal group. Then G is connected and abelian.

Proof. Note G is connected. Suppose G is non-abelian. Then Z(G) # G, so Z(G) is finite.
Let H = G/Z(G). Then H is minimal, and centerless by Proposition[3.4l So H is a connected
non-abelian centerless minimal group.

Claim 3.9. If a,b € H are non-trivial, then a,b are conjugate. So there is only one non-
trivial conjugacy class in H.

Proof. As a is non-central, the centralizer Z(a) is a definable proper subgroup of H, so Z(a)
is finite. Counting ranks,

dim(a™) = dim(H) — dim(Z(a)) = dim(H).

Similarly, dim(b") = dim(H). As H = H", the Morley degree of H is 1 and so a” and b
cannot be disjoint. Thus a and b are conjugate. O

Take some non-trivial a € H.



e If a®> = 1, then by symmetry > = 1 for all b conjugate to a. Thus b?> =1 for all b € H,
and H is abelian, a contradiction.

e Suppose a? # 1. Then a # a~*. Take b such that b='ab = a~!. Then

blab=a"'+#a

b2ab® =b"'a b=a
Therefore a ¢ Z(b) but a € Z(b*). It follows that
Z(b) < Z(b*).

On the other hand b # 1 (because b and a are conjugate and a? # 1), so b and b? are
conjugate. By symmetry, |Z(b)| = |Z(b%)|, contradicting Z(b) € Z(b*) ]

]

Corollary 3.10. For any infinite definable G there is an infinite definable abelian subgroup
H < G.

Corollary 3.11. If G = G° and dim(G) = 1, then G is minimal, and therefore abelian.

Proof. If G fails to be minimal, take an infinite definable H < G. Then 0 < dim(H) <
dim(G) = 1, so dim(H) = dim(G). But then dim(G/H) = 0, so H has finite index,
contradicting G = GY. O

It is not true that every group of finite Morley rank has a definable subgroup of rank 1,
but the examples are hard to come by.

4 Zilber indecomposability

Let G be a definable group.

Definition 4.1. A definable set X C G is indecomposable if for any definable subgroup
H < G, the quotient X/H is infinite or size 1.

Proposition 4.2. If X C G is definable, then X is a disjoint union X, U ---U X,, with X;
indecomposable.

(This decomposition isn’t unique)

Theorem 4.3 (Zilber indecomposability). If X C G is indecomposable and 1 € X, then the
subgroup (X) < G generated by X is definable and connected. More generally, suppose F is
a collection of indecomposable sets containing 1. Then (|JF) is definable and connected.

“Note Z(b) is finite because Z(b) < H and H is minimal.



Lemma 4.4. Suppose M acts on G. Suppose X C G is fived setwise by M. Suppose that
for every M -invariant definable subgroup H < G the quotient X/H is a singleton or infinite.
Then X 1is indecomposable.

Proof. Suppose X fails to be indecomposable. Take Hj such that 1 < |X/Hy| < Ro. Let
H be the intersection of all conjugates of Hy under M. By dcc, H is a finite intersection
Hyn HyN---H, where each H; is a conjugate under M of H,. As X is invariant under M,
each quotient X/H; has the same size as X/Hy, and is in particular finite. Therefore

X/H =X/(HyN---N H,) is finite.
But H is M-invariant, so this contradicts the assumption. O

Example 4.5. If G is connected, then |G, G| is definable and connected. Here, |G, G| denotes
the derived subgroup—the subgroup generated by commutators a=*b~'ab.

Proof. We claim that for each a € G, the set a® is indecomposable. It is closed under
conjugation, so we only need to consider quotients a®/N where N <t G. Now a“/N is the
conjugacy class of a in G/N, which is either a singleton or infinite, because G/N is connected.
Thus a© is indecomposable. The left-translate a~' - a is also indecomposable, and contains
1=a'-a. Let F be

{a'-a®:a G}

Then [G,G] is ((JF), so [G,G] is definable and connected. O

Definition 4.6. A definable group G is definably simple if G has no proper non-trivial
definable normal subgroup.

Lemma 4.7. Let G be definably simple. Let X C G be closed under conjugation. If X s
infinite, then X s indecomposable.

Proof. By the lemma we only need to consider the quotients X/G and X/1. The first has
size 1 and the second is infinite. O

Theorem 4.8. Let G be a non-abelian definably simple group. Then G is simple.

Proof. Suppose G is definably simple. If G is finite, every subgroup is definable, so G is
simple. Assume G infinite. Then G = G or else G is a proper normal non-trivial definable
subgroup. By non-abelianity, Z(G) is a proper subgroup, normal as always. So Z(G) = 1
by definable simplicity.

Given a € G\ {1}, we have a ¢ Z(G), so Z(a) < G. As G = G it follows dim(Z(a)) <
dim(G), so dim(a®) = dim(G) —dim(Z(a)) > 0. Thus a“ U {1} is infinite. Tt is closed under
conjugation, so a® U {1} is indecomposable. By Zilber’s indecomposability theorem,

H={(a“U{1})



is a definable non-trivial subgroup. It is closed under conjugation, so H <1 G. By definable
simplicity, H = G. So
(a) =G
for all @ # 1.
Now if H is an abstract normal subgroup, take a € H, and note a® C H, so

(a®y <H = H=G.
Therefore G is simple. O]

Lemma 4.9. If G is connected and non-trivial then G has a definable proper normal subgroup
H (possibly trivial) such that G/H is abelian or simple.

Proof. Proceed by induction on dim(G). If dim(G) = 0, then G is finite, and we can take
H a maximal proper normal subgroup. Suppose dim(G) > 0. If there is an infinite proper
normal subgroup K <1 G, then dim(G/K) = dim(G) — dim(K) < dim(G), and by induction
there is H/K < G/K such that (G/K)/(H/K) = G/H is simple or abelian. So we may
assume every definable proper normal subgroup of G is finite. In particular, G = G°. If G
is abelian, take H = 1. Otherwise, Z(G) is finite and every proper normal K < G satisfies
K < Z(G). Therefore G/Z(@G) is definably simple, so we can take H = Z(G). O

Theorem 4.10. Let G be any definable group. Then there is a subnormal sequence of
definable groups such that the quotients are abelian or simple.

Proof. Build a sequence G = Go > G > --- by taking G;,1 to be a proper normal subgroup
of G; with quotient G;,1/G; that is abelian or simple. Eventually the process terminates,
by DCC. O

5 Exercises

Exercise 5.1. The field Q is not algebraically closed. Write down a formula ¢(x) such that
»(Q) is neither finite nor cofinite.

Exercise 5.2. In the field C, let X = C x C and let E be the equivalence relation whose
equivalence classes are the sets {(x,y), (y,x)}. Find a definable set Y and definable function
f: X =Y such that

Va,b € X : aEb <= f(a) = f(b).

Exercise 5.3.

o Let G be a definable group, X be a definable set, and suppose G has a transitive definable
group action on X. If G = G°, show that deg(X) = 1.

e Equivalently, show that if G = G° is definable and H < G is definable, then deg(G/H) =
1.



e In particular, if H <G and G = G°, then (G/H)" = G/H.
Exercise 5.4. If (G, +) is minimal, then one of the following holds:

o G is an infinite Fy-vector space for some prime p.

o (G is divisible, and for every n > 1 has finite n-torsion.

Solution. Let G[n| denote the group of n-torsion. If G[p] is infinite for any prime p, then
G[p] = G by minimality. So assume G|[p] is finite for all p. Then the map = — p-z has finite
fibers, and its image must be a subgroup of rank dim(G). As G = G° by minimality, this
implies the map is surjective. So G is divisible. For any n > 1 the short exact sequence

0=Gn—-G=5"G—=0

shows G[n] has rank 0, i.e., is finite. O

6 Appendix: imaginaries and interpretable sets

In mathematics, we often need to be able to take the quotient of a set X by an equivalence
relation £ C X x X.

Definition 6.1. If A C M, an A-interpretable set is a set of the form X/E where X is
A-definable and E C X x X s an A-definable equivalence relation. An interpretable set is
an A-interpretable set for some A.

Definition 6.2. A structure M has elimination of imaginaries if for every 0-interpretable
set X/E, there is a 0-definable set Y and a bijection X/E —'Y such that the composition

X —»X/E—=Y
s O-definable.

Another way of saying this is that given 0-definable X/FE, there is a O-definable surjection
f: X — Y such that
Vry,xe € X 1 (f(z1) = f(22) & x1Ex9) .

Proposition 6.3. Let M have elimination of imaginaries.
1. If M’ = M then M’ has elimination of imaginaries.
2. Any expansion of M by constants has elimination of imaginaries.

Proof. 1. Given a O-interpretable set X’/E’ in M', take formulas ¢(z) and ¢ (z1, 22) such
that X' = ¢(M') and E' = p(M'). Let X = ¢(M) and E = ¢(M). Using the fact that
M = M’ one sees easily that E is an equivalence relation on X. Take a O-definable
set Y and a 0-definable surjection f : X — Y eliminating X/FE. The one can transfer
Y and f back to M’ in the same fashion. We leave the details as an exercise.

8



2. Suppose X/FE is interpretable, where X = ¢(M;by) and E = 1(M;by) for some tuple
of new constants by. Let B be the set of b such that ¢)(M;b) is an equivalence relation
on ¢(M;b). The set B is definable and contains by. Consider the 0-definable sets

X :={(a,b): b€ B, M |= ¢(a,b)}
E = {(a1,b;a5,b) : b€ B, M |=1p(ar,as,b)}.

Then E is an equivalence relation on X. By elimination of imaginaries there is a
0-definable bijection f : X /E — Y with

f(al, bl) = f(CLQ, b2) < bl = b2 AN M ): w(al, as, bl)
Let f(a) = f(by). Then f: X — Y is by-definable, and
flar) = faz) <= (M | ¥(ay,az,bp)) <= a1Fas.

Thus the quotient X/E is eliminated.
[

Corollary 6.4. If M has elimination of imaginaries, for every interpretable set X/E there
is a definable set Y and a bijection X/E — 'Y such that the composition

X —»X/E—=Y
is definable.

Definition 6.5. Let X be a definable set in a monster model M. A finite tuple c is a code
for X if for every o € Aut(M), the following are equivalent:

e 0 fizes X setwise.
e 0 fizes ¢ pointwise.
Proposition 6.6. Suppose X has a code c.
e X is c-definable.
e More generally, X is A-definable iff ¢ € dcl(A).
e If ¢ is another code, then dcl(c) = dcl(¢) (¢ and ¢ are “interdefinable.”).

Proof. The second point implies the first and third points. For the second point, we may
assume A is small. Then

e X is A-definable iff X is fixed setwise by Aut(M/A).
e c cdcl(A) iff ¢ is fixed pointwise by Aut(M/A),



so the two are equivalent by definition of codes. O]

Because the code is unique up to interdefinability, we often talk about “the” code for X,
denoted " X .

Proposition 6.7. If Ml eliminates imaginaries, then every definable set has a code.

Proof. Let X = ¢(M;by) be a definable set. Let k = |by| and let E be the 0-definable
equivalence relation on MF given by

bEVY <= ¢(M;b) = ¢(M; D).
Take 0-definable f : M* — Y such that
f(b)=f({) < bEV < ¢(M;b) = ¢(M;¥').

Then for any o € Aut(M),

o(f(bo)) = f(bo) <= f(o(bo)) = f(bo)
< ¢(M;0a(bo)) = ¢(M;bo)
= o(d(M; b)) = &(M b)
— o(X)=X

Later we will see a converse.

Lemma 6.8. If M = ACF, and V C M" is an M-linear subspace, then V has a code c.

Proof sketch. Let k = dim(V'). There is some coordinate projection 7 : M — MF* such that
7(V) = MF and the induced map

V= x(V)=M"
is an isomorphism. The inverse of this isomorphism is an M-linear map
MF — V — M".

This map is coded by an n x k matrix. The entries of this matrix are a code for V. (Exercise:
fill in the details.) O

Lemma 6.9. If M = ACF and S C M" is finite, then S has a code.

Proof. For each @ € M", let pz be the ideal in M[X},..., X,] consisting of polynomials
P(X3,...,X,) vanishing at @. Each p; is a maximal ideal of M[X7, ..., X,,]. Let

I = mpa.

aes

10



By commutative algebra, one can recover S from I as follows:
S = {6 Dpg 2 ]}

There is an action of Aut(M) on M[X1, ..., X,,], and we see that 0 € Aut(M) fixes S setwise
iff o fixes I setwise.

For each d, let V; be the M-vector space of polynomials of degree < d. Then V; N I has
a code ¢, for each d. Then for any o € Aut(M), the following are equivalent:

e o fixes S setwise
e o fixes [ setwise
e o fixes C':= {cy, ¢a,...} pointwise.

Therefore S is C-definable, hence d-definable for some finite tuple d from C. But then the
following are equivalent for o € Aut(M):

1. o fixes S setwise
2. o fixes C' pointwise
3. o fixes cfpointwise,
because ] = 2 = 3 = 1. So d is a code for 3. m

In the next section, we will use strong minimality to show that ACF eliminates imagi-
naries.

Given a complete theory T', we can form a (multi-sorted) theory 7°¢ which has a sort for
each O-interpretable set X/E. Every model M |= T yields a model M“? |= T%I. The theory
T“? eliminates imaginaries. In a certain sense, 7' and 7°? are “the same thing.” For example:

e The category of models of T"is equivalent to the category of models of T°?. In particular,
Aut(M) = Aut(M*9).

e The category of O-interpretable sets in 7" is equivalent to the category of O-interpretable
sets in T, or the category of (-definable sets in 7.

e In particular, if X C M" is definable in M| it is definable in M.
Exercise 6.10. M is k-saturated and k-homogeneous iff M is k-saturated and k-homogeneous.
Elements of M®? are called “imaginaries.”

Theorem 6.11. Suppose M is a monster model. Then the following Suppose M and M®?
are monster models. Then the following are equivalent:

1. For every 0-definable set X in M and definable equivalence relation E in M, the set
X/E in M*® is in 0-definable bijection with a definable set in M.

11



2. M has elimination of imaginaries.
3. FEvery definable set X C M"™ has a code in M.

4. For every imaginary e € M®, there is an interdefinable real tuple a € M".

Technically, we need to assume that if Dy, Dy are definable sets, then the disjoint union
D; U Dy also is a definable set. This holds if there are two distinct constant symbols (like
0,1 in ACF), or if we had set up the category of definable sets “correctly.”

Proof. The implication 1 = 2 is easy. The implication 2 =— 3 was proven earlier.
For 3 = 4, if e € M then e € X/FE for some 0-definable set X C M" and 0-definable
equivalence relation £ C X x X. Let [a|g denote the E-equivalence class of a € X. Then e
is some set [a]g, so e is a code for [a]g. On the other hand, e has a real code b € MF, so e
and b are interdefinable.

It remains to show 4 = 1. Let X/E be O-interpretable in M. Then X/E is a O-definable
set in M.

Claim 6.12. For every e € X/E there isn > 0 and a € M"™ and an LY-formula ¢(x,y)
such that
¢(e, M) = {a}
QS(Meqv a) = {6}
Proof. By assumption (4), there is some real tuple a € M" interdefinable with e. Then
(e, M) = {a}
X(M™, a) = {e}.
for some formulas ¢ and x. Take ¢ =¥ A . m
Let Q = X/E. For each formula ¢(z,y), let Q4 be the O-definable set of e € () such that
there is a such that
¢(e, M) = {a}
(M, a) = {e}.

Then ¢ determines a bijection f4 from )4 to some definable set Y. The collection of Q4
covers () (by the claim), so by compactness

Q=04 U---UQy,
for some ¢1,...,¢n,. One can find O-definable subsets @) C Q4 such that the @ form a
partition:

Q=QIU - UQ,.
(For example, take Q; = Q;\U,; @;.) Then f4|q; is a bijection Q] — Y} for some 0-definable
Y/ CY,,. These can be glued to yield a definable bijection

QuU---UQ, S>Y/U---UY,.

Because we are cheating, the right hand side is a definable set in M. O]
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7 Appendix: interpretable sets in strongly minimal the-
ories

Fix M a strongly minimal monster.

Lemma 7.1. If M <M and X C M" s definable and non-empty, there is a € X such that
a € acl("X79)

Proof. By induction on n. If n =1, then X is finite or cofinite. In the finite case, the finite
set X is "X -definable, so we can take any a € X. In the cofinite case, X N M # () so we can
take any a € M. Next suppose n > 1. Let Y = 7(X) where 7 : M" — M"~! is a coordinate
projection. By induction there is b € Y Nacl("Y"). Now "Y' € del("X ™), so

beacl("X7)

Next let Z = {¢ € M : (b,c) € X}. Then Z is non-empty because b € Y = n(X). By
induction, there is ¢ € Z with

ceacl("Z7) Cacl(b"XT),
using the fact that Z is defined from b and "X ™. Now (b,¢) € X and
(b,c) € acl(b" X ™) = acl("X ),
because b € acl("X 7). O

Lemma 7.2. If M X M and e € M* is any imaginary, then there is a real tuple a from M
such that

a € acl(Me)
e € dcl(a).

Proof. Write e as an element of X/F for some 0-definable set X C M" and some 0-definable
E C X x X. Let Y be the equivalence class represented by e. Then e ="Y . Take a € Y
such that a € acl(Me). Then e € dcl(a) because a — e under X — X/FE. O

Proposition 7.3. If acl(D) is infinite, then every imaginary e € M® is interdefinable with
an imaginary of the form "Y1 for Y C M" a finite set.

Proof. Let M = acl(()). Choose a real tuple a € M" such that

a € acl(Me) = acl(e)
e € dcl(a).
Let Y be the finite orbit of a under Aut(M*®?/e). Then Aut(M®?/e) fixes Y setwise, so
"Y' e dcl(e).
Pick some 0-definable function f such that e = f(a). Then by symmetry, e = f(a’) for any
a’ € Y. Therefore e € del("Y ™). So e is interdefinable with "Y . O

13



Corollary 7.4. ACF has elimination of imaginaries.
Definition 7.5. A small subset S C M®? is a “good base” if acl(S) N M is infinite.

Remark 7.6. If S is a good base, then acl®(S) = dcl/(M) for some small M < M, namely
M = acl®/(S)NM. (To see this, given e € acl®(S) find a € acl(Me) such that e € dcl*‘(a).)

Definition 7.7. If e € M and S is a good base, then the rank R(e/S) is R(a/S) for
any/every real tuple a such that
acl(eS) = acl(asS).

One can define R(e/S) when S is bad, but it takes a little more work and we won’t need
it.

Lemma 7.8 (Lascar equality). R(ejea/S) = R(e1/Ses) + R(ez/S).
Proof. Replace S with a set of reals, and e; and ey with equivalent reals. n

Lemma 7.9 (Extension). If S C S is an inclusion of good bases and e is an imaginary,
there is €' such that

e =ge

R(¢'/S") = R(e/S).

Proof. Replacing S and " with acl(S) N M and acl(S”) N M, we may assume S and S’ are
sets of reals. Take a lifting e, so e € dcl®(a) and a € acl(Se). By our earlier extension
lemma, there is 0 € Aut(M/S) such that

R(o(a)/S") = R(o(a)/S) = R(a/$).
But then o(e) =g e, and o(e) is interalgebraic with o(a) over S. Therefore
R(o(e)/S") = R(o(a)/5') = R(a/S) = R(e/S).
[

Definition 7.10. If X is an interpretable set, define dim(X) to be max{R(e/S) : e € X}
for any good base S over which X is defined.

Corollary 7.11. The number dim(X) is well-defined, independent of the choice of S.
Theorem 7.12. Dimension has the following properties:

1. dim(X UY) = max(dim(X), dim(Y")).

2. dim(X x Y) = dim(X) + dim(Y).

3. If f: X =Y is an interpretable bijection, then dim(X) = dim(Y').
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4. If f: X =Y is an interpretable surjection, and dim(f~(y)) =k for ally € Y, then
dim(X) = k + dim(Y).

5. Dimension varies definably in families: if R C X XY are interpretable, and R, = {z €
X : (z,y) € R} for y €Y, then the sets

Y, ={y e Y :dim(R,) =k}
are interpretable, for each k.

Proof. All the properties are proved analogously to the ones for definable sets, except the
last one. Pick some interpretable surjection f : X — X with X definable. First suppose
that dim(f~!(z)) is a constant j across all x € X. Then

dim(R,) = dim(f ™ (R,)) — j

which varies definably in y by the case of definable sets. If dim(f~!(x)) depends on z, we
can partition z into pieces on which dim(f~!(z)) is constant and reduce to the constant
case. [

Proposition 7.13. Let X be an interpretable set.
1. dim(X) > 0 iff X is infinite.

2. There is an upper bound on n such that X can be partitioned into n disjoint interpretable
subsets X, ..., X, with dim(X;) = dim(X) for 1 <i <n.

Proof. Take an interpretable surjection f : X — X with ~)~( definable. Partitioning X, we
may assume the fibers have constant dimension j = dim(X) — dim(X).

1. If dim(X) = 0, every fiber has dimension j = dim(X), so there can be at most deg(X)
fibers, and X is finite. Conversely, if X is finite then X is in interpretable bijection
with a finite definable set X', so dim(X) = dim(X’) = 0.

2. Any partition X = X; U--- X, would pull back to a partition X = X; U --- U X,
and

dim(X;) = dim(f~4(X;)) = j + dim(X;) = j + dim(X) = dim(X).
So 7 is bounded by deg(X).
U

We define the Morley degree deg(X) to be the maximum n such that X can be written
as a union of n disjoint interpretable subsets X; U - - - U X,, with dim(X;) = dim(X) for each
1.

So we have more or less transferred all the facts concerning strongly minimal M to its
expansion M. We now change terminology: “definable” will always mean “interpretable,”
or equivalently, “definable in M¢4.”
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Fact 7.14. The following are equivalent for a definable set X :

e dim(X) =1 and deg(X) = 1.

e X is infinite, but cannot be written as a disjoint union of two definable sets.
We call such sets strongly minimal sets.

Proof sketch. More generally, show that X has Morley rank > 1 iff X contains d pairwise
disjoint infinite definable subsets for arbitrarily high d. Reduce to the case where X C M?
and dim(X) = 2. T guess you can argue this by looking at the complement M? \ X, and
using the fact that it has Morley rank 1 and finite Morley degree. O

8 Appendix: two lemmas that will help with Zilber’s the-
orem

Lemma 8.1. Let G = G° be a definable group. Let X, Y C G have dim(X) = dim(Y) =
dim(G). Then G =X Y, i.e.,

G={z-y:ze€X andy e Y}

Proof. Given any g € G, the sets X and ¢g- Y ~! are full-rank definable subsets. Because
deg(G) = |G/G°| = 1, these two sets must intersect. Therefore there are v € X and y € Y
such that

or equivalently g = x - y. O]

If X,Y are two definable sets of dimension k£ and degree 1, let X ~j Y indicate that
dim(X NY) = k. This is an equivalence relation.

Lemma 8.2. Let G be a definable group. Let X C G be a definable subset of Morley degree
1.

o The “stabilizer”

{geG:dim(XN(g-X))=dim(X)}
s a definable subgroup of G.
o If the “stabilizer” is G, then dim(X) = dim(G) and G = G°.

Proof. Let k = dim(X). Let Fj be the collection of definable subsets of G of dimension
k and degree 1. As in yesterday’s notes, there is an action of G on Fj that respects the
equivalence relation ~. Therefore the “stabilizer” is the actual stabilizer of the equivalence
class [X].,. So it is a subgroup. It is definable because dimension is definable in families.
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Now suppose the stabilizer is all of G. Take a small set C' defining G and X. Take g € G
and a € X such that R((a,g)/C) = dim(G x X) = dim(G) + dim(X). As an exercise with
the Lascar equality, one can verify that

dim(G) > R(g-a/C) > R(g-a/a,C) = R(g/a,C) = dim(G),

so R(g-a/C) =dim(G). Also, R(g-a/g,C) = R(a/g,C) =dim(X). Now g-a € g- X, and
if g-a ¢ X then g-ais in the gC-definable set (g - X) \ X, so that

Rl(g-a/g.C) < dim((g - X)\ X) <k,

because g- X ~ X, by the assumption on the stabilizer. This is a contradiction, so g-a € X.
But X is C-definable, so
dim(G) = R(g - a/C) < dim(X).

Thus k& = dim(G). Then the cosets of G form a class of representatives for Fj/ ~, and
the action of G on F/ ~y is the action of G on G/G°. The stabilizer cannot be G unless
G =G" O

Lemma 8.3. If Xy,..., Xy are sets of dimension k and degree 1, and if X; X fori # j,
then the union Ule X; has degree at least d.

Proof. An exercise in additivity of dimension and degree. O]

9 Appendix: Zilber indecomposability

Let G be a definable group.

Definition 9.1. A definable set X C G is indecomposable if for any definable subgroup
H < G, the quotient X/H is infinite or size 1.

Proposition 9.2. If X C G is definable, then X can be written as a finite union of inde-
composable definable sets.

Proof. Suppose not. Then recursively build a sequence X, X1, Xo,... and Gy, G, ..., where
o Xpis X.
e (5,41 is a definable subgroup such that X;/G;, has size strictly between 1 and N,.
e X, is one of the equivalence classes that’s not a finite union of indecomposables.
By dcc on definable groups, there must be some n such that
Gin---NG, =G N---NGpys.

Then any two elements of X,, are congruent modulo G, 1, contradicting the choice of G, ;.
O
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The decomposition isn’t unique at all.
As a consequence, infinite indecomposable sets exist.

Theorem 9.3 (Zilber). Let F be any collection of indecomposable definable sets. Suppose
1€ X forall X € F. Then the group H generated by | J F is definable and connected.

Proof. Take X, ..., X, maximizing dim(Y") where Y = X;--- X,,. Let Z be some degree-1
definable subset of Y.

Claim 9.4. H < Stab(Z), where the stabilizer is as in Lemma [8.9

Proof. Otherwise there is some X,,.; € F such that X, ., € Stab(Z). Now Stab(Z) is a
definable subgroup, so X, intersects infinitely many cosets of Stab(Z), by indecompos-
ability. Take a,aq,as,... in X,y lying in pairwise distinct cosets of Stab(Z). Then the

translates Z - ai, Z - aq,... are basically pairwise disjoint, and all contained in Z - X,,11.
By choice of X, ..., X,, we have dim(Z - X,,;1) = dim(Z). By Lemma it follows that
deg(Z - Xp4+1) = 00, which is impossible. O

In particular Z CY C Stab(Z). So in the definable group Stab(Z) there is a set Z that
is fully stabilized by the group. By Lemma [8.2] it follows that Stab(Z) is connected and
dim(Z) = dim(Stab(Z)). By Lemma[8.1 Z-Z = Stab(Z). It follows that Stab(Z) < Z-Z <
Y-Y < H,so H= Stab(Z). Thus H is definable and connected. O
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