Strongly minimal theories: Thursday notes

Will Johnson

August 15, 2019

1 Macintyre's theorem

Recall from last time

Lemma 1.1. Let K be a definable infinite field in a strongly minimal theory. Then for every n, the nth power map $K \to K$ is surjective.

Lemma 1.2. Let K be a definable infinite field of characteristic p > 0. Then the Artin-Schreier map

$$\alpha: K \to K$$
$$x \mapsto x^p - x$$

is onto.

Proof. Similar: the map $\alpha : K \to K$ has finite fibers, so $\dim(\alpha(K)) = \dim(K)$, and therefore $|K/\alpha(K)| < \infty$. As $(K, +)^0 = (K, +)$, it follows $\alpha(K) = K$.

We need the following purely algebraic fact:

Fact 1.3 (Kummer, Artin-Schreier). Let L/K be a Galois extension with $\operatorname{Gal}(L/K) \cong \mathbb{Z}/p$.

- 1. If $\operatorname{char}(K) \neq p$ and K contains a primitive pth root of unity, then $L = K(\sqrt[p]{a})$ for some $a \in K$. In particular, $K \neq K^p$.
- 2. If char(K) = p, then L = K(b), where $b^p b \in K$. In particular,

$$\alpha: K \to K$$
$$x \mapsto x^p -$$

x

is not surjective.

Lemma 1.4. Let K be a field. Suppose for every finite extension L/K, the following maps are surjective:

- The nth power map $L^{\times} \to L^{\times}$ for all $n \ge 1$.
- (In characteristic p) the Artin-Schreier map $L \to L$.

Then K is algebraically closed.

Proof. Note K is perfect. If K is not algebraically closed, take non-trivial L_1/K . Take p dividing $[L_1 : K]$. Let ζ_p be a primitive pth root of unity. Then $p \not| [K(\zeta_p) : K]$, so $p|[L(\zeta_p) : K(\zeta_p)]$. Replacing K with $K(\zeta_p)$, we may assume $\zeta_p \in K$. Replacing L with a larger field, we may assume L/K is Galois. Then p divides the order of Gal(L/K), so Gal(L/K) contains a cyclic subgroup of order p. Replacing K with a larger field, we may assume Gal(L/K) is cyclic of order p. Then Kummer theory or Artin-Schreier theory says that the pth power map or the Artin-Schreier map on K is non-surjective.

Theorem 1.5. Let K be a definable infinite field in a strongly minimal theory. Then K is algebraically closed.

Proof. Finite extensions of K are also definable fields.

2 Interpretable sets

Definition 2.1. An interpretable set in a structure M is a set of the form X/E, where X is a definable set and $E \subseteq X \times X$ is a definable equivalence relation.

Example 2.2. If G is a definable group and H is a definable subgroup, the quotient G/H is an interpretable set.

Given a structure M, one can form a category Def_M of definable sets and definable functions, as well as a category Int_M of *interpretable* sets and interpretable functions. There is an embedding

$$\mathrm{Def}_M \hookrightarrow \mathrm{Int}_M$$

One says that M has elimination of imaginaries¹ if this functor is an equivalence of categories.

More concretely, this means that for any definable X and E, there is a definable surjection $f: X \to Y$ inducing a bijection $X/E \to Y$.

Fact 2.3. If $K \models ACF$, then K has elimination of imaginaries.

Fact 2.4. The following structures are strongly minimal and do not eliminate imaginaries:

• An infinite set X with no structure.

¹Technically we should work with the category of 0-definable and 0-interpretable sets (sets definable without parameters, and quotients X/E where X, E are 0-definable). I call the condition given here "parametric elimination of imaginaries." It turns out to be weaker than full elimination of imaginaries. See Corollary 6.4.

• $(\mathbb{Q}, +)$.

Theorem 2.5. If M is any structure, there is a structure M^{eq} such that $\text{Def}_{M^{eq}}$ is equivalent to Int_M .

If M is strongly minimal, then rank, dimension, and degree extend to M^{eq} and satisfy all the properties of yesterday's lecture. Elements of M^{eq} are called imaginaries.

Example 2.6. Macintyre's theorem generalizes. If M is strongly minimal and K is an infinite interpretable field, then $K \models ACF$.

3 Minimal groups

Let \mathbb{M} be a strongly minimal monster. In what follows, "definable" really means "interpretable." If you like, switch to \mathbb{M}^{eq} .

Definition 3.1. G is connected if $G = G^0$.

We fix some group-theoretic notation:

- $H \triangleleft G$ means H is a normal subgroup of G
- Z(a) denotes the centralizers of a:

$$Z(a) = \{g \in G \mid ag = ga\}.$$

• Z(G) denotes the center of G:

$$Z(G) = \bigcap_{a \in G} Z(a).$$

• a^G denotes the conjugacy class of a:

$$a^G = \{g^{-1}ag : g \in G\}.$$

All these sets are definable. Note

$$a \in Z(G) \iff a^G = \{a\}.$$

Note G acts on itself by conjugation, and

- The orbit of a is a^G
- The stabilizer of a is Z(a).

Therefore,

$$\dim(a^G) = \dim(G) - \dim(Z(a)).$$

Note $Z(G) \lhd G$.

Lemma 3.2. If G is connected, and $a \in G$ has finite conjugacy class a^G , then $a \in Z(G)$.

Proof. The size of a^G is the index of Z(a) in G, which is 1 if finite, as $G = G^0$.

Proposition 3.3. If G is connected and $H \triangleleft G$ is a finite normal subgroup, then $H \leq Z(G)$.

Proof. If $a \in H$ then $a^G \subseteq H$, so a^G is finite, so $a \in Z(G)$.

Proposition 3.4. Let G be a connected definable group with Z(G) finite. Then G/Z(G) is centerless.

Proof. Let [a] denote the image of a under $G \to G/Z(G)$. Suppose $[a] \in Z(G/Z(G))$. Then for every $g \in G$,

$$g^{-1} \cdot a \cdot g \equiv a \pmod{Z(G)}.$$

Therefore $a^G \subseteq a \cdot Z(G)$ and a^G is finite, implying $a \in Z(G)$ and [a] = 1.

Definition 3.5. A definable group (G, \cdot) is minimal if G is infinite, but every definable proper subgroup is finite.

Remark 3.6. If G is definable and infinite, there is definable minimal $H \leq G$, by DCC on definable subgroups.

Lemma 3.7. If G is minimal and H is a finite normal subgroup, then G/H is minimal. If G is minimal, then $G = G^0$.

Proof. For the first point, note that any infinite definable proper subgroup of G/H pulls back to an infinite definable proper subgroup of G. For the second point, note that G^0 is an infinite definable subgroup of G.

Theorem 3.8 (Reineke). Let G be a minimal group. Then G is connected and abelian.

Proof. Note G is connected. Suppose G is non-abelian. Then $Z(G) \neq G$, so Z(G) is finite. Let H = G/Z(G). Then H is minimal, and centerless by Proposition 3.4. So H is a connected non-abelian centerless minimal group.

Claim 3.9. If $a, b \in H$ are non-trivial, then a, b are conjugate. So there is only one non-trivial conjugacy class in H.

Proof. As a is non-central, the centralizer Z(a) is a definable proper subgroup of H, so Z(a) is finite. Counting ranks,

$$\dim(a^H) = \dim(H) - \dim(Z(a)) = \dim(H).$$

Similarly, $\dim(b^H) = \dim(H)$. As $H = H^0$, the Morley degree of H is 1 and so a^H and b^H cannot be disjoint. Thus a and b are conjugate.

Take some non-trivial $a \in H$.

- If $a^2 = 1$, then by symmetry $b^2 = 1$ for all b conjugate to a. Thus $b^2 = 1$ for all $b \in H$, and H is abelian, a contradiction.
- Suppose $a^2 \neq 1$. Then $a \neq a^{-1}$. Take b such that $b^{-1}ab = a^{-1}$. Then

$$b^{-1}ab = a^{-1} \neq a$$

 $b^{-2}ab^2 = b^{-1}a^{-1}b = a$

Therefore $a \notin Z(b)$ but $a \in Z(b^2)$. It follows that

$$Z(b) < Z(b^2).$$

On the other hand $b^2 \neq 1$ (because b and a are conjugate and $a^2 \neq 1$), so b and b^2 are conjugate. By symmetry, $|Z(b)| = |Z(b^2)|$, contradicting $Z(b) \subsetneq Z(b^2)$.²

Corollary 3.10. For any infinite definable G there is an infinite definable abelian subgroup $H \leq G$.

Corollary 3.11. If $G = G^0$ and $\dim(G) = 1$, then G is minimal, and therefore abelian.

Proof. If G fails to be minimal, take an infinite definable H < G. Then $0 < \dim(H) \le \dim(G) = 1$, so $\dim(H) = \dim(G)$. But then $\dim(G/H) = 0$, so H has finite index, contradicting $G = G^0$.

It is *not* true that every group of finite Morley rank has a definable subgroup of rank 1, but the examples are hard to come by.

4 Zilber indecomposability

Let G be a definable group.

Definition 4.1. A definable set $X \subseteq G$ is indecomposable if for any definable subgroup $H \leq G$, the quotient X/H is infinite or size 1.

Proposition 4.2. If $X \subseteq G$ is definable, then X is a disjoint union $X_1 \sqcup \cdots \sqcup X_n$ with X_i indecomposable.

(This decomposition isn't unique)

Theorem 4.3 (Zilber indecomposability). If $X \subseteq G$ is indecomposable and $1 \in X$, then the subgroup $\langle X \rangle \leq G$ generated by X is definable and connected. More generally, suppose \mathcal{F} is a collection of indecomposable sets containing 1. Then $\langle \bigcup \mathcal{F} \rangle$ is definable and connected.

²Note Z(b) is finite because Z(b) < H and H is minimal.

Lemma 4.4. Suppose M acts on G. Suppose $X \subseteq G$ is fixed setwise by M. Suppose that for every M-invariant definable subgroup $H \leq G$ the quotient X/H is a singleton or infinite. Then X is indecomposable.

Proof. Suppose X fails to be indecomposable. Take H_0 such that $1 < |X/H_0| < \aleph_0$. Let H be the intersection of all conjugates of H_0 under M. By dcc, H is a finite intersection $H_0 \cap H_1 \cap \cdots \cap H_n$ where each H_i is a conjugate under M of H_0 . As X is invariant under M, each quotient X/H_i has the same size as X/H_0 , and is in particular finite. Therefore

$$X/H = X/(H_0 \cap \cdots \cap H_n)$$
 is finite.

But H is M-invariant, so this contradicts the assumption.

Example 4.5. If G is connected, then [G, G] is definable and connected. Here, [G, G] denotes the derived subgroup—the subgroup generated by commutators $a^{-1}b^{-1}ab$.

Proof. We claim that for each $a \in G$, the set a^G is indecomposable. It is closed under conjugation, so we only need to consider quotients a^G/N where $N \triangleleft G$. Now a^G/N is the conjugacy class of a in G/N, which is either a singleton or infinite, because G/N is connected. Thus a^G is indecomposable. The left-translate $a^{-1} \cdot a^G$ is also indecomposable, and contains $1 = a^{-1} \cdot a$. Let \mathcal{F} be

$$\{a^{-1} \cdot a^G : a \in G\}$$

Then [G,G] is $\langle \bigcup \mathcal{F} \rangle$, so [G,G] is definable and connected.

Definition 4.6. A definable group G is definably simple if G has no proper non-trivial definable normal subgroup.

Lemma 4.7. Let G be definably simple. Let $X \subseteq G$ be closed under conjugation. If X is infinite, then X is indecomposable.

Proof. By the lemma we only need to consider the quotients X/G and X/1. The first has size 1 and the second is infinite.

Theorem 4.8. Let G be a non-abelian definably simple group. Then G is simple.

Proof. Suppose G is definably simple. If G is finite, every subgroup is definable, so G is simple. Assume G infinite. Then $G = G^0$ or else G^0 is a proper normal non-trivial definable subgroup. By non-abelianity, Z(G) is a *proper* subgroup, normal as always. So Z(G) = 1 by definable simplicity.

Given $a \in G \setminus \{1\}$, we have $a \notin Z(G)$, so Z(a) < G. As $G = G^0$ it follows dim $(Z(a)) < \dim(G)$, so dim $(a^G) = \dim(G) - \dim(Z(a)) > 0$. Thus $a^G \cup \{1\}$ is infinite. It is closed under conjugation, so $a^G \cup \{1\}$ is indecomposable. By Zilber's indecomposability theorem,

$$H = \langle a^G \cup \{1\} \rangle$$

is a definable non-trivial subgroup. It is closed under conjugation, so $H \triangleleft G$. By definable simplicity, H = G. So

 $\langle a^G \rangle = G$

for all $a \neq 1$.

Now if H is an abstract normal subgroup, take $a \in H$, and note $a^G \subseteq H$, so

$$\langle a^G \rangle \le H \implies H = G.$$

Therefore G is simple.

Lemma 4.9. If G is connected and non-trivial then G has a definable proper normal subgroup H (possibly trivial) such that G/H is abelian or simple.

Proof. Proceed by induction on $\dim(G)$. If $\dim(G) = 0$, then G is finite, and we can take H a maximal proper normal subgroup. Suppose $\dim(G) > 0$. If there is an infinite proper normal subgroup $K \triangleleft G$, then $\dim(G/K) = \dim(G) - \dim(K) < \dim(G)$, and by induction there is $H/K \triangleleft G/K$ such that $(G/K)/(H/K) \cong G/H$ is simple or abelian. So we may assume every definable proper normal subgroup of G is finite. In particular, $G = G^0$. If G is abelian, take H = 1. Otherwise, Z(G) is finite and every proper normal $K \triangleleft G$ satisfies $K \leq Z(G)$. Therefore G/Z(G) is definably simple, so we can take H = Z(G).

Theorem 4.10. Let G be any definable group. Then there is a subnormal sequence of definable groups such that the quotients are abelian or simple.

Proof. Build a sequence $G = G_0 \triangleright G_1 \triangleright \cdots$ by taking G_{i+1} to be a proper normal subgroup of G_i with quotient G_{i+1}/G_i that is abelian or simple. Eventually the process terminates, by DCC.

5 Exercises

Exercise 5.1. The field \mathbb{Q} is not algebraically closed. Write down a formula $\phi(x)$ such that $\phi(\mathbb{Q})$ is neither finite nor cofinite.

Exercise 5.2. In the field \mathbb{C} , let $X = \mathbb{C} \times \mathbb{C}$ and let E be the equivalence relation whose equivalence classes are the sets $\{(x, y), (y, x)\}$. Find a definable set Y and definable function $f: X \to Y$ such that

$$\forall a, b \in X : aEb \iff f(a) = f(b).$$

Exercise 5.3.

- Let G be a definable group, X be a definable set, and suppose G has a transitive definable group action on X. If $G = G^0$, show that $\deg(X) = 1$.
- Equivalently, show that if $G = G^0$ is definable and $H \le G$ is definable, then $\deg(G/H) = 1$.

• In particular, if $H \triangleleft G$ and $G = G^0$, then $(G/H)^0 = G/H$.

Exercise 5.4. If (G, +) is minimal, then one of the following holds:

- G is an infinite \mathbb{F}_p -vector space for some prime p.
- G is divisible, and for every $n \ge 1$ has finite n-torsion.

Solution. Let G[n] denote the group of *n*-torsion. If G[p] is infinite for any prime p, then G[p] = G by minimality. So assume G[p] is finite for all p. Then the map $x \mapsto p \cdot x$ has finite fibers, and its image must be a subgroup of rank dim(G). As $G = G^0$ by minimality, this implies the map is surjective. So G is divisible. For any $n \ge 1$ the short exact sequence

$$0 \to G[n] \to G \xrightarrow{x \mapsto n \cdot x} G \to 0$$

shows G[n] has rank 0, i.e., is finite.

6 Appendix: imaginaries and interpretable sets

In mathematics, we often need to be able to take the quotient of a set X by an equivalence relation $E \subseteq X \times X$.

Definition 6.1. If $A \subseteq M$, an A-interpretable set is a set of the form X/E where X is A-definable and $E \subseteq X \times X$ is an A-definable equivalence relation. An interpretable set is an A-interpretable set for some A.

Definition 6.2. A structure M has elimination of imaginaries if for every 0-interpretable set X/E, there is a 0-definable set Y and a bijection $X/E \to Y$ such that the composition

$$X \twoheadrightarrow X/E \to Y$$

is 0-definable.

Another way of saying this is that given 0-definable X/E, there is a 0-definable surjection $f: X \to Y$ such that

$$\forall x_1, x_2 \in X : (f(x_1) = f(x_2) \Leftrightarrow x_1 E x_2).$$

Proposition 6.3. Let M have elimination of imaginaries.

- 1. If $M' \equiv M$ then M' has elimination of imaginaries.
- 2. Any expansion of M by constants has elimination of imaginaries.
- *Proof.* 1. Given a 0-interpretable set X'/E' in M', take formulas $\phi(x)$ and $\psi(x_1, x_2)$ such that $X' = \phi(M')$ and $E' = \psi(M')$. Let $X = \phi(M)$ and $E = \psi(M)$. Using the fact that $M \equiv M'$, one sees easily that E is an equivalence relation on X. Take a 0-definable set Y and a 0-definable surjection $f: X \twoheadrightarrow Y$ eliminating X/E. The one can transfer Y and f back to M' in the same fashion. We leave the details as an exercise.

2. Suppose X/E is interpretable, where $X = \phi(M; b_0)$ and $E = \psi(M; b_0)$ for some tuple of new constants b_0 . Let B be the set of b such that $\psi(M; b)$ is an equivalence relation on $\phi(M; b)$. The set B is definable and contains b_0 . Consider the 0-definable sets

$$X := \{ (a, b) : b \in B, \ M \models \phi(a, b) \}$$
$$\tilde{E} := \{ (a_1, b; a_2, b) : b \in B, \ M \models \psi(a_1, a_2, b) \}.$$

Then \tilde{E} is an equivalence relation on \tilde{X} . By elimination of imaginaries there is a 0-definable bijection $\tilde{f}: \tilde{X}/\tilde{E} \to \tilde{Y}$ with

$$\tilde{f}(a_1, b_1) = f(a_2, b_2) \iff b_1 = b_2 \wedge M \models \psi(a_1, a_2, b_1).$$

Let $f(a) = \tilde{f}(b_0)$. Then $f: X \to \tilde{Y}$ is b_0 -definable, and

$$f(a_1) = f(a_2) \iff (M \models \psi(a_1, a_2, b_0)) \iff a_1 E a_2.$$

Thus the quotient X/E is eliminated.

Corollary 6.4. If M has elimination of imaginaries, for every interpretable set X/E there is a definable set Y and a bijection $X/E \to Y$ such that the composition

$$X \twoheadrightarrow X/E \to Y$$

is definable.

Definition 6.5. Let X be a definable set in a monster model \mathbb{M} . A finite tuple c is a code for X if for every $\sigma \in \operatorname{Aut}(\mathbb{M})$, the following are equivalent:

- σ fixes X setwise.
- σ fixes c pointwise.

Proposition 6.6. Suppose X has a code c.

- X is c-definable.
- More generally, X is A-definable iff $c \in dcl(A)$.
- If c' is another code, then dcl(c) = dcl(c') (c and c' are "interdefinable.").

Proof. The second point implies the first and third points. For the second point, we may assume A is small. Then

- X is A-definable iff X is fixed setwise by $\operatorname{Aut}(\mathbb{M}/A)$.
- $c \in dcl(A)$ iff c is fixed pointwise by $Aut(\mathbb{M}/A)$,

so the two are equivalent by definition of codes.

Because the code is unique up to interdefinability, we often talk about "the" code for X, denoted $\lceil X \rceil$.

Proposition 6.7. If M eliminates imaginaries, then every definable set has a code.

Proof. Let $X = \phi(\mathbb{M}; b_0)$ be a definable set. Let $k = |b_0|$ and let E be the 0-definable equivalence relation on \mathbb{M}^k given by

$$bEb' \iff \phi(\mathbb{M};b) = \phi(\mathbb{M};b').$$

Take 0-definable $f: \mathbb{M}^k \twoheadrightarrow Y$ such that

$$f(b) = f(b') \iff bEb' \iff \phi(\mathbb{M}; b) = \phi(\mathbb{M}; b')$$

Then for any $\sigma \in \operatorname{Aut}(\mathbb{M})$,

$$\sigma(f(b_0)) = f(b_0) \iff f(\sigma(b_0)) = f(b_0)$$
$$\iff \phi(\mathbb{M}; \sigma(b_0)) = \phi(\mathbb{M}; b_0)$$
$$\iff \sigma(\phi(\mathbb{M}; b_0)) = \phi(\mathbb{M}; b_0)$$
$$\iff \sigma(X) = X.$$

Later we will see a converse.

Lemma 6.8. If $\mathbb{M} \models ACF$, and $V \subseteq \mathbb{M}^n$ is an \mathbb{M} -linear subspace, then V has a code c.

Proof sketch. Let $k = \dim(V)$. There is some coordinate projection $\pi : \mathbb{M}^n \to \mathbb{M}^k$ such that $\pi(V) = \mathbb{M}^k$ and the induced map

$$V \twoheadrightarrow \pi(V) = \mathbb{M}^k$$

is an isomorphism. The inverse of this isomorphism is an M-linear map

$$\mathbb{M}^k \to V \hookrightarrow \mathbb{M}^n$$

This map is coded by an $n \times k$ matrix. The entries of this matrix are a code for V. (Exercise: fill in the details.)

Lemma 6.9. If $\mathbb{M} \models ACF$ and $S \subseteq \mathbb{M}^n$ is finite, then S has a code.

Proof. For each $\vec{a} \in \mathbb{M}^n$, let $\mathfrak{p}_{\vec{a}}$ be the ideal in $\mathbb{M}[X_1, \ldots, X_n]$ consisting of polynomials $P(X_1, \ldots, X_n)$ vanishing at \vec{a} . Each $\mathfrak{p}_{\vec{a}}$ is a maximal ideal of $\mathbb{M}[X_1, \ldots, X_n]$. Let

$$I = \bigcap_{\vec{a} \in S} \mathfrak{p}_{\vec{a}}.$$

By commutative algebra, one can recover S from I as follows:

$$S = \{ \vec{a} : \mathfrak{p}_{\vec{a}} \supseteq I \}.$$

There is an action of $\operatorname{Aut}(\mathbb{M})$ on $\mathbb{M}[X_1, \ldots, X_n]$, and we see that $\sigma \in \operatorname{Aut}(\mathbb{M})$ fixes S setwise iff σ fixes I setwise.

For each d, let V_d be the \mathbb{M} -vector space of polynomials of degree $\leq d$. Then $V_d \cap I$ has a code c_d for each d. Then for any $\sigma \in \operatorname{Aut}(\mathbb{M})$, the following are equivalent:

- σ fixes S setwise
- σ fixes I setwise
- σ fixes $C := \{c_1, c_2, \ldots\}$ pointwise.

Therefore S is C-definable, hence \vec{d} -definable for some finite tuple \vec{d} from C. But then the following are equivalent for $\sigma \in Aut(\mathbb{M})$:

- 1. σ fixes S setwise
- 2. σ fixes C pointwise
- 3. σ fixes \vec{d} pointwise,

because $1 \implies 2 \implies 3 \implies 1$. So \vec{d} is a code for S.

In the next section, we will use strong minimality to show that ACF eliminates imaginaries.

Given a complete theory T, we can form a (multi-sorted) theory T^{eq} which has a sort for each 0-interpretable set X/E. Every model $M \models T$ yields a model $M^{eq} \models T^{eq}$. The theory T^{eq} eliminates imaginaries. In a certain sense, T and T^{eq} are "the same thing." For example:

- The category of models of T is equivalent to the category of models of T^{eq} . In particular, $\operatorname{Aut}(M) \cong \operatorname{Aut}(M^{eq})$.
- The category of 0-interpretable sets in T is equivalent to the category of 0-interpretable sets in T^{eq} , or the category of 0-definable sets in T^{eq} .
- In particular, if $X \subset \mathbb{M}^n$ is definable in \mathbb{M}^{eq} , it is definable in \mathbb{M} .

Exercise 6.10. M is κ -saturated and κ -homogeneous iff \mathbb{M}^{eq} is κ -saturated and κ -homogeneous.

Elements of \mathbb{M}^{eq} are called "imaginaries."

Theorem 6.11. Suppose \mathbb{M} is a monster model. Then the following Suppose \mathbb{M} and \mathbb{M}^{eq} are monster models. Then the following are equivalent:

1. For every 0-definable set X in \mathbb{M} and definable equivalence relation E in \mathbb{M} , the set X/E in \mathbb{M}^{eq} is in 0-definable bijection with a definable set in \mathbb{M} .

- 2. M has elimination of imaginaries.
- 3. Every definable set $X \subseteq \mathbb{M}^n$ has a code in \mathbb{M} .
- 4. For every imaginary $e \in \mathbb{M}^{eq}$, there is an interdefinable real tuple $a \in \mathbb{M}^n$.

Technically, we need to assume that if D_1, D_2 are definable sets, then the disjoint union $D_1 \sqcup D_2$ also is a definable set. This holds if there are two distinct constant symbols (like 0, 1 in ACF), or if we had set up the category of definable sets "correctly."

Proof. The implication $1 \implies 2$ is easy. The implication $2 \implies 3$ was proven earlier. For $3 \implies 4$, if $e \in \mathbb{M}^{eq}$ then $e \in X/E$ for some 0-definable set $X \subseteq \mathbb{M}^n$ and 0-definable equivalence relation $E \subseteq X \times X$. Let $[a]_E$ denote the *E*-equivalence class of $a \in X$. Then *e* is some set $[a]_E$, so *e* is a *code* for $[a]_E$. On the other hand, *e* has a *real* code $b \in \mathbb{M}^k$, so *e* and *b* are interdefinable.

It remains to show $4 \implies 1$. Let X/E be 0-interpretable in \mathbb{M} . Then X/E is a 0-definable set in \mathbb{M}^{eq} .

Claim 6.12. For every $e \in X/E$ there is $n \ge 0$ and $a \in \mathbb{M}^n$ and an \mathcal{L}^{eq} -formula $\phi(x, y)$ such that

$$\phi(e, \mathbb{M}^{eq}) = \{a\}$$

$$\phi(\mathbb{M}^{eq}, a) = \{e\}$$

Proof. By assumption (4), there is some real tuple $a \in \mathbb{M}^n$ interdefinable with e. Then

$$\psi(e, \mathbb{M}^{eq}) = \{a\}$$
$$\chi(\mathbb{M}^{eq}, a) = \{e\}$$

for some formulas ψ and χ . Take $\phi = \psi \wedge \chi$.

Let Q = X/E. For each formula $\phi(x, y)$, let Q_{ϕ} be the 0-definable set of $e \in Q$ such that there is a such that

$$\phi(e, \mathbb{M}^{eq}) = \{a\}$$
$$\phi(\mathbb{M}^{eq}, a) = \{e\}$$

Then ϕ determines a bijection f_{ϕ} from Q_{ϕ} to some definable set Y_{ϕ} . The collection of Q_{ϕ} covers Q (by the claim), so by compactness

$$Q = Q_{\phi_1} \cup \dots \cup Q_{\phi_m}$$

for some ϕ_1, \ldots, ϕ_m . One can find 0-definable subsets $Q'_i \subseteq Q_{\phi_i}$ such that the Q'_i form a partition:

$$Q = Q'_1 \sqcup \cdots \sqcup Q'_m.$$

(For example, take $Q'_i = Q_i \setminus \bigcup_{j < i} Q_j$.) Then $f_{\phi}|_{Q'_i}$ is a bijection $Q'_i \to Y'_i$ for some 0-definable $Y'_i \subseteq Y_{\phi_i}$. These can be glued to yield a definable bijection

$$Q'_1 \sqcup \cdots \sqcup Q'_m \xrightarrow{\sim} Y'_1 \sqcup \cdots \sqcup Y'_m.$$

Because we are cheating, the right hand side is a definable set in M.

7 Appendix: interpretable sets in strongly minimal theories

Fix \mathbb{M} a strongly minimal monster.

Lemma 7.1. If $M \preceq \mathbb{M}$ and $X \subseteq \mathbb{M}^n$ is definable and non-empty, there is $a \in X$ such that

 $a \in \operatorname{acl}(\ulcorner X \urcorner S)$

Proof. By induction on n. If n = 1, then X is finite or cofinite. In the finite case, the finite set X is $\lceil X \rceil$ -definable, so we can take any $a \in X$. In the cofinite case, $X \cap M \neq \emptyset$ so we can take any $a \in M$. Next suppose n > 1. Let $Y = \pi(X)$ where $\pi : \mathbb{M}^n \twoheadrightarrow \mathbb{M}^{n-1}$ is a coordinate projection. By induction there is $b \in Y \cap \operatorname{acl}(\lceil Y \rceil)$. Now $\lceil Y \rceil \in \operatorname{dcl}(\lceil X \rceil)$, so

$$b \in \operatorname{acl}(\ulcorner X \urcorner)$$

Next let $Z = \{c \in \mathbb{M} : (b,c) \in X\}$. Then Z is non-empty because $b \in Y = \pi(X)$. By induction, there is $c \in Z$ with

$$c \in \operatorname{acl}(\ulcorner Z \urcorner) \subseteq \operatorname{acl}(b\ulcorner X \urcorner),$$

using the fact that Z is defined from b and $\lceil X \rceil$. Now $(b, c) \in X$ and

 $(b,c) \in \operatorname{acl}(b^{\ulcorner}X^{\urcorner}) = \operatorname{acl}(^{\ulcorner}X^{\urcorner}),$

because $b \in \operatorname{acl}(\ulcorner X \urcorner)$.

Lemma 7.2. If $M \leq \mathbb{M}$ and $e \in \mathbb{M}^{eq}$ is any imaginary, then there is a real tuple a from \mathbb{M} such that

$$a \in \operatorname{acl}(Me)$$
$$e \in \operatorname{dcl}(a).$$

Proof. Write e as an element of X/E for some 0-definable set $X \subseteq \mathbb{M}^n$ and some 0-definable $E \subseteq X \times X$. Let Y be the equivalence class represented by e. Then $e = \lceil Y \rceil$. Take $a \in Y$ such that $a \in \operatorname{acl}(Me)$. Then $e \in \operatorname{dcl}(a)$ because $a \mapsto e$ under $X \twoheadrightarrow X/E$.

Proposition 7.3. If $\operatorname{acl}(\emptyset)$ is infinite, then every imaginary $e \in \mathbb{M}^{eq}$ is interdefinable with an imaginary of the form $\lceil Y \rceil$ for $Y \subseteq \mathbb{M}^n$ a finite set.

Proof. Let $M = \operatorname{acl}(\emptyset)$. Choose a real tuple $a \in \mathbb{M}^n$ such that

$$a \in \operatorname{acl}(Me) = \operatorname{acl}(e)$$

 $e \in \operatorname{dcl}(a).$

Let Y be the finite orbit of a under $\operatorname{Aut}(\mathbb{M}^{eq}/e)$. Then $\operatorname{Aut}(\mathbb{M}^{eq}/e)$ fixes Y setwise, so

 $\ulcorner Y \urcorner \in \operatorname{dcl}(e).$

Pick some 0-definable function f such that e = f(a). Then by symmetry, e = f(a') for any $a' \in Y$. Therefore $e \in dcl(\ulcorner Y \urcorner)$. So e is interdefinable with $\ulcorner Y \urcorner$. \Box

Corollary 7.4. ACF has elimination of imaginaries.

Definition 7.5. A small subset $S \subseteq \mathbb{M}^{eq}$ is a "good base" if $\operatorname{acl}(S) \cap \mathbb{M}$ is infinite.

Remark 7.6. If S is a good base, then $\operatorname{acl}^{eq}(S) = \operatorname{dcl}^{eq}(M)$ for some small $M \leq \mathbb{M}$, namely $M = \operatorname{acl}^{eq}(S) \cap \mathbb{M}$. (To see this, given $e \in \operatorname{acl}^{eq}(S)$ find $a \in \operatorname{acl}(Me)$ such that $e \in \operatorname{dcl}^{eq}(a)$.)

Definition 7.7. If $e \in \mathbb{M}^{eq}$ and S is a good base, then the rank R(e/S) is R(a/S) for any/every real tuple a such that

$$\operatorname{acl}(eS) = \operatorname{acl}(aS).$$

One can define R(e/S) when S is bad, but it takes a little more work and we won't need it.

Lemma 7.8 (Lascar equality). $R(e_1e_2/S) = R(e_1/Se_2) + R(e_2/S)$.

Proof. Replace S with a set of reals, and e_1 and e_2 with equivalent reals.

Lemma 7.9 (Extension). If $S \subseteq S'$ is an inclusion of good bases and e is an imaginary, there is e' such that

$$e' \equiv_S e$$

 $R(e'/S') = R(e/S)$

Proof. Replacing S and S' with $\operatorname{acl}(S) \cap \mathbb{M}$ and $\operatorname{acl}(S') \cap \mathbb{M}$, we may assume S and S' are sets of reals. Take a lifting e, so $e \in \operatorname{dcl}^{eq}(a)$ and $a \in \operatorname{acl}(Se)$. By our earlier extension lemma, there is $\sigma \in \operatorname{Aut}(\mathbb{M}/S)$ such that

$$R(\sigma(a)/S') = R(\sigma(a)/S) = R(a/S).$$

But then $\sigma(e) \equiv_S e$, and $\sigma(e)$ is interalgebraic with $\sigma(a)$ over S. Therefore

$$R(\sigma(e)/S') = R(\sigma(a)/S') = R(a/S) = R(e/S).$$

Definition 7.10. If X is an interpretable set, define $\dim(X)$ to be $\max\{R(e/S) : e \in X\}$ for any good base S over which X is defined.

Corollary 7.11. The number $\dim(X)$ is well-defined, independent of the choice of S.

Theorem 7.12. Dimension has the following properties:

- 1. $\dim(X \cup Y) = \max(\dim(X), \dim(Y)).$
- 2. $\dim(X \times Y) = \dim(X) + \dim(Y).$
- 3. If $f: X \to Y$ is an interpretable bijection, then $\dim(X) = \dim(Y)$.

- 4. If $f: X \to Y$ is an interpretable surjection, and $\dim(f^{-1}(y)) = k$ for all $y \in Y$, then $\dim(X) = k + \dim(Y)$.
- 5. Dimension varies definably in families: if $R \subseteq X \times Y$ are interpretable, and $R_y = \{x \in X : (x, y) \in R\}$ for $y \in Y$, then the sets

$$Y_k := \{ y \in Y : \dim(R_y) = k \}$$

are interpretable, for each k.

Proof. All the properties are proved analogously to the ones for definable sets, except the last one. Pick some interpretable surjection $f : \tilde{X} \to X$ with \tilde{X} definable. First suppose that $\dim(f^{-1}(x))$ is a constant j across all $x \in X$. Then

$$\dim(R_y) = \dim(f^{-1}(R_y)) - j$$

which varies definably in y by the case of definable sets. If $\dim(f^{-1}(x))$ depends on x, we can partition x into pieces on which $\dim(f^{-1}(x))$ is constant and reduce to the constant case.

Proposition 7.13. Let X be an interpretable set.

- 1. $\dim(X) > 0$ iff X is infinite.
- 2. There is an upper bound on n such that X can be partitioned into n disjoint interpretable subsets X_1, \ldots, X_n with $\dim(X_i) = \dim(X)$ for $1 \le i \le n$.

Proof. Take an interpretable surjection $f: \tilde{X} \to X$ with \tilde{X} definable. Partitioning X, we may assume the fibers have constant dimension $j = \dim(\tilde{X}) - \dim(X)$.

- 1. If $\dim(X) = 0$, every fiber has dimension $j = \dim(X)$, so there can be at most $\deg(X)$ fibers, and X is finite. Conversely, if X is finite then X is in interpretable bijection with a finite definable set X', so $\dim(X) = \dim(X') = 0$.
- 2. Any partition $X = X_1 \sqcup \cdots \sqcup X_n$ would pull back to a partition $\tilde{X} = \tilde{X}_1 \sqcup \cdots \sqcup \tilde{X}_n$, and

$$\dim(X_i) = \dim(f^{-1}(X_i)) = j + \dim(X_i) = j + \dim(X) = \dim(X).$$

So n is bounded by $\deg(X)$.

We define the *Morley degree* $\deg(X)$ to be the maximum n such that X can be written as a union of n disjoint interpretable subsets $X_1 \sqcup \cdots \sqcup X_n$ with $\dim(X_i) = \dim(X)$ for each i.

So we have more or less transferred all the facts concerning strongly minimal \mathbb{M} to its expansion \mathbb{M}^{eq} . We now change terminology: "definable" will always mean "interpretable," or equivalently, "definable in \mathbb{M}^{eq} ."

Fact 7.14. The following are equivalent for a definable set X:

- $\dim(X) = 1$ and $\deg(X) = 1$.
- X is infinite, but cannot be written as a disjoint union of two definable sets.

We call such sets strongly minimal sets.

Proof sketch. More generally, show that X has Morley rank > 1 iff X contains d pairwise disjoint infinite definable subsets for arbitrarily high d. Reduce to the case where $X \subseteq \mathbb{M}^2$ and $\dim(X) = 2$. I guess you can argue this by looking at the complement $\mathbb{M}^2 \setminus X$, and using the fact that it has Morley rank 1 and finite Morley degree. \Box

8 Appendix: two lemmas that will help with Zilber's theorem

Lemma 8.1. Let $G = G^0$ be a definable group. Let $X, Y \subseteq G$ have $\dim(X) = \dim(Y) = \dim(G)$. Then $G = X \cdot Y$, *i.e.*,

$$G = \{x \cdot y : x \in X \text{ and } y \in Y\}.$$

Proof. Given any $g \in G$, the sets X and $g \cdot Y^{-1}$ are full-rank definable subsets. Because $\deg(G) = |G/G^0| = 1$, these two sets must intersect. Therefore there are $x \in X$ and $y \in Y$ such that

$$x = g \cdot y^{-1},$$

or equivalently $g = x \cdot y$.

If X, Y are two definable sets of dimension k and degree 1, let $X \sim_k Y$ indicate that $\dim(X \cap Y) = k$. This is an equivalence relation.

Lemma 8.2. Let G be a definable group. Let $X \subseteq G$ be a definable subset of Morley degree 1.

• The "stabilizer"

 $\{g \in G : \dim(X \cap (g \cdot X)) = \dim(X)\}$

is a definable subgroup of G.

• If the "stabilizer" is G, then $\dim(X) = \dim(G)$ and $G = G^0$.

Proof. Let $k = \dim(X)$. Let \mathcal{F}_k be the collection of definable subsets of G of dimension k and degree 1. As in yesterday's notes, there is an action of G on \mathcal{F}_k that respects the equivalence relation \sim_k . Therefore the "stabilizer" is the actual stabilizer of the equivalence class $[X]_{\sim_k}$. So it is a subgroup. It is definable because dimension is definable in families.

Now suppose the stabilizer is all of G. Take a small set C defining G and X. Take $g \in G$ and $a \in X$ such that $R((a,g)/C) = \dim(G \times X) = \dim(G) + \dim(X)$. As an exercise with the Lascar equality, one can verify that

$$\dim(G) \ge R(g \cdot a/C) \ge R(g \cdot a/a, C) = R(g/a, C) = \dim(G),$$

so $R(g \cdot a/C) = \dim(G)$. Also, $R(g \cdot a/g, C) = R(a/g, C) = \dim(X)$. Now $g \cdot a \in g \cdot X$, and if $g \cdot a \notin X$ then $g \cdot a$ is in the gC-definable set $(g \cdot X) \setminus X$, so that

$$R(g \cdot a/g, C) \le \dim((g \cdot X) \setminus X) < k,$$

because $g \cdot X \sim_k X$, by the assumption on the stabilizer. This is a contradiction, so $g \cdot a \in X$. But X is C-definable, so

$$\dim(G) = R(g \cdot a/C) \le \dim(X).$$

Thus $k = \dim(G)$. Then the cosets of G^0 form a class of representatives for \mathcal{F}_k / \sim_k , and the action of G on \mathcal{F}_k / \sim_k is the action of G on G/G^0 . The stabilizer cannot be G unless $G = G^0$.

Lemma 8.3. If X_1, \ldots, X_d are sets of dimension k and degree 1, and if $X_i \not\sim {}_k X_j$ for $i \neq j$, then the union $\bigcup_{i=1}^d X_i$ has degree at least d.

Proof. An exercise in additivity of dimension and degree.

9 Appendix: Zilber indecomposability

Let G be a definable group.

Definition 9.1. A definable set $X \subseteq G$ is indecomposable if for any definable subgroup $H \leq G$, the quotient X/H is infinite or size 1.

Proposition 9.2. If $X \subseteq G$ is definable, then X can be written as a finite union of indecomposable definable sets.

Proof. Suppose not. Then recursively build a sequence X_0, X_1, X_2, \ldots and G_1, G_2, \ldots , where

- X_0 is X.
- G_{i+1} is a definable subgroup such that X_i/G_{i+1} has size strictly between 1 and \aleph_0 .
- X_{i+1} is one of the equivalence classes that's not a finite union of indecomposables.

By dcc on definable groups, there must be some n such that

$$G_1 \cap \dots \cap G_n = G_1 \cap \dots \cap G_{n+1}.$$

Then any two elements of X_n are congruent modulo G_{n+1} , contradicting the choice of G_{n+1} .

The decomposition isn't unique at all.

As a consequence, infinite indecomposable sets exist.

Theorem 9.3 (Zilber). Let \mathcal{F} be any collection of indecomposable definable sets. Suppose $1 \in X$ for all $X \in \mathcal{F}$. Then the group H generated by $\bigcup \mathcal{F}$ is definable and connected.

Proof. Take X_1, \ldots, X_n maximizing dim(Y) where $Y = X_1 \cdots X_n$. Let Z be some degree-1 definable subset of Y.

Claim 9.4. $H \leq Stab(Z)$, where the stabilizer is as in Lemma 8.2.

Proof. Otherwise there is some $X_{n+1} \in \mathcal{F}$ such that $X_{n+1} \not\subseteq Stab(Z)$. Now Stab(Z) is a definable subgroup, so X_{n+1} intersects infinitely many cosets of Stab(Z), by indecomposability. Take a_1, a_2, a_3, \ldots in X_{n+1} lying in pairwise distinct cosets of Stab(Z). Then the translates $Z \cdot a_1, Z \cdot a_2, \ldots$ are basically pairwise disjoint, and all contained in $Z \cdot X_{n+1}$. By choice of X_1, \ldots, X_n , we have $\dim(Z \cdot X_{n+1}) = \dim(Z)$. By Lemma 8.3, it follows that $\deg(Z \cdot X_{n+1}) = \infty$, which is impossible.

In particular $Z \subseteq Y \subseteq Stab(Z)$. So in the definable group Stab(Z) there is a set Z that is fully stabilized by the group. By Lemma 8.2, it follows that Stab(Z) is connected and $\dim(Z) = \dim(Stab(Z))$. By Lemma 8.1, $Z \cdot Z = Stab(Z)$. It follows that $Stab(Z) \leq Z \cdot Z \leq$ $Y \cdot Y \leq H$, so H = Stab(Z). Thus H is definable and connected. \Box