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1 Macintyre's theorem

Recall from last time

Lemma 1.1. Let K be a de�nable in�nite �eld in a strongly minimal theory. Then for every
n, the nth power map K → K is surjective.

Lemma 1.2. Let K be a de�nable in�nite �eld of characteristic p > 0. Then the Artin-
Schreier map

α : K → K

x 7→ xp − x

is onto.

Proof. Similar: the map α : K → K has �nite �bers, so dim(α(K)) = dim(K), and therefore
|K/α(K)| <∞. As (K,+)0 = (K,+), it follows α(K) = K.

We need the following purely algebraic fact:

Fact 1.3 (Kummer, Artin-Schreier). Let L/K be a Galois extension with Gal(L/K) ∼= Z/p.

1. If char(K) 6= p and K contains a primitive pth root of unity, then L = K( p
√
a) for

some a ∈ K. In particular, K 6= Kp.

2. If char(K) = p, then L = K(b), where bp − b ∈ K. In particular,

α : K → K

x 7→ xp − x

is not surjective.

Lemma 1.4. Let K be a �eld. Suppose for every �nite extension L/K, the following maps
are surjective:
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• The nth power map L× → L× for all n ≥ 1.

• (In characteristic p) the Artin-Schreier map L→ L.

Then K is algebraically closed.

Proof. Note K is perfect. If K is not algebraically closed, take non-trivial L1/K. Take
p dividing [L1 : K]. Let ζp be a primitive pth root of unity. Then p 6 | [K(ζp) : K], so
p|[L(ζp) : K(ζp)]. Replacing K with K(ζp), we may assume ζp ∈ K. Replacing L with
a larger �eld, we may assume L/K is Galois. Then p divides the order of Gal(L/K), so
Gal(L/K) contains a cyclic subgroup of order p. Replacing K with a larger �eld, we may
assume Gal(L/K) is cyclic of order p. Then Kummer theory or Artin-Schreier theory says
that the pth power map or the Artin-Schreier map on K is non-surjective.

Theorem 1.5. Let K be a de�nable in�nite �eld in a strongly minimal theory. Then K is
algebraically closed.

Proof. Finite extensions of K are also de�nable �elds.

2 Interpretable sets

De�nition 2.1. An interpretable set in a structure M is a set of the form X/E, where X
is a de�nable set and E ⊆ X ×X is a de�nable equivalence relation.

Example 2.2. If G is a de�nable group and H is a de�nable subgroup, the quotient G/H is
an interpretable set.

Given a structure M , one can form a category DefM of de�nable sets and de�nable
functions, as well as a category IntM of interpretable sets and interpretable functions. There
is an embedding

DefM ↪→ IntM

One says that M has elimination of imaginaries1 if this functor is an equivalence of cate-
gories.

More concretely, this means that for any de�nableX and E, there is a de�nable surjection
f : X � Y inducing a bijection X/E → Y .

Fact 2.3. If K |= ACF , then K has elimination of imaginaries.

Fact 2.4. The following structures are strongly minimal and do not eliminate imaginaries:

• An in�nite set X with no structure.

1Technically we should work with the category of 0-de�nable and 0-interpretable sets (sets de�nable with-
out parameters, and quotients X/E where X,E are 0-de�nable). I call the condition given here �parametric
elimination of imaginaries.� It turns out to be weaker than full elimination of imaginaries. See Corollary 6.4.
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• (Q,+).

Theorem 2.5. If M is any structure, there is a structure M eq such that DefMeq is equivalent
to IntM .

If M is strongly minimal, then rank, dimension, and degree extend to M eq and satisfy all
the properties of yesterday's lecture. Elements of M eq are called imaginaries.

Example 2.6. Macintyre's theorem generalizes. If M is strongly minimal and K is an
in�nite interpretable �eld, then K |= ACF .

3 Minimal groups

Let M be a strongly minimal monster. In what follows, �de�nable� really means �inter-
pretable.� If you like, switch to Meq.

De�nition 3.1. G is connected if G = G0.

We �x some group-theoretic notation:

• H CG means H is a normal subgroup of G

• Z(a) denotes the centralizers of a:

Z(a) = {g ∈ G | ag = ga}.

• Z(G) denotes the center of G:

Z(G) =
⋂
a∈G

Z(a).

• aG denotes the conjugacy class of a:

aG = {g−1ag : g ∈ G}.

All these sets are de�nable. Note

a ∈ Z(G) ⇐⇒ aG = {a}.

Note G acts on itself by conjugation, and

• The orbit of a is aG

• The stabilizer of a is Z(a).

Therefore,
dim(aG) = dim(G)− dim(Z(a)).

Note Z(G)CG.
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Lemma 3.2. If G is connected, and a ∈ G has �nite conjugacy class aG, then a ∈ Z(G).

Proof. The size of aG is the index of Z(a) in G, which is 1 if �nite, as G = G0.

Proposition 3.3. If G is connected and HCG is a �nite normal subgroup, then H ≤ Z(G).

Proof. If a ∈ H then aG ⊆ H, so aG is �nite, so a ∈ Z(G).

Proposition 3.4. Let G be a connected de�nable group with Z(G) �nite. Then G/Z(G) is
centerless.

Proof. Let [a] denote the image of a under G→ G/Z(G). Suppose [a] ∈ Z(G/Z(G)). Then
for every g ∈ G,

g−1 · a · g ≡ a (mod Z(G)).

Therefore aG ⊆ a · Z(G) and aG is �nite, implying a ∈ Z(G) and [a] = 1.

De�nition 3.5. A de�nable group (G, ·) is minimal if G is in�nite, but every de�nable
proper subgroup is �nite.

Remark 3.6. If G is de�nable and in�nite, there is de�nable minimal H ≤ G, by DCC on
de�nable subgroups.

Lemma 3.7. If G is minimal and H is a �nite normal subgroup, then G/H is minimal.
If G is minimal, then G = G0.

Proof. For the �rst point, note that any in�nite de�nable proper subgroup of G/H pulls
back to an in�nite de�nable proper subgroup of G. For the second point, note that G0 is an
in�nite de�nable subgroup of G.

Theorem 3.8 (Reineke). Let G be a minimal group. Then G is connected and abelian.

Proof. Note G is connected. Suppose G is non-abelian. Then Z(G) 6= G, so Z(G) is �nite.
LetH = G/Z(G). ThenH is minimal, and centerless by Proposition 3.4. SoH is a connected
non-abelian centerless minimal group.

Claim 3.9. If a, b ∈ H are non-trivial, then a, b are conjugate. So there is only one non-
trivial conjugacy class in H.

Proof. As a is non-central, the centralizer Z(a) is a de�nable proper subgroup of H, so Z(a)
is �nite. Counting ranks,

dim(aH) = dim(H)− dim(Z(a)) = dim(H).

Similarly, dim(bH) = dim(H). As H = H0, the Morley degree of H is 1 and so aH and bH

cannot be disjoint. Thus a and b are conjugate.

Take some non-trivial a ∈ H.
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• If a2 = 1, then by symmetry b2 = 1 for all b conjugate to a. Thus b2 = 1 for all b ∈ H,
and H is abelian, a contradiction.

• Suppose a2 6= 1. Then a 6= a−1. Take b such that b−1ab = a−1. Then

b−1ab = a−1 6= a

b−2ab2 = b−1a−1b = a

Therefore a /∈ Z(b) but a ∈ Z(b2). It follows that

Z(b) < Z(b2).

On the other hand b2 6= 1 (because b and a are conjugate and a2 6= 1), so b and b2 are
conjugate. By symmetry, |Z(b)| = |Z(b2)|, contradicting Z(b) ( Z(b2).2

Corollary 3.10. For any in�nite de�nable G there is an in�nite de�nable abelian subgroup
H ≤ G.

Corollary 3.11. If G = G0 and dim(G) = 1, then G is minimal, and therefore abelian.

Proof. If G fails to be minimal, take an in�nite de�nable H < G. Then 0 < dim(H) ≤
dim(G) = 1, so dim(H) = dim(G). But then dim(G/H) = 0, so H has �nite index,
contradicting G = G0.

It is not true that every group of �nite Morley rank has a de�nable subgroup of rank 1,
but the examples are hard to come by.

4 Zilber indecomposability

Let G be a de�nable group.

De�nition 4.1. A de�nable set X ⊆ G is indecomposable if for any de�nable subgroup
H ≤ G, the quotient X/H is in�nite or size 1.

Proposition 4.2. If X ⊆ G is de�nable, then X is a disjoint union X1 t · · · tXn with Xi

indecomposable.

(This decomposition isn't unique)

Theorem 4.3 (Zilber indecomposability). If X ⊆ G is indecomposable and 1 ∈ X, then the
subgroup 〈X〉 ≤ G generated by X is de�nable and connected. More generally, suppose F is
a collection of indecomposable sets containing 1. Then 〈

⋃
F〉 is de�nable and connected.

2Note Z(b) is �nite because Z(b) < H and H is minimal.
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Lemma 4.4. Suppose M acts on G. Suppose X ⊆ G is �xed setwise by M . Suppose that
for every M-invariant de�nable subgroup H ≤ G the quotient X/H is a singleton or in�nite.
Then X is indecomposable.

Proof. Suppose X fails to be indecomposable. Take H0 such that 1 < |X/H0| < ℵ0. Let
H be the intersection of all conjugates of H0 under M . By dcc, H is a �nite intersection
H0 ∩H1 ∩ · · ·Hn where each Hi is a conjugate under M of H0. As X is invariant under M ,
each quotient X/Hi has the same size as X/H0, and is in particular �nite. Therefore

X/H = X/(H0 ∩ · · · ∩Hn) is �nite.

But H is M -invariant, so this contradicts the assumption.

Example 4.5. If G is connected, then [G,G] is de�nable and connected. Here, [G,G] denotes
the derived subgroup�the subgroup generated by commutators a−1b−1ab.

Proof. We claim that for each a ∈ G, the set aG is indecomposable. It is closed under
conjugation, so we only need to consider quotients aG/N where N C G. Now aG/N is the
conjugacy class of a in G/N , which is either a singleton or in�nite, because G/N is connected.
Thus aG is indecomposable. The left-translate a−1 · aG is also indecomposable, and contains
1 = a−1 · a. Let F be

{a−1 · aG : a ∈ G}

Then [G,G] is 〈
⋃
F〉, so [G,G] is de�nable and connected.

De�nition 4.6. A de�nable group G is de�nably simple if G has no proper non-trivial
de�nable normal subgroup.

Lemma 4.7. Let G be de�nably simple. Let X ⊆ G be closed under conjugation. If X is
in�nite, then X is indecomposable.

Proof. By the lemma we only need to consider the quotients X/G and X/1. The �rst has
size 1 and the second is in�nite.

Theorem 4.8. Let G be a non-abelian de�nably simple group. Then G is simple.

Proof. Suppose G is de�nably simple. If G is �nite, every subgroup is de�nable, so G is
simple. Assume G in�nite. Then G = G0 or else G0 is a proper normal non-trivial de�nable
subgroup. By non-abelianity, Z(G) is a proper subgroup, normal as always. So Z(G) = 1
by de�nable simplicity.

Given a ∈ G \ {1}, we have a /∈ Z(G), so Z(a) < G. As G = G0 it follows dim(Z(a)) <
dim(G), so dim(aG) = dim(G)−dim(Z(a)) > 0. Thus aG∪{1} is in�nite. It is closed under
conjugation, so aG ∪ {1} is indecomposable. By Zilber's indecomposability theorem,

H = 〈aG ∪ {1}〉
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is a de�nable non-trivial subgroup. It is closed under conjugation, so H C G. By de�nable
simplicity, H = G. So

〈aG〉 = G

for all a 6= 1.
Now if H is an abstract normal subgroup, take a ∈ H, and note aG ⊆ H, so

〈aG〉 ≤ H =⇒ H = G.

Therefore G is simple.

Lemma 4.9. If G is connected and non-trivial then G has a de�nable proper normal subgroup
H (possibly trivial) such that G/H is abelian or simple.

Proof. Proceed by induction on dim(G). If dim(G) = 0, then G is �nite, and we can take
H a maximal proper normal subgroup. Suppose dim(G) > 0. If there is an in�nite proper
normal subgroup K CG, then dim(G/K) = dim(G)− dim(K) < dim(G), and by induction
there is H/K C G/K such that (G/K)/(H/K) ∼= G/H is simple or abelian. So we may
assume every de�nable proper normal subgroup of G is �nite. In particular, G = G0. If G
is abelian, take H = 1. Otherwise, Z(G) is �nite and every proper normal K C G satis�es
K ≤ Z(G). Therefore G/Z(G) is de�nably simple, so we can take H = Z(G).

Theorem 4.10. Let G be any de�nable group. Then there is a subnormal sequence of
de�nable groups such that the quotients are abelian or simple.

Proof. Build a sequence G = G0BG1B · · · by taking Gi+1 to be a proper normal subgroup
of Gi with quotient Gi+1/Gi that is abelian or simple. Eventually the process terminates,
by DCC.

5 Exercises

Exercise 5.1. The �eld Q is not algebraically closed. Write down a formula φ(x) such that
φ(Q) is neither �nite nor co�nite.

Exercise 5.2. In the �eld C, let X = C × C and let E be the equivalence relation whose
equivalence classes are the sets {(x, y), (y, x)}. Find a de�nable set Y and de�nable function
f : X → Y such that

∀a, b ∈ X : aEb ⇐⇒ f(a) = f(b).

Exercise 5.3.

• Let G be a de�nable group, X be a de�nable set, and suppose G has a transitive de�nable
group action on X. If G = G0, show that deg(X) = 1.

• Equivalently, show that if G = G0 is de�nable and H ≤ G is de�nable, then deg(G/H) =
1.
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• In particular, if H CG and G = G0, then (G/H)0 = G/H.

Exercise 5.4. If (G,+) is minimal, then one of the following holds:

• G is an in�nite Fp-vector space for some prime p.

• G is divisible, and for every n ≥ 1 has �nite n-torsion.

Solution. Let G[n] denote the group of n-torsion. If G[p] is in�nite for any prime p, then
G[p] = G by minimality. So assume G[p] is �nite for all p. Then the map x 7→ p ·x has �nite
�bers, and its image must be a subgroup of rank dim(G). As G = G0 by minimality, this
implies the map is surjective. So G is divisible. For any n ≥ 1 the short exact sequence

0→ G[n]→ G
x7→n·x−→ G→ 0

shows G[n] has rank 0, i.e., is �nite.

6 Appendix: imaginaries and interpretable sets

In mathematics, we often need to be able to take the quotient of a set X by an equivalence
relation E ⊆ X ×X.

De�nition 6.1. If A ⊆ M , an A-interpretable set is a set of the form X/E where X is
A-de�nable and E ⊆ X ×X is an A-de�nable equivalence relation. An interpretable set is
an A-interpretable set for some A.

De�nition 6.2. A structure M has elimination of imaginaries if for every 0-interpretable
set X/E, there is a 0-de�nable set Y and a bijection X/E → Y such that the composition

X � X/E → Y

is 0-de�nable.

Another way of saying this is that given 0-de�nable X/E, there is a 0-de�nable surjection
f : X � Y such that

∀x1, x2 ∈ X : (f(x1) = f(x2)⇔ x1Ex2) .

Proposition 6.3. Let M have elimination of imaginaries.

1. If M ′ ≡M then M ′ has elimination of imaginaries.

2. Any expansion of M by constants has elimination of imaginaries.

Proof. 1. Given a 0-interpretable set X ′/E ′ in M ′, take formulas φ(x) and ψ(x1, x2) such
that X ′ = φ(M ′) and E ′ = ψ(M ′). Let X = φ(M) and E = ψ(M). Using the fact that
M ≡ M ′, one sees easily that E is an equivalence relation on X. Take a 0-de�nable
set Y and a 0-de�nable surjection f : X � Y eliminating X/E. The one can transfer
Y and f back to M ′ in the same fashion. We leave the details as an exercise.

8



2. Suppose X/E is interpretable, where X = φ(M ; b0) and E = ψ(M ; b0) for some tuple
of new constants b0. Let B be the set of b such that ψ(M ; b) is an equivalence relation
on φ(M ; b). The set B is de�nable and contains b0. Consider the 0-de�nable sets

X̃ := {(a, b) : b ∈ B, M |= φ(a, b)}
Ẽ := {(a1, b; a2, b) : b ∈ B, M |= ψ(a1, a2, b)}.

Then Ẽ is an equivalence relation on X̃. By elimination of imaginaries there is a
0-de�nable bijection f̃ : X̃/Ẽ � Ỹ with

f̃(a1, b1) = f(a2, b2) ⇐⇒ b1 = b2 ∧M |= ψ(a1, a2, b1).

Let f(a) = f̃(b0). Then f : X → Ỹ is b0-de�nable, and

f(a1) = f(a2) ⇐⇒ (M |= ψ(a1, a2, b0)) ⇐⇒ a1Ea2.

Thus the quotient X/E is eliminated.

Corollary 6.4. If M has elimination of imaginaries, for every interpretable set X/E there
is a de�nable set Y and a bijection X/E → Y such that the composition

X � X/E → Y

is de�nable.

De�nition 6.5. Let X be a de�nable set in a monster model M. A �nite tuple c is a code
for X if for every σ ∈ Aut(M), the following are equivalent:

• σ �xes X setwise.

• σ �xes c pointwise.

Proposition 6.6. Suppose X has a code c.

• X is c-de�nable.

• More generally, X is A-de�nable i� c ∈ dcl(A).

• If c′ is another code, then dcl(c) = dcl(c′) (c and c′ are �interde�nable.�).

Proof. The second point implies the �rst and third points. For the second point, we may
assume A is small. Then

• X is A-de�nable i� X is �xed setwise by Aut(M/A).

• c ∈ dcl(A) i� c is �xed pointwise by Aut(M/A),
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so the two are equivalent by de�nition of codes.

Because the code is unique up to interde�nability, we often talk about �the� code for X,
denoted pXq.

Proposition 6.7. If M eliminates imaginaries, then every de�nable set has a code.

Proof. Let X = φ(M; b0) be a de�nable set. Let k = |b0| and let E be the 0-de�nable
equivalence relation on Mk given by

bEb′ ⇐⇒ φ(M; b) = φ(M; b′).

Take 0-de�nable f : Mk � Y such that

f(b) = f(b′) ⇐⇒ bEb′ ⇐⇒ φ(M; b) = φ(M; b′).

Then for any σ ∈ Aut(M),

σ(f(b0)) = f(b0) ⇐⇒ f(σ(b0)) = f(b0)

⇐⇒ φ(M;σ(b0)) = φ(M; b0)

⇐⇒ σ(φ(M; b0)) = φ(M; b0)

⇐⇒ σ(X) = X.

Later we will see a converse.

Lemma 6.8. If M |= ACF , and V ⊆Mn is an M-linear subspace, then V has a code c.

Proof sketch. Let k = dim(V ). There is some coordinate projection π : Mn →Mk such that
π(V ) = Mk and the induced map

V � π(V ) = Mk

is an isomorphism. The inverse of this isomorphism is an M-linear map

Mk → V ↪→Mn.

This map is coded by an n×k matrix. The entries of this matrix are a code for V . (Exercise:
�ll in the details.)

Lemma 6.9. If M |= ACF and S ⊆Mn is �nite, then S has a code.

Proof. For each ~a ∈ Mn, let p~a be the ideal in M[X1, . . . , Xn] consisting of polynomials
P (X1, . . . , Xn) vanishing at ~a. Each p~a is a maximal ideal of M[X1, . . . , Xn]. Let

I =
⋂
~a∈S

p~a.
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By commutative algebra, one can recover S from I as follows:

S = {~a : p~a ⊇ I}.

There is an action of Aut(M) on M[X1, . . . , Xn], and we see that σ ∈ Aut(M) �xes S setwise
i� σ �xes I setwise.

For each d, let Vd be the M-vector space of polynomials of degree ≤ d. Then Vd ∩ I has
a code cd for each d. Then for any σ ∈ Aut(M), the following are equivalent:

• σ �xes S setwise

• σ �xes I setwise

• σ �xes C := {c1, c2, . . .} pointwise.

Therefore S is C-de�nable, hence ~d-de�nable for some �nite tuple ~d from C. But then the
following are equivalent for σ ∈ Aut(M):

1. σ �xes S setwise

2. σ �xes C pointwise

3. σ �xes ~d pointwise,

because 1 =⇒ 2 =⇒ 3 =⇒ 1. So ~d is a code for S.

In the next section, we will use strong minimality to show that ACF eliminates imagi-
naries.

Given a complete theory T , we can form a (multi-sorted) theory T eq which has a sort for
each 0-interpretable set X/E. Every model M |= T yields a model M eq |= T eq. The theory
T eq eliminates imaginaries. In a certain sense, T and T eq are �the same thing.� For example:

• The category of models of T is equivalent to the category of models of T eq. In particular,
Aut(M) ∼= Aut(M eq).

• The category of 0-interpretable sets in T is equivalent to the category of 0-interpretable
sets in T eq, or the category of 0-de�nable sets in T eq.

• In particular, if X ⊆Mn is de�nable in Meq, it is de�nable in M.

Exercise 6.10. M is κ-saturated and κ-homogeneous i�Meq is κ-saturated and κ-homogeneous.

Elements of Meq are called �imaginaries.�

Theorem 6.11. Suppose M is a monster model. Then the following Suppose M and Meq

are monster models. Then the following are equivalent:

1. For every 0-de�nable set X in M and de�nable equivalence relation E in M, the set
X/E in Meq is in 0-de�nable bijection with a de�nable set in M.
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2. M has elimination of imaginaries.

3. Every de�nable set X ⊆Mn has a code in M.

4. For every imaginary e ∈Meq, there is an interde�nable real tuple a ∈Mn.

Technically, we need to assume that if D1, D2 are de�nable sets, then the disjoint union
D1 t D2 also is a de�nable set. This holds if there are two distinct constant symbols (like
0, 1 in ACF), or if we had set up the category of de�nable sets �correctly.�

Proof. The implication 1 =⇒ 2 is easy. The implication 2 =⇒ 3 was proven earlier.
For 3 =⇒ 4, if e ∈ Meq then e ∈ X/E for some 0-de�nable set X ⊆ Mn and 0-de�nable
equivalence relation E ⊆ X ×X. Let [a]E denote the E-equivalence class of a ∈ X. Then e
is some set [a]E, so e is a code for [a]E. On the other hand, e has a real code b ∈ Mk, so e
and b are interde�nable.

It remains to show 4 =⇒ 1. LetX/E be 0-interpretable inM. ThenX/E is a 0-de�nable
set in Meq.

Claim 6.12. For every e ∈ X/E there is n ≥ 0 and a ∈ Mn and an Leq-formula φ(x, y)
such that

φ(e,Meq) = {a}
φ(Meq, a) = {e}

Proof. By assumption (4), there is some real tuple a ∈Mn interde�nable with e. Then

ψ(e,Meq) = {a}
χ(Meq, a) = {e}.

for some formulas ψ and χ. Take φ = ψ ∧ χ.

Let Q = X/E. For each formula φ(x, y), let Qφ be the 0-de�nable set of e ∈ Q such that
there is a such that

φ(e,Meq) = {a}
φ(Meq, a) = {e}.

Then φ determines a bijection fφ from Qφ to some de�nable set Yφ. The collection of Qφ

covers Q (by the claim), so by compactness

Q = Qφ1 ∪ · · · ∪Qφm

for some φ1, . . . , φm. One can �nd 0-de�nable subsets Q′i ⊆ Qφi such that the Q′i form a
partition:

Q = Q′1 t · · · tQ′m.
(For example, take Q′i = Qi\

⋃
j<iQj.) Then fφ|Q′

i
is a bijection Q′i → Y ′i for some 0-de�nable

Y ′i ⊆ Yφi . These can be glued to yield a de�nable bijection

Q′1 t · · · tQ′m
∼→ Y ′1 t · · · t Y ′m.

Because we are cheating, the right hand side is a de�nable set in M.
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7 Appendix: interpretable sets in strongly minimal the-

ories

Fix M a strongly minimal monster.

Lemma 7.1. If M �M and X ⊆Mn is de�nable and non-empty, there is a ∈ X such that

a ∈ acl(pXqS)

Proof. By induction on n. If n = 1, then X is �nite or co�nite. In the �nite case, the �nite
set X is pXq-de�nable, so we can take any a ∈ X. In the co�nite case, X ∩M 6= ∅ so we can
take any a ∈M . Next suppose n > 1. Let Y = π(X) where π : Mn �Mn−1 is a coordinate
projection. By induction there is b ∈ Y ∩ acl(pY q). Now pY q ∈ dcl(pXq), so

b ∈ acl(pXq)

Next let Z = {c ∈ M : (b, c) ∈ X}. Then Z is non-empty because b ∈ Y = π(X). By
induction, there is c ∈ Z with

c ∈ acl(pZq) ⊆ acl(bpXq),

using the fact that Z is de�ned from b and pXq. Now (b, c) ∈ X and

(b, c) ∈ acl(bpXq) = acl(pXq),

because b ∈ acl(pXq).

Lemma 7.2. If M �M and e ∈Meq is any imaginary, then there is a real tuple a from M
such that

a ∈ acl(Me)

e ∈ dcl(a).

Proof. Write e as an element of X/E for some 0-de�nable set X ⊆Mn and some 0-de�nable
E ⊆ X ×X. Let Y be the equivalence class represented by e. Then e = pY q. Take a ∈ Y
such that a ∈ acl(Me). Then e ∈ dcl(a) because a 7→ e under X � X/E.

Proposition 7.3. If acl(∅) is in�nite, then every imaginary e ∈ Meq is interde�nable with
an imaginary of the form pY q for Y ⊆Mn a �nite set.

Proof. Let M = acl(∅). Choose a real tuple a ∈Mn such that

a ∈ acl(Me) = acl(e)

e ∈ dcl(a).

Let Y be the �nite orbit of a under Aut(Meq/e). Then Aut(Meq/e) �xes Y setwise, so

pY q ∈ dcl(e).

Pick some 0-de�nable function f such that e = f(a). Then by symmetry, e = f(a′) for any
a′ ∈ Y . Therefore e ∈ dcl(pY q). So e is interde�nable with pY q.
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Corollary 7.4. ACF has elimination of imaginaries.

De�nition 7.5. A small subset S ⊆Meq is a �good base� if acl(S) ∩M is in�nite.

Remark 7.6. If S is a good base, then acleq(S) = dcleq(M) for some small M �M, namely
M = acleq(S)∩M. (To see this, given e ∈ acleq(S) �nd a ∈ acl(Me) such that e ∈ dcleq(a).)

De�nition 7.7. If e ∈ Meq and S is a good base, then the rank R(e/S) is R(a/S) for
any/every real tuple a such that

acl(eS) = acl(aS).

One can de�ne R(e/S) when S is bad, but it takes a little more work and we won't need
it.

Lemma 7.8 (Lascar equality). R(e1e2/S) = R(e1/Se2) +R(e2/S).

Proof. Replace S with a set of reals, and e1 and e2 with equivalent reals.

Lemma 7.9 (Extension). If S ⊆ S ′ is an inclusion of good bases and e is an imaginary,
there is e′ such that

e′ ≡S e
R(e′/S ′) = R(e/S).

Proof. Replacing S and S ′ with acl(S) ∩M and acl(S ′) ∩M, we may assume S and S ′ are
sets of reals. Take a lifting e, so e ∈ dcleq(a) and a ∈ acl(Se). By our earlier extension
lemma, there is σ ∈ Aut(M/S) such that

R(σ(a)/S ′) = R(σ(a)/S) = R(a/S).

But then σ(e) ≡S e, and σ(e) is interalgebraic with σ(a) over S. Therefore

R(σ(e)/S ′) = R(σ(a)/S ′) = R(a/S) = R(e/S).

De�nition 7.10. If X is an interpretable set, de�ne dim(X) to be max{R(e/S) : e ∈ X}
for any good base S over which X is de�ned.

Corollary 7.11. The number dim(X) is well-de�ned, independent of the choice of S.

Theorem 7.12. Dimension has the following properties:

1. dim(X ∪ Y ) = max(dim(X), dim(Y )).

2. dim(X × Y ) = dim(X) + dim(Y ).

3. If f : X → Y is an interpretable bijection, then dim(X) = dim(Y ).
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4. If f : X → Y is an interpretable surjection, and dim(f−1(y)) = k for all y ∈ Y , then
dim(X) = k + dim(Y ).

5. Dimension varies de�nably in families: if R ⊆ X×Y are interpretable, and Ry = {x ∈
X : (x, y) ∈ R} for y ∈ Y , then the sets

Yk := {y ∈ Y : dim(Ry) = k}

are interpretable, for each k.

Proof. All the properties are proved analogously to the ones for de�nable sets, except the
last one. Pick some interpretable surjection f : X̃ � X with X̃ de�nable. First suppose
that dim(f−1(x)) is a constant j across all x ∈ X. Then

dim(Ry) = dim(f−1(Ry))− j

which varies de�nably in y by the case of de�nable sets. If dim(f−1(x)) depends on x, we
can partition x into pieces on which dim(f−1(x)) is constant and reduce to the constant
case.

Proposition 7.13. Let X be an interpretable set.

1. dim(X) > 0 i� X is in�nite.

2. There is an upper bound on n such that X can be partitioned into n disjoint interpretable
subsets X1, . . . , Xn with dim(Xi) = dim(X) for 1 ≤ i ≤ n.

Proof. Take an interpretable surjection f : X̃ � X with X̃ de�nable. Partitioning X, we
may assume the �bers have constant dimension j = dim(X̃)− dim(X).

1. If dim(X) = 0, every �ber has dimension j = dim(X̃), so there can be at most deg(X̃)
�bers, and X is �nite. Conversely, if X is �nite then X is in interpretable bijection
with a �nite de�nable set X ′, so dim(X) = dim(X ′) = 0.

2. Any partition X = X1 t · · · tXn would pull back to a partition X̃ = X̃1 t · · · t X̃n,
and

dim(X̃i) = dim(f−1(Xi)) = j + dim(Xi) = j + dim(X) = dim(X̃).

So n is bounded by deg(X̃).

We de�ne the Morley degree deg(X) to be the maximum n such that X can be written
as a union of n disjoint interpretable subsets X1 t · · · tXn with dim(Xi) = dim(X) for each
i.

So we have more or less transferred all the facts concerning strongly minimal M to its
expansion Meq. We now change terminology: �de�nable� will always mean �interpretable,�
or equivalently, �de�nable in Meq.�
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Fact 7.14. The following are equivalent for a de�nable set X:

• dim(X) = 1 and deg(X) = 1.

• X is in�nite, but cannot be written as a disjoint union of two de�nable sets.

We call such sets strongly minimal sets.

Proof sketch. More generally, show that X has Morley rank > 1 i� X contains d pairwise
disjoint in�nite de�nable subsets for arbitrarily high d. Reduce to the case where X ⊆ M2

and dim(X) = 2. I guess you can argue this by looking at the complement M2 \ X, and
using the fact that it has Morley rank 1 and �nite Morley degree.

8 Appendix: two lemmas that will help with Zilber's the-

orem

Lemma 8.1. Let G = G0 be a de�nable group. Let X, Y ⊆ G have dim(X) = dim(Y ) =
dim(G). Then G = X · Y , i.e.,

G = {x · y : x ∈ X and y ∈ Y }.

Proof. Given any g ∈ G, the sets X and g · Y −1 are full-rank de�nable subsets. Because
deg(G) = |G/G0| = 1, these two sets must intersect. Therefore there are x ∈ X and y ∈ Y
such that

x = g · y−1,

or equivalently g = x · y.

If X, Y are two de�nable sets of dimension k and degree 1, let X ∼k Y indicate that
dim(X ∩ Y ) = k. This is an equivalence relation.

Lemma 8.2. Let G be a de�nable group. Let X ⊆ G be a de�nable subset of Morley degree
1.

• The �stabilizer�
{g ∈ G : dim(X ∩ (g ·X)) = dim(X)}

is a de�nable subgroup of G.

• If the �stabilizer� is G, then dim(X) = dim(G) and G = G0.

Proof. Let k = dim(X). Let Fk be the collection of de�nable subsets of G of dimension
k and degree 1. As in yesterday's notes, there is an action of G on Fk that respects the
equivalence relation ∼k. Therefore the �stabilizer� is the actual stabilizer of the equivalence
class [X]∼k

. So it is a subgroup. It is de�nable because dimension is de�nable in families.
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Now suppose the stabilizer is all of G. Take a small set C de�ning G and X. Take g ∈ G
and a ∈ X such that R((a, g)/C) = dim(G×X) = dim(G) + dim(X). As an exercise with
the Lascar equality, one can verify that

dim(G) ≥ R(g · a/C) ≥ R(g · a/a, C) = R(g/a, C) = dim(G),

so R(g · a/C) = dim(G). Also, R(g · a/g, C) = R(a/g, C) = dim(X). Now g · a ∈ g ·X, and
if g · a /∈ X then g · a is in the gC-de�nable set (g ·X) \X, so that

R(g · a/g, C) ≤ dim((g ·X) \X) < k,

because g ·X ∼k X, by the assumption on the stabilizer. This is a contradiction, so g ·a ∈ X.
But X is C-de�nable, so

dim(G) = R(g · a/C) ≤ dim(X).

Thus k = dim(G). Then the cosets of G0 form a class of representatives for Fk/ ∼k, and
the action of G on Fk/ ∼k is the action of G on G/G0. The stabilizer cannot be G unless
G = G0.

Lemma 8.3. If X1, . . . , Xd are sets of dimension k and degree 1, and if Xi 6∼ kXj for i 6= j,

then the union
⋃d
i=1Xi has degree at least d.

Proof. An exercise in additivity of dimension and degree.

9 Appendix: Zilber indecomposability

Let G be a de�nable group.

De�nition 9.1. A de�nable set X ⊆ G is indecomposable if for any de�nable subgroup
H ≤ G, the quotient X/H is in�nite or size 1.

Proposition 9.2. If X ⊆ G is de�nable, then X can be written as a �nite union of inde-
composable de�nable sets.

Proof. Suppose not. Then recursively build a sequence X0, X1, X2, . . . and G1, G2, . . ., where

• X0 is X.

• Gi+1 is a de�nable subgroup such that Xi/Gi+1 has size strictly between 1 and ℵ0.

• Xi+1 is one of the equivalence classes that's not a �nite union of indecomposables.

By dcc on de�nable groups, there must be some n such that

G1 ∩ · · · ∩Gn = G1 ∩ · · · ∩Gn+1.

Then any two elements of Xn are congruent modulo Gn+1, contradicting the choice of Gn+1.
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The decomposition isn't unique at all.
As a consequence, in�nite indecomposable sets exist.

Theorem 9.3 (Zilber). Let F be any collection of indecomposable de�nable sets. Suppose
1 ∈ X for all X ∈ F . Then the group H generated by

⋃
F is de�nable and connected.

Proof. Take X1, . . . , Xn maximizing dim(Y ) where Y = X1 · · ·Xn. Let Z be some degree-1
de�nable subset of Y .

Claim 9.4. H ≤ Stab(Z), where the stabilizer is as in Lemma 8.2.

Proof. Otherwise there is some Xn+1 ∈ F such that Xn+1 6⊆ Stab(Z). Now Stab(Z) is a
de�nable subgroup, so Xn+1 intersects in�nitely many cosets of Stab(Z), by indecompos-
ability. Take a1, a2, a3, . . . in Xn+1 lying in pairwise distinct cosets of Stab(Z). Then the
translates Z · a1, Z · a2, . . . are basically pairwise disjoint, and all contained in Z · Xn+1.
By choice of X1, . . . , Xn, we have dim(Z ·Xn+1) = dim(Z). By Lemma 8.3, it follows that
deg(Z ·Xn+1) =∞, which is impossible.

In particular Z ⊆ Y ⊆ Stab(Z). So in the de�nable group Stab(Z) there is a set Z that
is fully stabilized by the group. By Lemma 8.2, it follows that Stab(Z) is connected and
dim(Z) = dim(Stab(Z)). By Lemma 8.1, Z ·Z = Stab(Z). It follows that Stab(Z) ≤ Z ·Z ≤
Y · Y ≤ H, so H = Stab(Z). Thus H is de�nable and connected.
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