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1 Rank of tuples

Let M be a strongly minimal monster model.
Recall from last time

Lemma 1.1. If a,b are singletons, C C M is small, and a,b ¢ acl(C), then tp(a/C) =
tp(b/C).
Lemma 1.2. If C is small, there exists a € M such that a ¢ acl(C).

—

Say that a tuple a is C-independent if it is independent over C in the sense of the

pregeometry (M, acl(—)):
air1 & acl(C'U{ay, ..., a;})

for i < |d|. Note this is permutation invariant, in spite of appearances to the contrary.

If 0 € Aut(M/C), then @ is C-independent iff o(a@) is C-independent, by symmetry.
Therefore, whether or not @ is C-independent depends only on tp(a/C).
Lemma 1.3. For any small C C M, there is a unique n-type p over C' such that @ = p if
and only if @ is C-independent.
Proof. Existence: inductively choose ay,as, ..., a, such that a; ¢ acl(Cay,...,a;_1) for each
1.

Uniqueness: if @ and b are both independent over C, we claim there is 0 € Aut(M/C)

such that o(@) = b. We prove this by induction on n. By induction, there is oy € Aut(M/C)
such that

0'0(&1,.. s Ay — 1):(b1,... bn 1)
Let a; = o¢(a;), so a; = b; for i < n. Then d’ is independent over C, so a}, ¢ acl(Cal,...,a,_;) =
acl(Cbl bp_1). Therefore
a/ ECbl b" 1 bTH
and there is o1 € Aut(M/Cb; ---b,_1) such that oy(a],) = b,. Then
o1(oo(a;)) = o1(bi) = b; Vi<n
o1(o0(an)) = o1(ay) = by
b.

So 01 0 0g € Aut(M/C) carries @ to



If @ is a finite tuple and C'is a set, the rank R(a/C) is the rank of @ over C, i.e., the size
of a maximal C-independent subtuple of a.

Remark 1.4. 0 < R(a/C) < |d]
Proposition 1.5. If @ =¢ b, then R(@/C) = R(b/C).

Proof. By homogeneity, there is ¢ € Aut(M/C') such that (@) = b. Then R(@/C) = R(b/C)
by symmetry. O

-

Definition 1.6. Two tuples @,b are interalgebraic over C' if @ € acl(Cb) and b € acl(C@).
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Equivalently, acl(Ca) = acl(Cb).

Proposition 1.7. If @,b are interalgebraic over C, then R(@/C) = R(b/C).
Proposition 1.8. If C C (', then R(a/C) > R(a/C").

Proposition 1.9 (Lascar equality). R(@/C) = R(@/bC) + R(b/C).

We proved all these facts last time, in greater generality. We also need the following
variant of Proposition

Proposition 1.10. If @ C acl(Ch), then R(@/C) < R(b/C).

Proof. More generally in any pregeometry, if A C cl(BC') then R(A/C) < R(B/C). Indeed,
let Ag C A be a basis of A over C'. Then A is a C-independent subset of AB, so Ay can be
extended to a basis of AB over C. Thus

rank(A/C) = |Ao| < rank(AB/C) = rank(B/C),
where the final equality holds because cl(ABC) = cl(BC). O
The following is an easy exercise using pregeometries:
Proposition 1.11. R(a@/C) = 0 iff @ is a tuple from acl(C).
The following fact is specific to the model-theoretic setting:

Lemma 1.12 (Extension). If C C C" and @ is a tuple, there is @ such that

=/

aEcc_L'

R(@/C") = R(@@/C)

Proof. Let b be a basis of @ over C. Let ¥/ be a (’-independent tuple of length \5| Then ¥/
and b are both C-independent tuples of length |b], so ' =¢ b and there is 0 € Aut(M/C)
such that o(b) =¥'. Let @ = o(a@). Then @’ =¢ @ and

R(@/C) = R(@/C) > R(@/C") > Rt /C") = |V'| = |b| = R(@/C).



2 Dimension of sets

Definition 2.1. Let X C M" be type-definable over small C. The dimension of XE] dim(X)
is the mazimum of R(@/C) for d € X, or —oo if X is empty.

Proposition 2.2. This depends only on X, not on C.

Proof. Suppose X is type-definable over both C' and C’. For any a € X,

R(@/C) > R(@/CC")

SO
max R(d/C) > max R(a/CC").
aeX aeX

On the other hand, take dy with R(dy/C) = maxzex R(d/C). Take o € Aut(M/C) such
that R(o(dy)/CC") = R(dy/C). Note o fixes X setwise because X is type-definable over C'.
Therefore
max R(@/CC) 2 R(o(@)/CC') = R(@/C) = mas R(a/C).
We have shown
max R(d/C) = max R(a/CC"),
acX aeX

and a similar argument shows

max R(d/C") = max R(d/CC").
aeX aeXx

]

Lemma 2.3. Let f : X — Y be a definable map between two definable sets. Suppose every
fiber f~X(y) has dimension k. Then dim(X) = k + dim(Y").

Proof. Let C be a set over which X, Y, f are defined. Note that any d € X is interalgebraic
over C' with @ f(a@), and so

R(a/C) = R(@/Cf(a)) + R(f(@)/C) < k + dim(Y),
because @ is an element of the C'f(&)-definable fiber f~1(a@). This shows
dim(X) < k+ dim(Y).

For the reverse inequality, choose b € Y such that R(b/C) = dim(Y). Then the fiber f~(b)
is C'b-definable of rank k, so there is @ € f~'(b) with R(@/Cb) = k. Then @ is interalgebraic
with df (@) = ab (over C), so

R(@/C) = R(ab/C) = R(@/bC) + R(b/C) = k + dim(Y),

showing dim(X) > k + dim(Y). O
L Also called the rank of X.




Theorem 2.4. Let XY be definable sets.
1. dim(X UY) = max(dim(X),dim(Y")), when the union makes sense.
2. If f: X =Y is a definable surjection, then dim(X) > dim(Y").

3. If f: X =Y is a definable injection, or more generally a map with finite fibers, then
dim(X) < dim(Y).

If f: X =Y is a definable bijection, then dim(X) = dim(Y').
dim(X xY) = dim(X) + dim(Y).
dim(X) = 0 if and only if X is finite.

NS v

dim(M"™) = n.
Proof. Take a small set C' over which X,Y (and f) are defined.
1. Clear from the definition
2. For any b € Y there is @ € X such that f(@) = b, and so
dim(X) > R(d@/C) = R(af(d)/C) = R(b/C),
implying dim(X) > dim(Y).
3. Note that for any @ € X, the elements @ and f(@) are interalgebraic over C. Then
R(a/C) = R(f(a)/C) < dim(Y),
and so dim(X) < dim(Y).
4. Follows from 2 and 3.

5. Let k = dim(X). Let 7 : X x Y — Y be the projection 7(z,y) = y. Then every fiber
771(b) is in definable bijection with X, thus has rank k. By the Lemma,

dim(X xY) =k +dim(Y) = dim(X) + dim(Y").

6. Suppose X is finite. Then @ € acl(C') for every @ € X. Thus dim(X) = 0. Conversely,
suppose dim(X) = 0. Then @ € acl(C) for every @ € X. It follows that X is small—
| X| < k where M is k-saturated. So X is covered by a small number of definable
sets (namely singletons). By k-compactness, there is a finite subcover. Therefore X is
finite.

7. By (5), we reduce to the case n = 0 or n = 1. For n = 1, if a € M, then a is a
singleton, so R(a/C) < 1. Thus dim(M) < 1. On the other hand, M is infinite so
dim(M) = 1 by (6). If n = 0, then M is finite, so dim(M°) = 0 by (6).
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]
Theorem 2.5. Let { X} ey be a definable family of subsets of M. For each k € Z, the set
Vi ={beY :dim(X,) =k}
s definable.

We prove this in the appendix to today’s notes.

3 Morley degree

Definition 3.1. Let X be a non-empty definable set. The (Morley) degree of X, written
deg(X), is the maximum d such that there are pairwise disjoint definable Xy, ..., Xq C X
with dim(X;) = dim(X).

So the degree is always at least 1. We will see soon that deg(X) < oo.
Example 3.2. If X is finite, deg(X) = | X]|.
Lemma 3.3. deg(M") = 1.

Proof. Otherwise, take definable X, X, C M" of rank n, with X; N X, = (). Take small
C' C M over which X, X, are defined. Take @; € X; with R(d;/C) = n. Then dy,ds are
both C-independent. By an earlier lemma,

—

ay =c da,
contradicting the fact that @; € X; and @y ¢ X;. O
Proposition 3.4. Suppose X NY = (.

o Ifdim(X) > dim(Y), then deg(X UY) = deg(X).

o [fdim(X) =dim(Y), then deg(X UY) = deg(X) + deg(Y).

Proof. In both cases, the inequalities deg(X UY) > --- are clear. Conversely, suppose
Z1y...Zqg € X UY are pairwise disjoint sets of rank n := dim(X). For each i, at least one
of Z; U X or Z; UY has full rank n. So in the following list of pairwise disjoint subsets of
X U Z, at least d of the sets have full rank n:

ZiNX, .. 2N X, ZiNY, ..., Z4NY.

Thus deg(X) + deg(Y') > d. Furthermore, if dim(Y") < n, then all of the full rank sets are
Z; N D, showing deg(X) > d. O

Corollary 3.5. If deg(X) = d < o0 and X, ..., Xy are pairwise-disjoint definable subsets
of X with dim(X;) = dim(X), then deg(X;) =1 for each i.
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Lemma 3.6. Suppose deg(X) = 1. Let Y1,...,Yy be definable subsets with dim(Y;) =

dim(X). Then
dim (ﬂ Yi) = dim(X).

i=1

Proof. Tt suffices to consider k = 2. If dim(Y; NY5) < dim(X), then
dim(X) = dim(Y7) = max(dim(Y; NY3), dim(Y; \ Y2))
so dim(X) = dim(Y;) = dim(Y7\Y2). The sets Y7\ Ys and Ys are disjoint, so deg(X) > 2. O
Theorem 3.7. If X is definable deg(X) < oo.
(We prove this in the appendix.)

Proposition. Unlike rank, degree needn’t be definable in families.

4 DCC and connected components

Lemma 4.1. Let G be a definable group and H < G be a definable proper subgroup. Then
(dim(G), deg(G)) > (dim(H),deg(H)) (with respect to lexicographic order on w X w).

Proof. As H C G we have dim(G) < dim(H). So we may assume dim(G) = dim(H). Take
a € G\ H. Then HN (a-H) = 0. Note deg(a - H) = deg(H)P| Thus

deg(G) > deg(H) + deg(a- H) = 2deg(H) > deg(H).

O
Theorem 4.2. Let G be a definable group, and let Gy > G5 > --- be a descending chain of
definable subgroups. Then G; = G;11 = G190 = --- for some 1.
Proof. w x w is well-ordered with respect to lexicographic ordering. O]

Corollary 4.3. If G is a definable group, there is a minimal definable subgroup G° such that
G/GY is finite.

Remark 4.4.

1. If G is A-definable, then so is G°, because it is definable and A-invariant, by symmetry.

2. If f : G — G is a definable automorphism, then f(G°) = G°. Considering inner
automorphisms, we see G° <G (G° is a normal subgroup of G).

3. dim(G%) = dim(G), because G is a finite union of cosets of G°.

2Note that if f: X — Y is a definable bijection, then deg(X) = deg(Y).
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Theorem 4.5. If G = G°, then deg(G) = 1.

Proof. Let n = dim(G) and d = deg(G). Let F be the collection of definable subsets X C G
with dim(X) =n and deg(X) = 1. For X, Y € F, let ~ be the relation

X~Y < dim(XNY)=n.

This is an equivalence relation. Fix Xy,..., Xy pairwise disjoint definable subsets of rank
n. Then X; € F and the X, are representatives of the equivalence classes.rf] In particular,
F/~|=d

X YeFandaeG, thena- X,a-Y € F and
X~Y — a-X~a-Y.
Therefore G acts on F/ ~ by left-translation. Therefore, for any X € F the stabilizer
Stab(X)={a€eG:a-X ~ X}

is a finite-index subgroup of G. Stab(X) is also definable, because dim(X Na - X) varies
definably with a. As G = G, we see Stab(X) = G. We have shown

X ~a-X forall X € Fandace€d.
Similarly,
X ~X-aforal X € Fanda € G.
Now suppose d > 1. Take X1,..., X, as above. Take small C' defining the X;. Take
(a,b) € X7 x X

with R(ab/C) = dim(X; x X3) = dim(X;) +dim(X53) = 2n. We claim a-b € X;. Otherwise,
a-be <X1b>\X1 Now

because deg(X; - b) = 1. The set (X; - b) \ X is bC-definable, so
R(a/bC) = R(a-b/bC) < dim((X; -b) \ X1) <n.

Then
2n = R((a,b)/C) = R(a/bC) + R(b/C) <n+ R(b/C) < 2n,

a contradiction. Thus a - b € X;. A similar argument shows a - b € Xy, contradicting
Xl N X2 - (Z) D
Corollary 4.6. deg(G) = |G/G°| for any definable group G.

By choice of the X;, we have X; o X for i # j, as X; N X; is empty, not of dimension n. Also, given

any Y € F, there must be some i such that Y N X; has dimension n. Otherwise, Y’ :=Y \ Ule X; would
have full dimension n, and the collection {X7,..., X4, Y’} would show deg(G) > d + 1, a contradiction.
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5 Definable fields

Lemma 5.1. Let K be a definable infinite field in a strongly minimal theory. Then deg(K) =
1.

Proof. Let G be the additive group in K. Then G is an ideal, so it is 0 or K. The index of
G in G is finite, so G* = K, and deg(K) = 1. O

Lemma 5.2. Let K be a definable infinite field in a strongly minimal theory. Then the
multiplicative group K* = (K \ {0},-) is connected:

(K*) = K*.
Proof. 1t suffices to show deg(K \ {0}) = 1. But because K is infinite,
deg(K) = deg(K \ {0}).
[l

Lemma 5.3. Let K be a definable infinite field in a strongly minimal theory. Then for every
n, the nth power map K — K is surjective.

Proof. Let G be the multiplicative group of K, and H be the subgroup of nth powers. Then
G — H has finite fibers, so dim(G) = dim(H), and we see that H has finite index in GJf] As
G =G we see H=G. O

Next time, we will use this fact as part of Macintyre’s theorem that definable infinite
fields (in strongly minimal theories) are algebraically closed.

6 Exercises

Work in a monster model M of a strongly minimal theory.

Exercise 6.1. Let G be a definable group with o definable group action on X. Suppose the
action is transitive. For p € X, let Stab(p) denote the stabilizer {g € G : g - p = p}. Show

dim(X) = dim(G) — dim(Stab(p)).
Exercise 6.2. Let H < G be definable groups. If dim H = dim G, show |G/H| < cc.
Exercise 6.3. In C, show
o {(x,y): xy = 1} has dimension 1.

o {(t,t%,t3) : t € C} has dimension 1.

4See Exercise below.



o {(x,zy) : z,y € C} has dimension 2.

Exercise 6.4 (Harder). Let Ml be a monster model of some theory, not necessarily strongly
minimal. Suppose acl(—) satisfies Steinitz exchange, so (M, acl(—)) is a pregeometry. Define
R(@/C) as in the strongly minimal case. Show that the Extension Lemma[1.19 holds: given
small C C C" and a finite tuple @ € M™, there is @ =¢ d such that R(a'/C") = R(a/C).
Hint: first consider the case where a is C-independent. Proceed by induction on |d|.

Remark 6.5. If M satisfies the property of Exercise[6.4], one can mimic the arguments of §2
and prove that there is a good dimension theory. Many mathematical structures of interest
have this property but fail to be strongly minimal. For example, the field R of real numbers
has this property, as do the fields Q, of p-adic numbers and the rings R[[t]] and C[[t]] of
formal power series.

7 Appendix: definability of rank, finiteness of degree

Lemma 7.1. Let ¢(7;y) be a formula with |Z| = n. For any b, the following are equivalent:

-,

o O(M;b) has full rank n.

-,

o 1%z .- 3I%x, : ¢(xq,..., 7, b).

Proof. By induction on n, the n = 1 case being known (Theorem [2.4f6). Consider the
formulas

W(x, . xy1;Y) = 32, s d(x1, .o T1, T Y)

X(l'la cee 7xn71337) = E|xn . ¢($17 cee 7xn717xn317)

For any I;, the fibers of the map

-

SV B) — M

(X1, oy Tp) = (1,0, Tpq)

over @ = (aj,...,a,_1) have rank

-

L. 1iff @ € (M;b)

- -,

2. 0iff @ € x(M;b) \ ¥(M;b)
3. —oo iff @ ¢ y(M;D).

-, -,

Thus ¢(M;b) has rank n if and only if /(M b) has rank n + 1. By induction, this completes
the proof. n

Write X ~» Y if there is a definable surjection X — Y with finite fibers. Note that if
X ~» Y then dim(X) = dim(Y) by Theorem [2.4]2}3]
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Lemma 7.2. For any definable set X, there are definable subsets Xi,..., X, and Yy,...,Y,
such that X; ~Y; and Y; is a rank k;-subset of M* for some k;.

Proof. Take a small set C defining X. Say that a C-definable subset X’ C X is “good” if
there is a C-definable function f : X’ — MP" with finite fibers, where k = dim(X’). By
compactness (saturation), it suffices to show that every @ € X is in a good subset. Let a
be a C-basis for @, and k = |d'| = R(a@/C). Then a € acl(Cd’). Let ¢(Z;y) be a C-formula
such that ¢(a@;a’) holds and ¢(M;a’) is finite of size £. Let 7 : M™ — MF¥ be the coordinate
projection such that 7(a@) = @. Let

X'={¢e X :¢(e,7(€)) and [¢(M,7(€))| < (}

Let Y/ = n(X’). Then 7 : X’ — Y” is C-definable and has finite fibers, by definition of X'.
Also, @ € X' and @ € Y’. Finally, Y’ is C-definable, so dim(Y”’) > R(a'/C) = k, implying
that dim(Y’) = k. O

Theorem 7.3. Let {X}} ey be a definable family of subsets of M"™. For each k € Z, the set
Vi ={beY :dim(X,) =k}
15 definable.

Proof. Let C define the family. By compactness, it suffices to show that each Y} is V-
definable over C. In other words, if dim(X,) = k, we should find a C-definable formula ¢(y)
such that ¢(b) holds, and

Take a covering of Xj by “good” sets
Xp=X1U---UX,,.

For each i let k; = dim(X;) and let f; : X; — Y; be a definable surjection with finite fibers,
where Y; C M* has dim(Y;) = k. We can find a finite tuple ¢ from M and formulas v;(z, 2),

Xi(xa Y, 2)7 Nz(% Z) such that

[} wz(Ma C) = Xz
o w(M,c) =Y.
e \i(M,c) is the graph of f;.

Now we can write a first-order formula v(b, ¢) (with hidden parameters from C) expressing
that

e bcY.

o ;(M,c) C X, for all ¢
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e X, is covered by the sets ¢;(M c).

o u;(M,c) € MF and dim(p;(M,c)) = k; (possible by Lemma and elimination of
3°°).

e \;(M] ¢) is the graph of a surjection from ;(M ¢) to p;(M, ¢) with finite fibers (possible
by elimination of 3°°).

Then let ¢(y) be the formula 3z : v(y, z). If ¢(b') holds, take ¢’ such that v (¥, ) holds.
Let X! = ¢;(M, ), let Y/ = pu;(M, ), and let f! be the finite-fiber surjection from X/ to Y/
whose graph is x;(M, ¢). Then X/ ~» Y/ and dim(Y}) = k; and Xy = |J;_, X/. Thus

dim(Xy) = maxdim(X)) = max k; = max dim(X;) = dim(X,) = k.

So ¢(y) has the desired property. ]
Lemma 7.4. If X ~ Y and Y CM" and dim(X) = dim(Y) = n, then deg(X) < oc.

Proof. Let f : X — Y be the definable surjection with finite fibers. Let Z; be the set of b € Y
such that |f~1(b)| = 4. Then the Z; cover Y, so almost all the Z; are empty (compactness).
Thus there is a uniform bound d on the fiber sizes | f~!(b)|.

We claim deg(X) < d. Otherwise, take Xi,..., X4 disjoint definable subsets of X
with dim(X;) = n. Let ¥; = f(X;). The map X; — Y; has fibers of rank 0, so dim(Y;) =
dim(X;) = n. As deg(M") = 1, we see that (-] V; is non-empty. Take b € NV,
Then b € f(X;), so the fiber f~!(b) intersects each Xi,..., X411 Thus [f71(b)] > d+ 1, a
contradiction. O

Theorem 7.5. For any definable X, deg(X) < oc.

Proof. By Lemmas and X is a union of sets of finite Morley rank. By the additivity
in Proposition [3.4] it follows that deg(X) < cc. O
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