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1 Rank of tuples

Let M be a strongly minimal monster model.
Recall from last time

Lemma 1.1. If a, b are singletons, C ⊆ M is small, and a, b /∈ acl(C), then tp(a/C) =
tp(b/C).

Lemma 1.2. If C is small, there exists a ∈M such that a /∈ acl(C).

Say that a tuple ~a is C-independent if it is independent over C in the sense of the
pregeometry (M, acl(−)):

ai+1 /∈ acl(C ∪ {a1, . . . , ai})
for i < |~a|. Note this is permutation invariant, in spite of appearances to the contrary.

If σ ∈ Aut(M/C), then ~a is C-independent i� σ(~a) is C-independent, by symmetry.
Therefore, whether or not ~a is C-independent depends only on tp(~a/C).

Lemma 1.3. For any small C ⊆ M, there is a unique n-type p over C such that ~a |= p if
and only if ~a is C-independent.

Proof. Existence: inductively choose a1, a2, . . . , an such that ai /∈ acl(Ca1, . . . , ai−1) for each
i.

Uniqueness: if ~a and ~b are both independent over C, we claim there is σ ∈ Aut(M/C)

such that σ(~a) = ~b. We prove this by induction on n. By induction, there is σ0 ∈ Aut(M/C)
such that

σ0(a1, . . . , an−1) = (b1, . . . , bn−1).

Let a′i = σ0(ai), so a
′
i = bi for i < n. Then ~a′ is independent over C, so a′n /∈ acl(Ca′1, . . . , a

′
n−1) =

acl(Cb1 . . . bn−1). Therefore
a′n ≡Cb1···bn−1 bn,

and there is σ1 ∈ Aut(M/Cb1 · · · bn−1) such that σ1(a
′
n) = bn. Then

σ1(σ0(ai)) = σ1(bi) = bi ∀i < n

σ1(σ0(an)) = σ1(a
′
n) = bn

So σ1 ◦ σ0 ∈ Aut(M/C) carries ~a to ~b.
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If ~a is a �nite tuple and C is a set, the rank R(~a/C) is the rank of ~a over C, i.e., the size
of a maximal C-independent subtuple of ~a.

Remark 1.4. 0 ≤ R(~a/C) ≤ |~a|

Proposition 1.5. If ~a ≡C
~b, then R(~a/C) = R(~b/C).

Proof. By homogeneity, there is σ ∈ Aut(M/C) such that σ(~a) = ~b. Then R(~a/C) = R(~b/C)
by symmetry.

De�nition 1.6. Two tuples ~a,~b are interalgebraic over C if ~a ∈ acl(C~b) and ~b ∈ acl(C~a).

Equivalently, acl(C~a) = acl(C~b).

Proposition 1.7. If ~a,~b are interalgebraic over C, then R(~a/C) = R(~b/C).

Proposition 1.8. If C ⊆ C ′, then R(~a/C) ≥ R(~a/C ′).

Proposition 1.9 (Lascar equality). R(~a~b/C) = R(~a/~bC) +R(~b/C).

We proved all these facts last time, in greater generality. We also need the following
variant of Proposition 1.7

Proposition 1.10. If ~a ⊆ acl(C~b), then R(~a/C) ≤ R(~b/C).

Proof. More generally in any pregeometry, if A ⊆ cl(BC) then R(A/C) ≤ R(B/C). Indeed,
let A0 ⊆ A be a basis of A over C. Then A0 is a C-independent subset of AB, so A0 can be
extended to a basis of AB over C. Thus

rank(A/C) = |A0| ≤ rank(AB/C) = rank(B/C),

where the �nal equality holds because cl(ABC) = cl(BC).

The following is an easy exercise using pregeometries:

Proposition 1.11. R(~a/C) = 0 i� ~a is a tuple from acl(C).

The following fact is speci�c to the model-theoretic setting:

Lemma 1.12 (Extension). If C ⊆ C ′ and ~a is a tuple, there is ~a′ such that

~a′ ≡C ~a

R(~a′/C ′) = R(~a/C)

Proof. Let ~b be a basis of ~a over C. Let ~b′ be a C ′-independent tuple of length |~b|. Then ~b′
and ~b are both C-independent tuples of length |~b|, so ~b′ ≡C

~b and there is σ ∈ Aut(M/C)

such that σ(~b) = ~b′. Let ~a′ = σ(~a). Then ~a′ ≡C ~a and

R(~a/C) = R(~a′/C) ≥ R(~a′/C ′) ≥ R(~b′/C ′) = |~b′| = |~b| = R(~a/C).
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2 Dimension of sets

De�nition 2.1. Let X ⊆Mn be type-de�nable over small C. The dimension of X1 dim(X)
is the maximum of R(~a/C) for ~a ∈ X, or −∞ if X is empty.

Proposition 2.2. This depends only on X, not on C.

Proof. Suppose X is type-de�nable over both C and C ′. For any ~a ∈ X,

R(~a/C) ≥ R(~a/CC ′)

so
max
~a∈X

R(~a/C) ≥ max
~a∈X

R(~a/CC ′).

On the other hand, take ~a0 with R(~a0/C) = max~a∈X R(~a/C). Take σ ∈ Aut(M/C) such
that R(σ(~a0)/CC

′) = R(~a0/C). Note σ �xes X setwise because X is type-de�nable over C.
Therefore

max
~a∈X

R(~a/CC ′) ≥ R(σ(~a0)/CC
′) = R(~a0/C) = max

~a∈X
R(~a/C).

We have shown
max
~a∈X

R(~a/C) = max
~a∈X

R(~a/CC ′),

and a similar argument shows

max
~a∈X

R(~a/C ′) = max
~a∈X

R(~a/CC ′).

Lemma 2.3. Let f : X → Y be a de�nable map between two de�nable sets. Suppose every
�ber f−1(~y) has dimension k. Then dim(X) = k + dim(Y ).

Proof. Let C be a set over which X, Y, f are de�ned. Note that any ~a ∈ X is interalgebraic
over C with ~af(~a), and so

R(~a/C) = R(~a/Cf(~a)) +R(f(~a)/C) ≤ k + dim(Y ),

because ~a is an element of the Cf(~a)-de�nable �ber f−1(~a). This shows

dim(X) ≤ k + dim(Y ).

For the reverse inequality, choose ~b ∈ Y such that R(~b/C) = dim(Y ). Then the �ber f−1(~b)

is C~b-de�nable of rank k, so there is ~a ∈ f−1(~b) with R(~a/C~b) = k. Then ~a is interalgebraic

with ~af(~a) = ~a~b (over C), so

R(~a/C) = R(~a~b/C) = R(~a/~bC) +R(~b/C) = k + dim(Y ),

showing dim(X) ≥ k + dim(Y ).
1Also called the rank of X.
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Theorem 2.4. Let X, Y be de�nable sets.

1. dim(X ∪ Y ) = max(dim(X), dim(Y )), when the union makes sense.

2. If f : X → Y is a de�nable surjection, then dim(X) ≥ dim(Y ).

3. If f : X → Y is a de�nable injection, or more generally a map with �nite �bers, then
dim(X) ≤ dim(Y ).

4. If f : X → Y is a de�nable bijection, then dim(X) = dim(Y ).

5. dim(X × Y ) = dim(X) + dim(Y ).

6. dim(X) = 0 if and only if X is �nite.

7. dim(Mn) = n.

Proof. Take a small set C over which X, Y (and f) are de�ned.

1. Clear from the de�nition

2. For any ~b ∈ Y there is ~a ∈ X such that f(~a) = ~b, and so

dim(X) ≥ R(~a/C) = R(~af(~a)/C) ≥ R(~b/C),

implying dim(X) ≥ dim(Y ).

3. Note that for any ~a ∈ X, the elements ~a and f(~a) are interalgebraic over C. Then

R(~a/C) = R(f(~a)/C) ≤ dim(Y ),

and so dim(X) ≤ dim(Y ).

4. Follows from 2 and 3.

5. Let k = dim(X). Let π : X × Y → Y be the projection π(x, y) = y. Then every �ber
π−1(b) is in de�nable bijection with X, thus has rank k. By the Lemma,

dim(X × Y ) = k + dim(Y ) = dim(X) + dim(Y ).

6. Suppose X is �nite. Then ~a ∈ acl(C) for every ~a ∈ X. Thus dim(X) = 0. Conversely,
suppose dim(X) = 0. Then ~a ∈ acl(C) for every ~a ∈ X. It follows that X is small�
|X| < κ where M is κ-saturated. So X is covered by a small number of de�nable
sets (namely singletons). By κ-compactness, there is a �nite subcover. Therefore X is
�nite.

7. By (5), we reduce to the case n = 0 or n = 1. For n = 1, if a ∈ M1, then a is a
singleton, so R(a/C) ≤ 1. Thus dim(M) ≤ 1. On the other hand, M is in�nite so
dim(M) = 1 by (6). If n = 0, then M0 is �nite, so dim(M0) = 0 by (6).
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Theorem 2.5. Let {Xb}b∈Y be a de�nable family of subsets of Mn. For each k ∈ Z, the set

Yk := {b ∈ Y : dim(Xb) = k}

is de�nable.

We prove this in the appendix to today's notes.

3 Morley degree

De�nition 3.1. Let X be a non-empty de�nable set. The (Morley) degree of X, written
deg(X), is the maximum d such that there are pairwise disjoint de�nable X1, . . . , Xd ⊆ X
with dim(Xi) = dim(X).

So the degree is always at least 1. We will see soon that deg(X) <∞.

Example 3.2. If X is �nite, deg(X) = |X|.

Lemma 3.3. deg(Mn) = 1.

Proof. Otherwise, take de�nable X1, X2 ⊆ Mn of rank n, with X1 ∩ X2 = ∅. Take small
C ⊆ M over which X1, X2 are de�ned. Take ~ai ∈ Xi with R(~ai/C) = n. Then ~a1,~a2 are
both C-independent. By an earlier lemma,

~a1 ≡C ~a2,

contradicting the fact that ~a1 ∈ X1 and ~a2 /∈ X1.

Proposition 3.4. Suppose X ∩ Y = ∅.

• If dim(X) > dim(Y ), then deg(X ∪ Y ) = deg(X).

• If dim(X) = dim(Y ), then deg(X ∪ Y ) = deg(X) + deg(Y ).

Proof. In both cases, the inequalities deg(X ∪ Y ) ≥ · · · are clear. Conversely, suppose
Z1, . . . , Zd ⊆ X ∪ Y are pairwise disjoint sets of rank n := dim(X). For each i, at least one
of Zi ∪ X or Zi ∪ Y has full rank n. So in the following list of pairwise disjoint subsets of
X ∪ Z, at least d of the sets have full rank n:

Z1 ∩X, . . . , Zd ∩X,Z1 ∩ Y, . . . , Zd ∩ Y.

Thus deg(X) + deg(Y ) ≥ d. Furthermore, if dim(Y ) < n, then all of the full rank sets are
Zi ∩D, showing deg(X) ≥ d.

Corollary 3.5. If deg(X) = d < ∞ and X1, . . . , Xd are pairwise-disjoint de�nable subsets
of X with dim(Xi) = dim(X), then deg(Xi) = 1 for each i.
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Lemma 3.6. Suppose deg(X) = 1. Let Y1, . . . , Yk be de�nable subsets with dim(Yi) =
dim(X). Then

dim

(
k⋂

i=1

Yi

)
= dim(X).

Proof. It su�ces to consider k = 2. If dim(Y1 ∩ Y2) < dim(X), then

dim(X) = dim(Y1) = max(dim(Y1 ∩ Y2), dim(Y1 \ Y2))

so dim(X) = dim(Y1) = dim(Y1\Y2). The sets Y1\Y2 and Y2 are disjoint, so deg(X) ≥ 2.

Theorem 3.7. If X is de�nable deg(X) <∞.

(We prove this in the appendix.)

Proposition. Unlike rank, degree needn't be de�nable in families.

4 DCC and connected components

Lemma 4.1. Let G be a de�nable group and H < G be a de�nable proper subgroup. Then
(dim(G), deg(G)) > (dim(H), deg(H)) (with respect to lexicographic order on ω × ω).

Proof. As H ⊆ G we have dim(G) ≤ dim(H). So we may assume dim(G) = dim(H). Take
a ∈ G \H. Then H ∩ (a ·H) = ∅. Note deg(a ·H) = deg(H).2 Thus

deg(G) ≥ deg(H) + deg(a ·H) = 2 deg(H) > deg(H).

Theorem 4.2. Let G be a de�nable group, and let G1 ≥ G2 ≥ · · · be a descending chain of
de�nable subgroups. Then Gi = Gi+1 = Gi+2 = · · · for some i.

Proof. ω × ω is well-ordered with respect to lexicographic ordering.

Corollary 4.3. If G is a de�nable group, there is a minimal de�nable subgroup G0 such that
G/G0 is �nite.

Remark 4.4.

1. If G is A-de�nable, then so is G0, because it is de�nable and A-invariant, by symmetry.

2. If f : G → G is a de�nable automorphism, then f(G0) = G0. Considering inner
automorphisms, we see G0 CG (G0 is a normal subgroup of G).

3. dim(G0) = dim(G), because G is a �nite union of cosets of G0.

2Note that if f : X → Y is a de�nable bijection, then deg(X) = deg(Y ).
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Theorem 4.5. If G = G0, then deg(G) = 1.

Proof. Let n = dim(G) and d = deg(G). Let F be the collection of de�nable subsets X ⊆ G
with dim(X) = n and deg(X) = 1. For X, Y ∈ F , let ∼ be the relation

X ∼ Y ⇐⇒ dim(X ∩ Y ) = n.

This is an equivalence relation. Fix X1, . . . , Xd pairwise disjoint de�nable subsets of rank
n. Then Xi ∈ F and the Xi are representatives of the equivalence classes.3 In particular,
|F/ ∼ | = d.

If X, Y ∈ F and a ∈ G, then a ·X, a · Y ∈ F and

X ∼ Y =⇒ a ·X ∼ a · Y.

Therefore G acts on F/ ∼ by left-translation. Therefore, for any X ∈ F the stabilizer

Stab(X) = {a ∈ G : a ·X ∼ X}

is a �nite-index subgroup of G. Stab(X) is also de�nable, because dim(X ∩ a · X) varies
de�nably with a. As G = G0, we see Stab(X) = G. We have shown

X ∼ a ·X for all X ∈ F and a ∈ G.

Similarly,

X ∼ X · a for all X ∈ F and a ∈ G.

Now suppose d > 1. Take X1, . . . , Xd as above. Take small C de�ning the Xi. Take

(a, b) ∈ X1 ×X2

with R(ab/C) = dim(X1×X2) = dim(X1)+dim(X2) = 2n. We claim a · b ∈ X1. Otherwise,
a · b ∈ (X1 · b) \X1. Now

dim((X1 · b) ∩X1) = n =⇒ dim((X1 · b) \X1) < n

because deg(X1 · b) = 1. The set (X1 · b) \X1 is bC-de�nable, so

R(a/bC) = R(a · b/bC) ≤ dim((X1 · b) \X1) < n.

Then
2n = R((a, b)/C) = R(a/bC) +R(b/C) < n+R(b/C) ≤ 2n,

a contradiction. Thus a · b ∈ X1. A similar argument shows a · b ∈ X2, contradicting
X1 ∩X2 = ∅.

Corollary 4.6. deg(G) = |G/G0| for any de�nable group G.
3By choice of the Xi, we have Xi 6∼ Xj for i 6= j, as Xi ∩Xj is empty, not of dimension n. Also, given

any Y ∈ F , there must be some i such that Y ∩Xi has dimension n. Otherwise, Y ′ := Y \
⋃d

i=1 Xi would

have full dimension n, and the collection {X1, . . . , Xd, Y
′} would show deg(G) ≥ d+ 1, a contradiction.
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5 De�nable �elds

Lemma 5.1. Let K be a de�nable in�nite �eld in a strongly minimal theory. Then deg(K) =
1.

Proof. Let G be the additive group in K. Then G0 is an ideal, so it is 0 or K. The index of
G0 in G is �nite, so G0 = K, and deg(K) = 1.

Lemma 5.2. Let K be a de�nable in�nite �eld in a strongly minimal theory. Then the
multiplicative group K× = (K \ {0}, ·) is connected:

(K×)0 = K×.

Proof. It su�ces to show deg(K \ {0}) = 1. But because K is in�nite,

deg(K) = deg(K \ {0}).

Lemma 5.3. Let K be a de�nable in�nite �eld in a strongly minimal theory. Then for every
n, the nth power map K → K is surjective.

Proof. Let G be the multiplicative group of K, and H be the subgroup of nth powers. Then
G→ H has �nite �bers, so dim(G) = dim(H), and we see that H has �nite index in G.4 As
G = G0, we see H = G.

Next time, we will use this fact as part of Macintyre's theorem that de�nable in�nite
�elds (in strongly minimal theories) are algebraically closed.

6 Exercises

Work in a monster model M of a strongly minimal theory.

Exercise 6.1. Let G be a de�nable group with a de�nable group action on X. Suppose the
action is transitive. For p ∈ X, let Stab(p) denote the stabilizer {g ∈ G : g · p = p}. Show

dim(X) = dim(G)− dim(Stab(p)).

Exercise 6.2. Let H ≤ G be de�nable groups. If dimH = dimG, show |G/H| <∞.

Exercise 6.3. In C, show

• {(x, y) : xy = 1} has dimension 1.

• {(t, t2, t3) : t ∈ C} has dimension 1.

4See Exercise 6.2 below.
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• {(x, xy) : x, y ∈ C} has dimension 2.

Exercise 6.4 (Harder). Let M be a monster model of some theory, not necessarily strongly
minimal. Suppose acl(−) satis�es Steinitz exchange, so (M, acl(−)) is a pregeometry. De�ne
R(~a/C) as in the strongly minimal case. Show that the Extension Lemma 1.12 holds: given
small C ⊆ C ′ and a �nite tuple ~a ∈Mn, there is ~a′ ≡C ~a such that R(~a′/C ′) = R(~a/C).

Hint: �rst consider the case where ~a is C-independent. Proceed by induction on |~a|.

Remark 6.5. If M satis�es the property of Exercise 6.4, one can mimic the arguments of �2
and prove that there is a good dimension theory. Many mathematical structures of interest
have this property but fail to be strongly minimal. For example, the �eld R of real numbers
has this property, as do the �elds Qp of p-adic numbers and the rings R[[t]] and C[[t]] of
formal power series.

7 Appendix: de�nability of rank, �niteness of degree

Lemma 7.1. Let φ(~x; ~y) be a formula with |~x| = n. For any ~b, the following are equivalent:

• φ(M;~b) has full rank n.

• ∃∞x1 · · · ∃∞xn : φ(x1, . . . , xn,~b).

Proof. By induction on n, the n = 1 case being known (Theorem 2.4.6). Consider the
formulas

ψ(x1, . . . , xn−1; ~y) = ∃∞xn : φ(x1, . . . , xn−1, xn; ~y)

χ(x1, . . . , xn−1; ~y) = ∃xn : φ(x1, . . . , xn−1, xn; ~y)

For any ~b, the �bers of the map

φ(M;~b)→Mn−1

(x1, . . . , xn) 7→ (x1, . . . , xn−1)

over ~a = (a1, . . . , an−1) have rank

1. 1 i� ~a ∈ ψ(M ;~b)

2. 0 i� ~a ∈ χ(M ;~b) \ ψ(M ;~b)

3. −∞ i� ~a /∈ χ(M ;~b).

Thus φ(M ;~b) has rank n if and only if ψ(M ;~b) has rank n+1. By induction, this completes
the proof.

Write X  Y if there is a de�nable surjection X → Y with �nite �bers. Note that if
X  Y then dim(X) = dim(Y ) by Theorem 2.4.2-3.
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Lemma 7.2. For any de�nable set X, there are de�nable subsets X1, . . . , Xn and Y1, . . . , Yn
such that Xi  Yi and Yi is a rank ki-subset of Mki for some ki.

Proof. Take a small set C de�ning X. Say that a C-de�nable subset X ′ ⊆ X is �good� if
there is a C-de�nable function f : X ′ → Mk with �nite �bers, where k = dim(X ′). By
compactness (saturation), it su�ces to show that every ~a ∈ X is in a good subset. Let ~a′

be a C-basis for ~a, and k = |~a′| = R(~a/C). Then ~a ∈ acl(C~a′). Let φ(~x; ~y) be a C-formula
such that φ(~a;~a′) holds and φ(M ;~a′) is �nite of size `. Let π : Mn → Mk be the coordinate
projection such that π(~a) = ~a′. Let

X ′ = {~e ∈ X : φ(~e, π(~e)) and |φ(M,π(~e))| ≤ `}

Let Y ′ = π(X ′). Then π : X ′ → Y ′ is C-de�nable and has �nite �bers, by de�nition of X ′.
Also, ~a ∈ X ′ and ~a′ ∈ Y ′. Finally, Y ′ is C-de�nable, so dim(Y ′) ≥ R(a′/C) = k, implying
that dim(Y ′) = k.

Theorem 7.3. Let {Xb}b∈Y be a de�nable family of subsets of Mn. For each k ∈ Z, the set

Yk := {b ∈ Y : dim(Xb) = k}

is de�nable.

Proof. Let C de�ne the family. By compactness, it su�ces to show that each Yk is ∨-
de�nable over C. In other words, if dim(Xb) = k, we should �nd a C-de�nable formula φ(y)
such that φ(b) holds, and

M |= φ(b′) =⇒ dim(Xb′) = k.

Take a covering of Xb by �good� sets

Xb = X1 ∪ · · · ∪Xm.

For each i let ki = dim(Xi) and let fi : Xi → Yi be a de�nable surjection with �nite �bers,
where Yi ⊆Mk has dim(Yi) = k. We can �nd a �nite tuple c from M and formulas ψi(x, z),
χi(x, y, z), µi(y, z) such that

• ψi(M, c) = Xi.

• µi(M, c) = Yi.

• χi(M, c) is the graph of fi.

Now we can write a �rst-order formula ν(b, c) (with hidden parameters from C) expressing
that

• b ∈ Y .

• ψi(M, c) ⊆ Xb for all i
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• Xb is covered by the sets ψi(M, c).

• µi(M, c) ⊆ Mki and dim(µi(M, c)) = ki (possible by Lemma 7.1 and elimination of
∃∞).

• χi(M, c) is the graph of a surjection from ψi(M, c) to µi(M, c) with �nite �bers (possible
by elimination of ∃∞).

Then let φ(y) be the formula ∃z : ν(y, z). If φ(b′) holds, take c′ such that ν(b′, c′) holds.
Let X ′i = ψi(M, c′), let Y ′i = µi(M, c′), and let f ′i be the �nite-�ber surjection from X ′i to Y

′
i

whose graph is χi(M, c). Then X ′i  Y ′i and dim(Y ′i ) = ki and Xb′ =
⋃n

i=1X
′
i. Thus

dim(Xb′) = max
i

dim(X ′i) = max
i
ki = max

i
dim(Xi) = dim(Xb) = k.

So φ(y) has the desired property.

Lemma 7.4. If X  Y and Y ⊆Mn and dim(X) = dim(Y ) = n, then deg(X) <∞.

Proof. Let f : X → Y be the de�nable surjection with �nite �bers. Let Zi be the set of b ∈ Y
such that |f−1(b)| = i. Then the Zi cover Y , so almost all the Zi are empty (compactness).
Thus there is a uniform bound d on the �ber sizes |f−1(b)|.

We claim deg(X) ≤ d. Otherwise, take X1, . . . , Xd+1 disjoint de�nable subsets of X
with dim(Xi) = n. Let Yi = f(Xi). The map Xi → Yi has �bers of rank 0, so dim(Yi) =
dim(Xi) = n. As deg(Mn) = 1, we see that

⋂d+1
i=1 Yi is non-empty. Take b ∈

⋂d+1
i=1 Yi.

Then b ∈ f(Xi), so the �ber f−1(b) intersects each X1, . . . , Xd+1. Thus |f−1(b)| ≥ d + 1, a
contradiction.

Theorem 7.5. For any de�nable X, deg(X) <∞.

Proof. By Lemmas 7.2 and 7.4, X is a union of sets of �nite Morley rank. By the additivity
in Proposition 3.4, it follows that deg(X) <∞.

11


	Rank of tuples
	Dimension of sets
	Morley degree
	DCC and connected components
	Definable fields
	Exercises
	Appendix: definability of rank, finiteness of degree

