Strongly minimal theories: Wednesday notes

Will Johnson

August 14, 2019

1 Rank of tuples

Let \mathbb{M} be a strongly minimal monster model.

Recall from last time

Lemma 1.1. If a, b are singletons, $C \subseteq \mathbb{M}$ is small, and $a, b \notin \operatorname{acl}(C)$, then $\operatorname{tp}(a/C) = \operatorname{tp}(b/C)$.

Lemma 1.2. If C is small, there exists $a \in \mathbb{M}$ such that $a \notin \operatorname{acl}(C)$.

Say that a tuple \vec{a} is *C*-independent if it is independent over *C* in the sense of the pregeometry $(\mathbb{M}, \operatorname{acl}(-))$:

 $a_{i+1} \notin \operatorname{acl}(C \cup \{a_1, \dots, a_i\})$

for $i < |\vec{a}|$. Note this is permutation invariant, in spite of appearances to the contrary.

If $\sigma \in \operatorname{Aut}(\mathbb{M}/C)$, then \vec{a} is *C*-independent iff $\sigma(\vec{a})$ is *C*-independent, by symmetry. Therefore, whether or not \vec{a} is *C*-independent depends only on $\operatorname{tp}(\vec{a}/C)$.

Lemma 1.3. For any small $C \subseteq M$, there is a unique n-type p over C such that $\vec{a} \models p$ if and only if \vec{a} is C-independent.

Proof. Existence: inductively choose a_1, a_2, \ldots, a_n such that $a_i \notin \operatorname{acl}(Ca_1, \ldots, a_{i-1})$ for each i.

Uniqueness: if \vec{a} and \vec{b} are both independent over C, we claim there is $\sigma \in \operatorname{Aut}(\mathbb{M}/C)$ such that $\sigma(\vec{a}) = \vec{b}$. We prove this by induction on n. By induction, there is $\sigma_0 \in \operatorname{Aut}(\mathbb{M}/C)$ such that

$$\sigma_0(a_1,\ldots,a_{n-1}) = (b_1,\ldots,b_{n-1}).$$

Let $a'_i = \sigma_0(a_i)$, so $a'_i = b_i$ for i < n. Then \vec{a}' is independent over C, so $a'_n \notin \operatorname{acl}(Ca'_1, \ldots, a'_{n-1}) = \operatorname{acl}(Cb_1 \ldots b_{n-1})$. Therefore

 $a'_n \equiv_{Cb_1 \cdots b_{n-1}} b_n,$

and there is $\sigma_1 \in \operatorname{Aut}(\mathbb{M}/Cb_1 \cdots b_{n-1})$ such that $\sigma_1(a'_n) = b_n$. Then

$$\sigma_1(\sigma_0(a_i)) = \sigma_1(b_i) = b_i \qquad \forall i < n$$

$$\sigma_1(\sigma_0(a_n)) = \sigma_1(a'_n) = b_n$$

So $\sigma_1 \circ \sigma_0 \in \operatorname{Aut}(\mathbb{M}/C)$ carries \vec{a} to \vec{b} .

If \vec{a} is a finite tuple and C is a set, the rank $R(\vec{a}/C)$ is the rank of \vec{a} over C, i.e., the size of a maximal C-independent subtuple of \vec{a} .

Remark 1.4. $0 \le R(\vec{a}/C) \le |\vec{a}|$

Proposition 1.5. If $\vec{a} \equiv_C \vec{b}$, then $R(\vec{a}/C) = R(\vec{b}/C)$.

Proof. By homogeneity, there is $\sigma \in \operatorname{Aut}(\mathbb{M}/C)$ such that $\sigma(\vec{a}) = \vec{b}$. Then $R(\vec{a}/C) = R(\vec{b}/C)$ by symmetry.

Definition 1.6. Two tuples \vec{a}, \vec{b} are interalgebraic over C if $\vec{a} \in \operatorname{acl}(C\vec{b})$ and $\vec{b} \in \operatorname{acl}(C\vec{a})$. Equivalently, $\operatorname{acl}(C\vec{a}) = \operatorname{acl}(C\vec{b})$.

Proposition 1.7. If \vec{a}, \vec{b} are interalgebraic over C, then $R(\vec{a}/C) = R(\vec{b}/C)$.

Proposition 1.8. If $C \subseteq C'$, then $R(\vec{a}/C) \ge R(\vec{a}/C')$.

Proposition 1.9 (Lascar equality). $R(\vec{a}\vec{b}/C) = R(\vec{a}/\vec{b}C) + R(\vec{b}/C)$.

We proved all these facts last time, in greater generality. We also need the following variant of Proposition 1.7

Proposition 1.10. If $\vec{a} \subseteq \operatorname{acl}(C\vec{b})$, then $R(\vec{a}/C) \leq R(\vec{b}/C)$.

Proof. More generally in any pregeometry, if $A \subseteq cl(BC)$ then $R(A/C) \leq R(B/C)$. Indeed, let $A_0 \subseteq A$ be a basis of A over C. Then A_0 is a C-independent subset of AB, so A_0 can be extended to a basis of AB over C. Thus

$$rank(A/C) = |A_0| \le rank(AB/C) = rank(B/C),$$

where the final equality holds because cl(ABC) = cl(BC).

The following is an easy exercise using pregeometries:

Proposition 1.11. $R(\vec{a}/C) = 0$ iff \vec{a} is a tuple from $\operatorname{acl}(C)$.

The following fact is specific to the model-theoretic setting:

Lemma 1.12 (Extension). If $C \subseteq C'$ and \vec{a} is a tuple, there is \vec{a}' such that

$$\vec{a}' \equiv_C \vec{a}$$

 $R(\vec{a}'/C') = R(\vec{a}/C)$

Proof. Let \vec{b} be a basis of \vec{a} over C. Let \vec{b}' be a C'-independent tuple of length $|\vec{b}|$. Then \vec{b}' and \vec{b} are both C-independent tuples of length $|\vec{b}|$, so $\vec{b}' \equiv_C \vec{b}$ and there is $\sigma \in \operatorname{Aut}(\mathbb{M}/C)$ such that $\sigma(\vec{b}) = \vec{b}'$. Let $\vec{a}' = \sigma(\vec{a})$. Then $\vec{a}' \equiv_C \vec{a}$ and

$$R(\vec{a}/C) = R(\vec{a}'/C) \ge R(\vec{a}'/C') \ge R(\vec{b}'/C') = |\vec{b}| = R(\vec{a}/C).$$

2 **Dimension of sets**

Definition 2.1. Let $X \subseteq \mathbb{M}^n$ be type-definable over small C. The dimension of $X^1 \dim(X)$ is the maximum of $R(\vec{a}/C)$ for $\vec{a} \in X$, or $-\infty$ if X is empty.

Proposition 2.2. This depends only on X, not on C.

Proof. Suppose X is type-definable over both C and C'. For any $\vec{a} \in X$,

 $R(\vec{a}/C) > R(\vec{a}/CC')$

 \mathbf{SO}

$$\max_{\vec{a} \in X} R(\vec{a}/C) \ge \max_{\vec{a} \in X} R(\vec{a}/CC').$$

On the other hand, take \vec{a}_0 with $R(\vec{a}_0/C) = \max_{\vec{a} \in X} R(\vec{a}/C)$. Take $\sigma \in \operatorname{Aut}(\mathbb{M}/C)$ such that $R(\sigma(\vec{a}_0)/CC') = R(\vec{a}_0/C)$. Note σ fixes X setwise because X is type-definable over C. Therefore

$$\max_{\vec{a} \in X} R(\vec{a}/CC') \ge R(\sigma(\vec{a}_0)/CC') = R(\vec{a}_0/C) = \max_{\vec{a} \in X} R(\vec{a}/C).$$

We have shown

$$\max_{\vec{a}\in X} R(\vec{a}/C) = \max_{\vec{a}\in X} R(\vec{a}/CC'),$$

and a similar argument shows

$$\max_{\vec{a} \in X} R(\vec{a}/C') = \max_{\vec{a} \in X} R(\vec{a}/CC').$$

Lemma 2.3. Let $f: X \to Y$ be a definable map between two definable sets. Suppose every fiber $f^{-1}(\vec{y})$ has dimension k. Then $\dim(X) = k + \dim(Y)$.

Proof. Let C be a set over which X, Y, f are defined. Note that any $\vec{a} \in X$ is interalgebraic over C with $\vec{a}f(\vec{a})$, and so

$$R(\vec{a}/C) = R(\vec{a}/Cf(\vec{a})) + R(f(\vec{a})/C) \le k + \dim(Y),$$

because \vec{a} is an element of the $Cf(\vec{a})$ -definable fiber $f^{-1}(\vec{a})$. This shows

$$\dim(X) \le k + \dim(Y).$$

For the reverse inequality, choose $\vec{b} \in Y$ such that $R(\vec{b}/C) = \dim(Y)$. Then the fiber $f^{-1}(\vec{b})$ is $C\vec{b}$ -definable of rank k, so there is $\vec{a} \in f^{-1}(\vec{b})$ with $R(\vec{a}/C\vec{b}) = k$. Then \vec{a} is interalgebraic with $\vec{a}f(\vec{a}) = \vec{a}\vec{b}$ (over C), so

$$R(\vec{a}/C) = R(\vec{a}\vec{b}/C) = R(\vec{a}/\vec{b}C) + R(\vec{b}/C) = k + \dim(Y),$$

showing $\dim(X) \ge k + \dim(Y)$.

¹Also called the *rank* of X.

Theorem 2.4. Let X, Y be definable sets.

- 1. $\dim(X \cup Y) = \max(\dim(X), \dim(Y))$, when the union makes sense.
- 2. If $f: X \to Y$ is a definable surjection, then $\dim(X) \ge \dim(Y)$.
- 3. If $f: X \to Y$ is a definable injection, or more generally a map with finite fibers, then $\dim(X) \leq \dim(Y)$.
- 4. If $f: X \to Y$ is a definable bijection, then $\dim(X) = \dim(Y)$.
- 5. $\dim(X \times Y) = \dim(X) + \dim(Y).$
- 6. $\dim(X) = 0$ if and only if X is finite.
- 7. dim $(\mathbb{M}^n) = n$.

Proof. Take a small set C over which X, Y (and f) are defined.

- 1. Clear from the definition
- 2. For any $\vec{b} \in Y$ there is $\vec{a} \in X$ such that $f(\vec{a}) = \vec{b}$, and so

$$\dim(X) \ge R(\vec{a}/C) = R(\vec{a}f(\vec{a})/C) \ge R(\vec{b}/C),$$

implying $\dim(X) \ge \dim(Y)$.

3. Note that for any $\vec{a} \in X$, the elements \vec{a} and $f(\vec{a})$ are interalgebraic over C. Then

$$R(\vec{a}/C) = R(f(\vec{a})/C) \le \dim(Y),$$

and so $\dim(X) \leq \dim(Y)$.

- 4. Follows from 2 and 3.
- 5. Let $k = \dim(X)$. Let $\pi : X \times Y \to Y$ be the projection $\pi(x, y) = y$. Then every fiber $\pi^{-1}(b)$ is in definable bijection with X, thus has rank k. By the Lemma,

$$\dim(X \times Y) = k + \dim(Y) = \dim(X) + \dim(Y).$$

- 6. Suppose X is finite. Then $\vec{a} \in \operatorname{acl}(C)$ for every $\vec{a} \in X$. Thus $\dim(X) = 0$. Conversely, suppose $\dim(X) = 0$. Then $\vec{a} \in \operatorname{acl}(C)$ for every $\vec{a} \in X$. It follows that X is small— $|X| < \kappa$ where M is κ -saturated. So X is covered by a small number of definable sets (namely singletons). By κ -compactness, there is a finite subcover. Therefore X is finite.
- 7. By (5), we reduce to the case n = 0 or n = 1. For n = 1, if $a \in \mathbb{M}^1$, then a is a singleton, so $R(a/C) \leq 1$. Thus $\dim(\mathbb{M}) \leq 1$. On the other hand, \mathbb{M} is infinite so $\dim(\mathbb{M}) = 1$ by (6). If n = 0, then \mathbb{M}^0 is finite, so $\dim(\mathbb{M}^0) = 0$ by (6).

Theorem 2.5. Let $\{X_b\}_{b\in Y}$ be a definable family of subsets of \mathbb{M}^n . For each $k \in \mathbb{Z}$, the set

$$Y_k := \{b \in Y : \dim(X_b) = k\}$$

is definable.

We prove this in the appendix to today's notes.

3 Morley degree

Definition 3.1. Let X be a non-empty definable set. The (Morley) degree of X, written $\deg(X)$, is the maximum d such that there are pairwise disjoint definable $X_1, \ldots, X_d \subseteq X$ with $\dim(X_i) = \dim(X)$.

So the degree is always at least 1. We will see soon that $\deg(X) < \infty$.

Example 3.2. If X is finite, deg(X) = |X|.

Lemma 3.3. $\deg(\mathbb{M}^n) = 1$.

Proof. Otherwise, take definable $X_1, X_2 \subseteq \mathbb{M}^n$ of rank n, with $X_1 \cap X_2 = \emptyset$. Take small $C \subseteq \mathbb{M}$ over which X_1, X_2 are defined. Take $\vec{a}_i \in X_i$ with $R(\vec{a}_i/C) = n$. Then \vec{a}_1, \vec{a}_2 are both *C*-independent. By an earlier lemma,

$$\vec{a}_1 \equiv_C \vec{a}_2,$$

contradicting the fact that $\vec{a}_1 \in X_1$ and $\vec{a}_2 \notin X_1$.

Proposition 3.4. Suppose $X \cap Y = \emptyset$.

- If $\dim(X) > \dim(Y)$, then $\deg(X \cup Y) = \deg(X)$.
- If $\dim(X) = \dim(Y)$, then $\deg(X \cup Y) = \deg(X) + \deg(Y)$.

Proof. In both cases, the inequalities $\deg(X \cup Y) \geq \cdots$ are clear. Conversely, suppose $Z_1, \ldots, Z_d \subseteq X \cup Y$ are pairwise disjoint sets of rank $n := \dim(X)$. For each *i*, at least one of $Z_i \cup X$ or $Z_i \cup Y$ has full rank *n*. So in the following list of pairwise disjoint subsets of $X \cup Z$, at least *d* of the sets have full rank *n*:

$$Z_1 \cap X, \ldots, Z_d \cap X, Z_1 \cap Y, \ldots, Z_d \cap Y.$$

Thus $\deg(X) + \deg(Y) \ge d$. Furthermore, if $\dim(Y) < n$, then all of the full rank sets are $Z_i \cap D$, showing $\deg(X) \ge d$.

Corollary 3.5. If $\deg(X) = d < \infty$ and X_1, \ldots, X_d are pairwise-disjoint definable subsets of X with $\dim(X_i) = \dim(X)$, then $\deg(X_i) = 1$ for each i.

Lemma 3.6. Suppose deg(X) = 1. Let Y_1, \ldots, Y_k be definable subsets with $dim(Y_i) = dim(X)$. Then

$$\dim\left(\bigcap_{i=1}^{k} Y_i\right) = \dim(X).$$

Proof. It suffices to consider k = 2. If $\dim(Y_1 \cap Y_2) < \dim(X)$, then

$$\dim(X) = \dim(Y_1) = \max(\dim(Y_1 \cap Y_2), \dim(Y_1 \setminus Y_2))$$

so dim $(X) = \dim(Y_1) = \dim(Y_1 \setminus Y_2)$. The sets $Y_1 \setminus Y_2$ and Y_2 are disjoint, so deg $(X) \ge 2$. \Box

Theorem 3.7. If X is definable $deg(X) < \infty$.

(We prove this in the appendix.)

Proposition. Unlike rank, degree needn't be definable in families.

4 DCC and connected components

Lemma 4.1. Let G be a definable group and H < G be a definable proper subgroup. Then $(\dim(G), \deg(G)) > (\dim(H), \deg(H))$ (with respect to lexicographic order on $\omega \times \omega$).

Proof. As $H \subseteq G$ we have dim $(G) \leq \dim(H)$. So we may assume dim $(G) = \dim(H)$. Take $a \in G \setminus H$. Then $H \cap (a \cdot H) = \emptyset$. Note deg $(a \cdot H) = \deg(H)$.² Thus

$$\deg(G) \ge \deg(H) + \deg(a \cdot H) = 2\deg(H) > \deg(H).$$

Theorem 4.2. Let G be a definable group, and let $G_1 \ge G_2 \ge \cdots$ be a descending chain of definable subgroups. Then $G_i = G_{i+1} = G_{i+2} = \cdots$ for some i.

Proof. $\omega \times \omega$ is well-ordered with respect to lexicographic ordering.

Corollary 4.3. If G is a definable group, there is a minimal definable subgroup G^0 such that G/G^0 is finite.

Remark 4.4.

- 1. If G is A-definable, then so is G^0 , because it is definable and A-invariant, by symmetry.
- 2. If $f : G \to G$ is a definable automorphism, then $f(G^0) = G^0$. Considering inner automorphisms, we see $G^0 \triangleleft G$ (G^0 is a normal subgroup of G).
- 3. $\dim(G^0) = \dim(G)$, because G is a finite union of cosets of G^0 .

²Note that if $f: X \to Y$ is a definable bijection, then $\deg(X) = \deg(Y)$.

Theorem 4.5. If $G = G^0$, then deg(G) = 1.

Proof. Let $n = \dim(G)$ and $d = \deg(G)$. Let \mathcal{F} be the collection of definable subsets $X \subseteq G$ with $\dim(X) = n$ and $\deg(X) = 1$. For $X, Y \in \mathcal{F}$, let \sim be the relation

$$X \sim Y \iff \dim(X \cap Y) = n.$$

This is an equivalence relation. Fix X_1, \ldots, X_d pairwise disjoint definable subsets of rank n. Then $X_i \in \mathcal{F}$ and the X_i are representatives of the equivalence classes.³ In particular, $|\mathcal{F}/\sim| = d$.

If $X, Y \in \mathcal{F}$ and $a \in G$, then $a \cdot X, a \cdot Y \in \mathcal{F}$ and

$$X \sim Y \implies a \cdot X \sim a \cdot Y.$$

Therefore G acts on \mathcal{F}/\sim by left-translation. Therefore, for any $X\in\mathcal{F}$ the stabilizer

$$Stab(X) = \{a \in G : a \cdot X \sim X\}$$

is a finite-index subgroup of G. Stab(X) is also definable, because $\dim(X \cap a \cdot X)$ varies definably with a. As $G = G^0$, we see Stab(X) = G. We have shown

 $X \sim a \cdot X$ for all $X \in \mathcal{F}$ and $a \in G$.

Similarly,

 $X \sim X \cdot a$ for all $X \in \mathcal{F}$ and $a \in G$.

Now suppose d > 1. Take X_1, \ldots, X_d as above. Take small C defining the X_i . Take

$$(a,b) \in X_1 \times X_2$$

with $R(ab/C) = \dim(X_1 \times X_2) = \dim(X_1) + \dim(X_2) = 2n$. We claim $a \cdot b \in X_1$. Otherwise, $a \cdot b \in (X_1 \cdot b) \setminus X_1$. Now

$$\dim((X_1 \cdot b) \cap X_1) = n \implies \dim((X_1 \cdot b) \setminus X_1) < n$$

because $\deg(X_1 \cdot b) = 1$. The set $(X_1 \cdot b) \setminus X_1$ is bC-definable, so

$$R(a/bC) = R(a \cdot b/bC) \le \dim((X_1 \cdot b) \setminus X_1) < n.$$

Then

$$2n = R((a,b)/C) = R(a/bC) + R(b/C) < n + R(b/C) \le 2n,$$

a contradiction. Thus $a \cdot b \in X_1$. A similar argument shows $a \cdot b \in X_2$, contradicting $X_1 \cap X_2 = \emptyset$.

Corollary 4.6. $deg(G) = |G/G^0|$ for any definable group G.

³By choice of the X_i , we have $X_i \not\sim X_j$ for $i \neq j$, as $X_i \cap X_j$ is empty, not of dimension n. Also, given any $Y \in \mathcal{F}$, there must be some i such that $Y \cap X_i$ has dimension n. Otherwise, $Y' := Y \setminus \bigcup_{i=1}^d X_i$ would have full dimension n, and the collection $\{X_1, \ldots, X_d, Y'\}$ would show $\deg(G) \geq d+1$, a contradiction.

5 Definable fields

Lemma 5.1. Let K be a definable infinite field in a strongly minimal theory. Then deg(K) = 1.

Proof. Let G be the additive group in K. Then G^0 is an ideal, so it is 0 or K. The index of G^0 in G is finite, so $G^0 = K$, and $\deg(K) = 1$.

Lemma 5.2. Let K be a definable infinite field in a strongly minimal theory. Then the multiplicative group $K^{\times} = (K \setminus \{0\}, \cdot)$ is connected:

$$(K^{\times})^0 = K^{\times}.$$

Proof. It suffices to show $\deg(K \setminus \{0\}) = 1$. But because K is infinite,

$$\deg(K) = \deg(K \setminus \{0\}).$$

	_	

Lemma 5.3. Let K be a definable infinite field in a strongly minimal theory. Then for every n, the nth power map $K \to K$ is surjective.

Proof. Let G be the multiplicative group of K, and H be the subgroup of nth powers. Then $G \to H$ has finite fibers, so dim $(G) = \dim(H)$, and we see that H has finite index in G.⁴ As $G = G^0$, we see H = G.

Next time, we will use this fact as part of Macintyre's theorem that definable infinite fields (in strongly minimal theories) are algebraically closed.

6 Exercises

Work in a monster model \mathbb{M} of a strongly minimal theory.

Exercise 6.1. Let G be a definable group with a definable group action on X. Suppose the action is transitive. For $p \in X$, let Stab(p) denote the stabilizer $\{g \in G : g \cdot p = p\}$. Show

 $\dim(X) = \dim(G) - \dim(\operatorname{Stab}(p)).$

Exercise 6.2. Let $H \leq G$ be definable groups. If dim $H = \dim G$, show $|G/H| < \infty$.

Exercise 6.3. In \mathbb{C} , show

- $\{(x, y) : xy = 1\}$ has dimension 1.
- $\{(t, t^2, t^3) : t \in \mathbb{C}\}$ has dimension 1.

⁴See Exercise 6.2 below.

• $\{(x, xy) : x, y \in \mathbb{C}\}$ has dimension 2.

Exercise 6.4 (Harder). Let \mathbb{M} be a monster model of some theory, not necessarily strongly minimal. Suppose $\operatorname{acl}(-)$ satisfies Steinitz exchange, so $(\mathbb{M}, \operatorname{acl}(-))$ is a pregeometry. Define $R(\vec{a}/C)$ as in the strongly minimal case. Show that the Extension Lemma 1.12 holds: given small $C \subseteq C'$ and a finite tuple $\vec{a} \in \mathbb{M}^n$, there is $\vec{a}' \equiv_C \vec{a}$ such that $R(\vec{a}'/C') = R(\vec{a}/C)$. Hint: first consider the case where \vec{a} is C-independent. Proceed by induction on $|\vec{a}|$.

Remark 6.5. If \mathbb{M} satisfies the property of Exercise 6.4, one can mimic the arguments of §2 and prove that there is a good dimension theory. Many mathematical structures of interest have this property but fail to be strongly minimal. For example, the field \mathbb{R} of real numbers has this property, as do the fields \mathbb{Q}_p of p-adic numbers and the rings $\mathbb{R}[[t]]$ and $\mathbb{C}[[t]]$ of formal power series.

7 Appendix: definability of rank, finiteness of degree

Lemma 7.1. Let $\phi(\vec{x}; \vec{y})$ be a formula with $|\vec{x}| = n$. For any \vec{b} , the following are equivalent:

- $\phi(\mathbb{M}; \vec{b})$ has full rank n.
- $\exists^{\infty} x_1 \cdots \exists^{\infty} x_n : \phi(x_1, \dots, x_n, \vec{b}).$

Proof. By induction on n, the n = 1 case being known (Theorem 2.4.6). Consider the formulas

$$\psi(x_1, \dots, x_{n-1}; \vec{y}) = \exists^{\infty} x_n : \phi(x_1, \dots, x_{n-1}, x_n; \vec{y})$$

$$\chi(x_1, \dots, x_{n-1}; \vec{y}) = \exists x_n : \phi(x_1, \dots, x_{n-1}, x_n; \vec{y})$$

For any \vec{b} , the fibers of the map

$$\phi(\mathbb{M}; \vec{b}) \to \mathbb{M}^{n-1}$$
$$(x_1, \dots, x_n) \mapsto (x_1, \dots, x_{n-1})$$

over $\vec{a} = (a_1, \ldots, a_{n-1})$ have rank

- 1. 1 iff $\vec{a} \in \psi(M; \vec{b})$
- 2. 0 iff $\vec{a} \in \chi(M; \vec{b}) \setminus \psi(M; \vec{b})$
- 3. $-\infty$ iff $\vec{a} \notin \chi(M; \vec{b})$.

Thus $\phi(M; \vec{b})$ has rank *n* if and only if $\psi(M; \vec{b})$ has rank n+1. By induction, this completes the proof.

Write $X \rightsquigarrow Y$ if there is a definable surjection $X \rightarrow Y$ with finite fibers. Note that if $X \rightsquigarrow Y$ then $\dim(X) = \dim(Y)$ by Theorem 2.4.2-3.

Lemma 7.2. For any definable set X, there are definable subsets X_1, \ldots, X_n and Y_1, \ldots, Y_n such that $X_i \rightsquigarrow Y_i$ and Y_i is a rank k_i -subset of \mathbb{M}^{k_i} for some k_i .

Proof. Take a small set C defining X. Say that a C-definable subset $X' \subseteq X$ is "good" if there is a C-definable function $f : X' \to M^k$ with finite fibers, where $k = \dim(X')$. By compactness (saturation), it suffices to show that every $\vec{a} \in X$ is in a good subset. Let \vec{a}' be a C-basis for \vec{a} , and $k = |\vec{a}'| = R(\vec{a}/C)$. Then $\vec{a} \in \operatorname{acl}(C\vec{a}')$. Let $\phi(\vec{x}; \vec{y})$ be a C-formula such that $\phi(\vec{a}; \vec{a}')$ holds and $\phi(M; \vec{a}')$ is finite of size ℓ . Let $\pi : \mathbb{M}^n \to \mathbb{M}^k$ be the coordinate projection such that $\pi(\vec{a}) = \vec{a}'$. Let

$$X' = \{ \vec{e} \in X : \phi(\vec{e}, \pi(\vec{e})) \text{ and } |\phi(M, \pi(\vec{e}))| \le \ell \}$$

Let $Y' = \pi(X')$. Then $\pi : X' \to Y'$ is C-definable and has finite fibers, by definition of X'. Also, $\vec{a} \in X'$ and $\vec{a}' \in Y'$. Finally, Y' is C-definable, so $\dim(Y') \ge R(a'/C) = k$, implying that $\dim(Y') = k$.

Theorem 7.3. Let $\{X_b\}_{b\in Y}$ be a definable family of subsets of \mathbb{M}^n . For each $k \in \mathbb{Z}$, the set

$$Y_k := \{b \in Y : \dim(X_b) = k\}$$

is definable.

Proof. Let C define the family. By compactness, it suffices to show that each Y_k is \vee -definable over C. In other words, if dim $(X_b) = k$, we should find a C-definable formula $\phi(y)$ such that $\phi(b)$ holds, and

$$\mathbb{M} \models \phi(b') \implies \dim(X_{b'}) = k$$

Take a covering of X_b by "good" sets

$$X_b = X_1 \cup \cdots \cup X_m.$$

For each *i* let $k_i = \dim(X_i)$ and let $f_i : X_i \to Y_i$ be a definable surjection with finite fibers, where $Y_i \subseteq \mathbb{M}^k$ has $\dim(Y_i) = k$. We can find a finite tuple *c* from \mathbb{M} and formulas $\psi_i(x, z)$, $\chi_i(x, y, z), \ \mu_i(y, z)$ such that

- $\psi_i(\mathbb{M}, c) = X_i$.
- $\mu_i(\mathbb{M}, c) = Y_i$.
- $\chi_i(\mathbb{M}, c)$ is the graph of f_i .

Now we can write a first-order formula $\nu(b,c)$ (with hidden parameters from C) expressing that

- $b \in Y$.
- $\psi_i(\mathbb{M}, c) \subseteq X_b$ for all i

- X_b is covered by the sets $\psi_i(\mathbb{M}, c)$.
- $\mu_i(\mathbb{M}, c) \subseteq \mathbb{M}^{k_i}$ and $\dim(\mu_i(\mathbb{M}, c)) = k_i$ (possible by Lemma 7.1 and elimination of \exists^{∞}).
- *χ_i*(M, c) is the graph of a surjection from *ψ_i*(M, c) to *μ_i*(M, c) with finite fibers (possible by elimination of ∃[∞]).

Then let $\phi(y)$ be the formula $\exists z : \nu(y, z)$. If $\phi(b')$ holds, take c' such that $\nu(b', c')$ holds. Let $X'_i = \psi_i(\mathbb{M}, c')$, let $Y'_i = \mu_i(\mathbb{M}, c')$, and let f'_i be the finite-fiber surjection from X'_i to Y'_i whose graph is $\chi_i(\mathbb{M}, c)$. Then $X'_i \rightsquigarrow Y'_i$ and $\dim(Y'_i) = k_i$ and $X_{b'} = \bigcup_{i=1}^n X'_i$. Thus

$$\dim(X_{b'}) = \max_{i} \dim(X'_{i}) = \max_{i} k_{i} = \max_{i} \dim(X_{i}) = \dim(X_{b}) = k.$$

So $\phi(y)$ has the desired property.

Lemma 7.4. If $X \rightsquigarrow Y$ and $Y \subseteq \mathbb{M}^n$ and $\dim(X) = \dim(Y) = n$, then $\deg(X) < \infty$.

Proof. Let $f: X \to Y$ be the definable surjection with finite fibers. Let Z_i be the set of $b \in Y$ such that $|f^{-1}(b)| = i$. Then the Z_i cover Y, so almost all the Z_i are empty (compactness). Thus there is a uniform bound d on the fiber sizes $|f^{-1}(b)|$.

We claim deg $(X) \leq d$. Otherwise, take X_1, \ldots, X_{d+1} disjoint definable subsets of X with dim $(X_i) = n$. Let $Y_i = f(X_i)$. The map $X_i \to Y_i$ has fibers of rank 0, so dim $(Y_i) = \dim(X_i) = n$. As deg $(\mathbb{M}^n) = 1$, we see that $\bigcap_{i=1}^{d+1} Y_i$ is non-empty. Take $b \in \bigcap_{i=1}^{d+1} Y_i$. Then $b \in f(X_i)$, so the fiber $f^{-1}(b)$ intersects each X_1, \ldots, X_{d+1} . Thus $|f^{-1}(b)| \geq d+1$, a contradiction.

Theorem 7.5. For any definable X, $deg(X) < \infty$.

Proof. By Lemmas 7.2 and 7.4, X is a union of sets of finite Morley rank. By the additivity in Proposition 3.4, it follows that $\deg(X) < \infty$.