Projective Singletons

Yizheng Zhu

University of Chinese Academy of Sciences

October 2018

Ongoing joint work with Sy D. Friedman and Sandra Müller.

Theorem (Solovay)

Assume there is a measurable cardinal, then there is a canonical Π_2^1 singleton, called $0^{\#}$.

Definition

x is a Π_2^1 singleton iff $\{x\}$ is a Π_2^1 set. That is, iff there is a first formula $\varphi(v, y, z)$ such that

$$v = x \text{ iff } \forall y \exists z \ (\omega; 0, 1, +, \cdot, v, y, z) \models \varphi(v, y, z).$$

From a measurable cardinal, we get a nontrivial elementary embedding $j: V \rightarrow M$. Restrict j to L.

 $j \upharpoonright L : L \to L$

is a nontrivial elementary embedding of L into itself. Its existence is a large cardinal notion.

If there is a measurable cardinal, then

$$0^{\#} = \{ \lceil \varphi(v_1, \ldots, v_n) \rceil : n \in \omega \land L \models \varphi(\aleph_1, \ldots, \aleph_n) \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

0#

Definition

 $0^{\#}$ exists iff there is a mouse $(L_{\alpha}; \in, U)$.

 L_{α} has a largest cardinal κ . U is a partial normal measure on κ . U measures all the subsets of κ in L_{α} and is amenable to L_{α} . ($L_{\alpha}; \in, U$) can be iterated.

$$j:(L_{lpha};\in,U)\rightarrow(L_{eta};\in,U')$$

The Π^1_2 definition of $0^{\#}$ is:

 $0^{\#}$ codes a mouse *N*, *N* is the Σ_1 Skolem hull of \emptyset , and for any countable ordinal γ , the γ -th iterate of the mouse is wellfounded.

$0^{\#}$ and L

 $0^{\#}$ looks like the least member that transcends *L*. $0^{\#} \notin L$. An inner model without $0^{\#}$ is close to *L*.

Theorem (Jensen)

If N is an inner model and $0^{\#} \notin N$, then for any N-cardinal $\kappa \geq \aleph_1^N$, $(\kappa^+)^N = (\kappa^+)^L$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Question

Is there a Π_2^1 singleton x such that $0 <_L x <_L 0^{\#}$?

Definition

 $x \leq_L y$ iff $x \in L[y]$. $x <_L y$ iff $x \leq_L y \land y \nleq_L x$.

A Π_2^1 singleton between 0 and $0^{\#}$

Theorem (Friedman)

There is a Π_2^1 singleton x such that $0 <_L x <_L 0^{\#}$.

Note: This is different from the Π_1^1 case. Kleene's \mathcal{O} is a Π_1^1 singleton, but there is no Π_1^1 singleton x such that

 $0 <_{HYP} x <_{HYP} \mathcal{O}.$

We try to generalize to the projective levels. Assume PD. The odd levels look alike.

Theorem (Kechris-Martin-Solovay)

There is a Π_{2n+1}^1 singleton $M_{2n-1}^{\#}$ such that no Π_{2n+1}^1 singleton x satisfies $0 <_{M_{2n-1}} x <_{M_{2n-1}} M_{2n-1}^{\#}$.

(日)((1))

 $M_n(x)$ is the least canonical inner modeel containing x and has n Woodins cardinals.

Definition

$$x \leq_{M_n} y \text{ iff } x \in M_n(y). \ x <_{M_n} y \text{ iff } x \leq_{M_n} y \land y \notin_{M_n} x.$$

Question

Does Friedman's result on Π_2^1 singletions generalize to Π_{2n}^1 ? Is there a Π_4^1 singleton x such that $0 <_{M_2} x <_{M_2} M_2^{\#}$?

We have a pseudo result and an approach towards a true result.

The Π_2^1 singleton argument

Use Jensen coding over *L*. Define over *L* a class forcing \mathbb{P} with a unique \mathbb{P} -generic, coded by a real $R <_L 0^{\#}$. The \mathbb{P} -generic is determined by *R* in the following way:

• There is a
$$\Sigma_1$$
 over L class function
 $\langle \alpha_1, \ldots, \alpha_n \rangle \mapsto \tau(\alpha_1, \ldots, \alpha_n)$ such that the \mathbb{P} -generic determined by R is

$$G_R = \{ p \in \mathbb{P} : p \text{ is compatible with } \tau(i_1, \dots, i_n) \\ \text{for all indiscernibles } i_1 < \dots < i_n \}.$$

• *R* codes $A \subseteq L$, Jensen coding.

(The Π¹₂ definition of *R*) Whenever τ(α₁,..., α_n)
"contradicts" *R* (think of (α₁,..., α_n) as a guess of indescernibles), *A* "kills" (α₁,..., α_n) by adding a club in α₁.

The Π_2^1 singleton argument

How to construct such a \mathbb{P} -generic over *L*?

We would like $G \subseteq \mathbb{P}$ to be preserved under all embeddings of *L* arised from shifting indiscernibles.

If $j: L \to L$ and $j(c_i) = c_{f(i)}$, where f is an order preserving map, $(c_i: i \in \text{Ord})$ is the class of indiscernibles, then $j''G \subseteq G$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The main difficulties

We would like to force over M_2 so that $M_2[R]$ looks like $M_2(R)$. This is not a problem with the *L* case.

There is a technique developed by Friedman that preserves the Woodin cardinals by Jensen coding. Many extenders in M_2 prolongs to $M_2[R]$. In $M_2[R]$, there are two Woodin cardinals, and $M_2[R]$ can construct a version of $M_2(R)$. This approach ends up with a pseudo- Π_4^1 singleton. We get a real R such that $0 <_{M_2} R <_{M_2} M_2^{\#}$ and for a Π_1 -formula φ , R is the unique solution to

 $M_2[x] \models \varphi(x).$

There is a distinction between $M_2[x]$ and $M_2(x)$.

Another approach

Instead of working with M_2 , we work with the direct limit of all countable iterates of M_2 , called $M_{2,\infty}$.

Theorem (Steel)

 $L_{\delta_3^1}[T_3, x]$ is an initial segment of $M_{2,\infty}(x)$.

 $L[T_3]$ has a higher level analog of the *L*-indiscernibles. There is a higher level analog of the elementary embeddings of *L* arised from shifting indiscernibles.

If $j: L[T_3] \to L[T_3]$ is arised from shifting "level-3 indiscernibles", then $j''G \subseteq G$.

This is possible. There is a method of characterizing $L_{\delta_3^1}[T_3]$ as a direct limit indexed by ordinals in δ_3^1 (instead of indexing by arbitrary iterates of M_2).

Thank you for your attention!