Projective Singletons

Yizheng Zhu

University of Chinese Academy of Sciences
October 2018

Ongoing joint work with Sy D. Friedman and Sandra Müller.
Theorem (Solovay)
Assume there is a measurable cardinal, then there is a canonical Π_{2}^{1} singleton, called 0\#.

Definition
x is a Π_{2}^{1} singleton iff $\{x\}$ is a Π_{2}^{1} set. That is, iff there is a first formula $\varphi(v, y, z)$ such that

$$
v=x \text { iff } \forall y \exists z(\omega ; 0,1,+, \cdot, v, y, z) \models \varphi(v, y, z) .
$$

0 \#

From a measurable cardinal, we get a nontrivial elementary embedding $j: V \rightarrow M$. Restrict j to L.

$$
j \upharpoonright L: L \rightarrow L
$$

is a nontrivial elementary embedding of L into itself. Its existence is a large cardinal notion.
If there is a measurable cardinal, then

$$
0^{\#}=\left\{\left\ulcorner\varphi\left(v_{1}, \ldots, v_{n}\right)\right\urcorner: n \in \omega \wedge L \models \varphi\left(\aleph_{1}, \ldots, \aleph_{n}\right)\right\} .
$$

0 \#

Definition

$0^{\#}$ exists iff there is a mouse $\left(L_{\alpha} ; \in, U\right)$.
L_{α} has a largest cardinal $\kappa . U$ is a partial normal measure on $\kappa . U$ measures all the subsets of κ in L_{α} and is amenable to L_{α}. $\left(L_{\alpha} ; \in, U\right)$ can be iterated.

$$
j:\left(L_{\alpha} ; \in, U\right) \rightarrow\left(L_{\beta} ; \in, U^{\prime}\right)
$$

The Π_{2}^{1} definition of $0^{\#}$ is:
$0^{\#}$ codes a mouse N, N is the Σ_{1} Skolem hull of \emptyset, and for any countable ordinal γ, the γ-th iterate of the mouse is wellfounded.

$0^{\#}$ and L

$0^{\#} \notin L$.
An inner model without $0^{\#}$ is close to L.
Theorem (Jensen)
If N is an inner model and $0 \# \notin N$, then for any N-cardinal $\kappa \geq \aleph_{1}^{N},\left(\kappa^{+}\right)^{N}=\left(\kappa^{+}\right)^{L}$.

Question
Is there a Π_{2}^{1} singleton x such that $0<_{L} x<_{L} 0^{\#}$?
Definition
$x \leq_{L} y$ iff $x \in L[y] . x<_{L} y$ iff $x \leq_{L} y \wedge y \not Z_{L} x$.

A Π_{2}^{1} singleton between 0 and $0 \#$

Theorem (Friedman)

There is a Π_{2}^{1} singleton x such that $0<_{L} x<_{L} 0^{\#}$.
Note: This is different from the Π_{1}^{1} case. Kleene's \mathcal{O} is a Π_{1}^{1} singleton, but there is no Π_{1}^{1} singleton x such that $0<_{\text {HYP }} \times<_{\text {HYP }} \mathcal{O}$.
We try to generalize to the projective levels. Assume PD. The odd levels look alike.

Theorem (Kechris-Martin-Solovay)
There is a $\Pi_{2 n+1}^{1}$ singleton $M_{2 n-1}^{\#}$ such that no $\Pi_{2 n+1}^{1}$ singleton x satisfies $0<M_{2 n-1} \times<_{M_{2 n-1}} M_{2 n-1}^{\#}$.

The higher degree notion

$M_{n}(x)$ is the least canonical inner modeel containing x and has n Woodins cardinals.

Definition
$x \leq_{M_{n}} y$ iff $x \in M_{n}(y) . x<_{M_{n}} y$ iff $x \leq_{M_{n}} y \wedge y \not \mathbb{Z}_{M_{n}} x$.
Question
Does Friedman's result on Π_{2}^{1} singletions generalize to $\Pi_{2 n}^{1}$? Is there a Π_{4}^{1} singleton x such that $0<M_{2} \times<_{M_{2}} M_{2}^{\#}$?
We have a pseudo result and an approach towards a true result.

The Π_{2}^{1} singleton argument

Use Jensen coding over L. Define over L a class forcing \mathbb{P} with a unique \mathbb{P}-generic, coded by a real $R<_{L} 0^{\#}$. The \mathbb{P}-generic is determined by R in the following way:

- There is a Σ_{1} over L class function $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \mapsto \tau\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that the \mathbb{P}-generic determined by R is

$$
\begin{aligned}
& G_{R}=\left\{p \in \mathbb{P}: p \text { is compatible with } \tau\left(i_{1}, \ldots, i_{n}\right)\right. \\
& \text { for all indiscernibles } \left.i_{1}<\cdots<i_{n}\right\} .
\end{aligned}
$$

- R codes $A \subseteq L$, Jensen coding.
- (The Π_{2}^{1} definition of R) Whenever $\tau\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ "contradicts" R (think of $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ as a guess of indescernibles), \boldsymbol{A} "kills" $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ by adding a club in α_{1}.

The Π_{2}^{1} singleton argument

How to construct such a \mathbb{P}-generic over L ?
We would like $G \subseteq \mathbb{P}$ to be preserved under all embeddings of L arised from shifting indiscernibles.
If $j: L \rightarrow L$ and $j\left(c_{i}\right)=c_{f(i)}$, where f is an order preserving map,
($c_{i}: i \in \mathrm{Ord}$) is the class of indiscernibles, then $j^{\prime \prime} G \subseteq G$.

The main difficulties

We would like to force over M_{2} so that $M_{2}[R]$ looks like $M_{2}(R)$. This is not a problem with the L case.
There is a technique developed by Friedman that preserves the Woodin cardinals by Jensen coding. Many extenders in M_{2} prolongs to $M_{2}[R]$. In $M_{2}[R]$, there are two Woodin cardinals, and $M_{2}[R]$ can construct a version of $M_{2}(R)$.
This approach ends up with a pseudo- Π_{4}^{1} singleton. We get a real R such that $0<_{M_{2}} R<_{M_{2}} M_{2}^{\#}$ and for a Π_{1}-formula φ, R is the unique solution to

$$
M_{2}[x] \models \varphi(x) .
$$

There is a distinction between $M_{2}[x]$ and $M_{2}(x)$.

Another approach

Instead of working with M_{2}, we work with the direct limit of all countable iterates of M_{2}, called $M_{2, \infty}$.
Theorem (Steel)
$L_{\delta_{3}^{1}}\left[T_{3}, x\right]$ is an initial segment of $M_{2, \infty}(x)$.
$L\left[T_{3}\right]$ has a higher level analog of the L-indiscernibles. There is a higher level analog of the elementary embeddings of L arised from shifting indiscernibles.
If $j: L\left[T_{3}\right] \rightarrow L\left[T_{3}\right]$ is arised from shifting "level-3 indiscernibles", then $j^{\prime \prime} G \subseteq G$.
This is possible. There is a method of characterizing $L_{\delta_{3}^{1}}\left[T_{3}\right]$ as a direct limit indexed by ordinals in δ_{3}^{1} (instead of indexing by arbitrary iterates of M_{2}).

Thank you for your attention!

