
Logic, Algorithms, and
Complexity

Yijia Chen

Fudan University

David Hilbert Alan Turing Kurt Gödel

Hao Wang Stephen Cook

Entscheidungsproblem

The Entscheidungsproblem is solved
when one knows a procedure by which
one can decide in a finite number of oper-
ations whether a given logical expression
is generally valid or is satisfiable. The so-
lution of the Entscheidungsproblem is of
fundamental importance for the theory of
all fields, the theorems of which are at
all capable of logical development from
finitely many axioms.

D. Hilbert and W. Ackermann
Grundzüge der theoretischen Logik, 1928

By the correction application of one of theses arguments, conclusions are
reached which are superficially similar to those of Gödel. These results
have valuable applications. In particular, it is shown that the Hilbertian
Entscheidungsproblem can have no solution.

On computable numbers, with an application to
the Entscheidungsproblem

A. Turing, 1936.

Turing machines

Definition
A Turing machine is a 7-tuple M = (Q, Γ, b,Σ, δ, q0,F) where

1. Q is a finite set of states,

2. Γ is a finite set of tape symbols,

3. . . .

The real computers - von Neumann architecture

[B]y 1946, von Neumann would be assigning Turing’s famous paper on
computable numbers as required reading for his collaborators in the
EDVAC project of constructing his computer.

Turing and von Neumann’s brains and their computers
S. Istrail and S. Marcus, 2012.

Computation models

Alan Turing Kurt Gödel Alonzo Church

I Turing machines.

I Recursive functions.

I Lambda Calculus.

[T]he correct definition of mechanical computability was established
beyond any doubt by Turing.

Church-Turing Thesis

Any computable function is computable by a Turing
machine.

So the earlier days of computer science were full of decidability results.
That is, for a problem Q ⊆ Σ∗, we design a Turing machine, or an
algorithm A, such that for every x ∈ Σ∗,

I if x ∈ Q, i.e., a yes instance, then A will halt and output Yes,

I if x /∈ Q, i.e., a no instance, then A will halt and output No.

A “simple” problem from logic

Given a formula of propositional logic, e.g.,

(X ∨ Ȳ ∨ Z) ∧ (X̄ ∨ Z̄ ∨W) ∧ · · ·

can we assign truth values to all variables such that the formula is
evaluated to true. Equivalently, for some unknown facts X ,Y ,Z ,W , . . .,
can the following scenarios all be true?

I X is true, or Y is false, or Z is true.

I X is false, Z is false, or W is true.

I · · ·

This is known as the satisfiability problem for propositional logic, or Sat.

A “simple” algorithm

1. for every possible assignment

2. check whether the assignment satisfies the formula.

If the formula has n propositional variables, then we need to go through

2n

many assignments, i.e., exponential many assignments.

The exponential running time

In real-life applications, n = 100 is minuscule. Even if a computer can go
through 1000000 assignments per second, to finish all 2100 assignments,
we need

2100/1000000 ≈ 1024 seconds

≈ 1024

31536000
years

≈ 3.17× 1016 years.

The Big Bang happened roughly

1.4× 1010

years ago.

The birth of complexity theory

Richard E. Stearns Juris Hartmanis

On the computational complexity of algorithms
J. Hartmanis and R. E. Stearns, 1965.

We measure the computational complexity of a problem by the minimum
resources needed by a Turing machine/algorithm to solve it. Typical
resources include

1. time

2. space

3. parallelism

4. . . .

Can we solve Sat in time
1000 · n2?

For n = 100

1000 · 1002/1000000 = 10 seconds.

The computational complexity class P

Definition
A problem Q ⊆ Σ∗ is in polynomial time if there is an algorithm A and a
polynomial p(n) such that for every x ∈ Σ∗,

I if x ∈ Q, then A will halt in at most p(|x |) steps and output Yes,

I if x /∈ Q, then A will halt in at most p(|x |) steps and output No.

P denotes the class of all polynomial time solvable problems.

After more than half a century, we still do not know whether
Sat is in polynomial time, i.e., can be solved in time, e.g.,

1000 · n2 or even 1010 · n1010 .

The core of computer science is not developed as fast as you
might have heard otherwise.

What makes Sat special?

Given an assignment, it is easy to check (i.e., there is an efficient
algorithm) whether the assignment satisfies a formula.

The motto:

the solution is hard to find but easy to verify.

Sudoku

The computational complexity class NP

Definition
A problem Q ⊆ Σ∗ is in nondeterministic polynomial time if there is an
algorithm A, and two polynomials p(n), q(n) such that for every x ∈ Σ∗,

I if x ∈ Q, then there is a y ∈ Σ∗ of length q(|x |) such that A will
halt on (x , y) in at most p(|x |) steps and output Yes,

I if x /∈ Q, then for all y ∈ Σ∗ of length q(|x |) the algorithm A will
halt in at most p(|x |) steps and output No.

NP denotes the class of problems in nondeterministic
polynomial time.

Stephen Smale

P versus NP, a gift to mathematics from computer science.

The ubiquity of NP

I Mathematics: primality and factoring, solving systems of equations
over N, . . .

I Physics: many problems in statistical physics, e.g., Ising models, . . .

I Chemistry: autocatalysis, . . .

I Biology: many problems associated with DNA sequencing, . . .

I Economics: Nash Equilibrium, game theory, . . .

It is one of the seven millennium problems in mathematics.

Cook-Levin Theorem

Stephen Cook Lenoid Levin

Theorem (S. Cook, 1972; L. Levin, 1973)
Sat problem is solvable in polynomial time if and only if every problem in
NP can be solved in polynomial time.

Sat is NP-complete.

Computer Science, or more precisely theoretical computer
science has much of its root in logic.

Starting from 1980’s, Algorithms and Complexity, the US synonym of
theoretical computer science, are almost dominated by results, tools, and
methods from algebra, combinatorics, and probability.

It is amazing, however, how different computer science is, espe-
cially theoretical computer science, in Europe and the US.

Logic activities in Europe
Y. Gurevich, 1994.

I suppose the “amicable separation” is now official.

On establishing the special interest group for logic of ACM
S. Arora, 2015.

There are always exceptions . . .

1. Understanding complexity classes by logic – finite model theory.

2. Designing algorithms by logic – algorithmic meta-theorems.

3. Understanding logic problems by complexity – Gödel’s proof
predicate complexity and Incompleteness by complexity.

Finite Model Theory

In Model Theory, one dominant type of questions is

which problems can be defined in a given logic.

Theorem
The class of all 3-colorable graphs cannot be defined in first-order logic
(FO).

Nevertheless a graph G can be3-colored if and only if

G |= ∃X1∃X2∃X3

 ∀u ∨
1≤i≤3

Xiu ∧ ∀u
∧

1≤i<j≤3

¬(Xiu ∧ Xju)

∧∀u∀v
(
Euv →

∧
1≤i≤3

¬(Xiu ∧ Xiv)
) .

Fagin’s Theorem

Theorem (Fagin, 1974)
A problem is in NP if and only if it can be
defined in existential second-order logic.

Ronald Fagin

This provides a super-clean machine-independent characterization of NP.

Immerman-Vardi Theorem

Neil Immerman Moshe Vardi

Theorem (N. Immerman, 1982; M. Vardi, 1982)
A problem is in P if and only if it can be defined in least fixed-point logic.

A model-theoretic formulation of P vs. NP

Corollary
P 6= NP if and only if the existential second-order logic and fixed-point
logic have different expressive power.

Now we can attack P vs. NP problem using model theory. So far it
hasn’t panned out, but has found numerous applications in database
theory and formal verification.

Algorithmic Meta-Theorems

There is an efficient algorithm checking whether a graph with a
certain structural property satisfies a sentence in a certain logic.

Many NP-hard problems can be solved in polynomial time on trees, i.e.,
Independent-Set, Dominating-Set, 3-Colorability, etc.

These phenomena can be mostly explained by Büchi’s Theorem.

Julius Richard Büchi (1924 – 1984)

Monadic second-order logic

Monadic second-order logic (MSO) is the restriction of second-order logic
in which every second-order variable is a set variable.

A graph G can be 3-colored if and only if

G |= ∃X1∃X2∃X3

 ∀u ∨
1≤i≤3

Xiu ∧ ∀u
∧

1≤i<j≤3

¬(Xiu ∧ Xju)

∧∀u∀v
(
Euv →

∧
1≤i≤3

¬(Xiu ∧ Xiv)
) .

MSO can also characterize Sat, Connectivity, etc. And by adding
some weak form of counting into MSO we can do Independent-Set,
Dominating-Set, etc.

Büchi’s Theorem

By automata-theoretic approach:

Theorem (Büchi, 1960)
For every ϕ ∈ MSO there is a linear time algorithm that decides whether
a tree satisfies ϕ.

Trees are too restrictive

Neil Robertson Paul Seymour

In their graph minor project, Robertson and Seymour introduced the
notion of tree-width to measure how a given graph is similar to a tree.

Tree-width

graph tree-width

tree 1

forest 1

cycle 2

Courcelle’s Theorem

Bruno Courcelle

Courcelle’s Theorem

Theorem (Courcelle, 1990)
Let w ∈ N and ϕ ∈ MSO. Then there is a linear time algorithm that
decides whether a graph of tree-width ≤ w satisfies ϕ.

Corollary
Independent-Set, Dominating-Set, 3-Colorability, etc, all can
be solved in linear time on graphs of bounded tree-width.

Graphs with unbounded tree-width

A (7× 4)-grid A (5× 4)-wall

Planar graphs, graphs of bounded degree, . . .

What else can we hope for?

First-order logic (FO) instead of MSO.

A graph G has a k-independent set if and only if

G |= ∃x1 . . . ∃xk

 ∧
1≤i<j≤k

(
xi 6= xj ∧ ¬Exixj

) .

Frick and Grohe’s Theorem

Theorem (Frick and Grohe, 2001)
Checking FO properties on graphs of bounded local tree-width can be
done in almost linear time.

Local tree-width measures the tree-width of all the neighbourhoods of
any vertex in a given graph. Both planar graphs and graphs of bounded
degree have bounded local tree-width.

Corollary
For any fixed k ∈ N, on planar graphs, detecting the existence of a
k-independent set can be done in linear time.

Graph minors

Theorem (Kuratowski, 1930; Wagner, 1937)
A graph is planar if and only if it excludes K5 and K3,3 as minors.

A crown jewel of graph theory, or mathematics at large:

Theorem (Robertson and Seymour, 1983 – 2004)
Any class of graphs closing under taking minors has a finite number of
excluding minors.

Flum and Grohe’s Theorem

Theorem (Flum and Grohe, 2001)
Checking FO properties on graphs excluding a minor can be done in
almost linear time.

[Frick and Grohe, 2001] and [Flum and Grohe, 2001] are not comparable,
as witnessed by graphs of bounded degree (bounded local tree-width but
not excluding a minor) and apex graphs (excluding a minor but not
unbounded local tree-width).

After a long series of papers . . .

Martin Grohe Stephan Kreutzer Sebastian Siebertz

Theorem (Grohe, Kreutzer, and Siebertz, 2017)
Checking FO properties on nowhere dense graphs can be done in almost
linear time.

Under some reasonable conditions, the result is optimal.

The computation model we use

A family of Boolean circuits
(
Cn

)
n∈N are AC0-circuits if for every n ∈ N

(i) Cn computes a Boolean function from {0, 1}n to {0, 1};

(ii) the depth of Cn is bounded by a fixed constant;

(iii) the size of Cn is polynomially bounded in n.

AC0 and parallel computation

AC0 circuits parallel computation

of input gates length of input

depth # of parallel computation steps

size # of parallel processes

An algorithmic meta-theorem for AC0

Theorem (C. and Flum, 2018)
Let d ∈ N. Then checking FO properties on graphs of tree-depth at most

d can be done by AC0-circuits of depth O(d) and size nO(d).

C. Jörg Flum

The k-vertex-cover problem
Definition
Let G be a graph and k ∈ N. Then a subset C ⊆ V (G) is a
k-vertex-cover if

(i) for every edge {u, v} ∈ V (G) either u ∈ C or v ∈ C ,

(ii) and |C | = k.

The peterson graph. The peterson graph with a 6-vertex-cover.

The k-vertex-cover problem by AC0

Theorem (C. , Flum, and Huang, 2017)
For any k ∈ N the k-vertex cover problem can be solved by AC0-circuits
of depth 34.

That is, the k-vertex cover problem can be solved by a parallel computer
in 34 steps.

C. Jörg Flum Xuangui Huang

Gödel’s Proof Predicate

A letter from Gödel to von Neumann in 1956

One can obviously easily construct a Turing machine, which for every
formula F in first order predicate logic and every natural number n,
allows one to decide if there is a proof of F of length n . . .

Let Ψ(F , n) be the number of steps the machine requires for this and let

ϕ(n) = max
F

Ψ(F , n).

The question is how fast ϕ(n) grows for an optimal machine . . .

If there really were a machine with ϕ(n) ∼ k · n (or even ∼ k · n2), . . . , it
would obviously mean that in spite of the undecidability of the
Entscheidungsproblem, the mental work of a mathematician concerning
Yes-or-No questions could be completely replaced by a machine.

Gödel’s Proof Predicate

Gödel
Input: An FO-sentence ϕ and n ∈ N in unary.

Problem: Is there a proof of ϕ of length at most n?

Theorem (Folklore)
Gödel is NP-hard.

Hard sentences

By the undecidability of the Entscheidungsproblem, there are true
FO-sentences ϕ whose shortest proofs have length at least

2|ϕ|, 22|ϕ|, . . .

E.g., the Four Color Theorem, Fermat’s Last Theorem, and possibly the
Riemann hypothesis, P 6= NP, . . .

Hard-Gödel
Input: An FO-sentence ϕ and n ≥ 22|ϕ|

in unary.
Problem: Is there a proof of ϕ of length at most n?

Theorem (Buhrman and Hitchcock, 2008)
Hard-Gödel is not NP-hard under some plausible complexity
assumption.

The complexity of Hard-Gödel

Theorem (C. and Flum, 2010)
Under some plausible complexity assumption, Hard-Gödel is not
solvable in polynomial time.

C. Jörg Flum

The construction problem

Constr-Gödel
Input: An FO-sentence ϕ and n ∈ N in unary.

Problem: Construct a proof of ϕ of length at most n, if it
exists.

Theorem (Folklore)
If Gödel can be solved in polynomial time, then Constr-Gödel can
be solved in polynomial time as well.

Lemma (Folklore)
There is a polynomial time algorithm A solving Constr-Gödel using
Gödel as an oracle.

The caveat:

On input (ϕ, n) the algorithm A will ask n many oracle queries.

But in reality:

when proving a hard ϕ, we only prove a small number of key lemmas.

Theorem (C. and Flum, 2010)
There is a no polynomial time algorithm
A solving Constr-Gödel which only
asks Gödel a small number of times.

Incompleteness by Complexity

Goedel’s Incompleteness Theorems

Theorem (First Incompleteness, 1931)
For any reasonable formal system Γ including basic arithmetic, there is an
FO-sentence ϕ such that neither ϕ nor its negation can be proved in Γ.

Intuitively, we can never design an algorithm which can automatically
proves all true arithmetic sentences.

Goedel’s Incompleteness Theorems

Theorem (Second Incompleteness, 1931)
For any reasonable formal system Γ including basic arithmetic, we can
write down a sentence cons(Γ) to express that Γ is consistent (i.e., not
self-contradictory), however Γ cannot prove this sentence cons(Γ).

Intuitively, mathematics, once formalized, cannot guarantee its own
correctness.

Levin’s almost forgotten algorithm

Universal sequential search problems
L. Levin, 1973.

1. Cook-Levin Theorem: the NP-completeness of Sat.

2. Every algorithm computing a function has an optimal inverter.

Levin’s optimal inverters

Let F : Σ∗ → Σ∗ be a function computed by an algorithm F.

Definition
An inverter of F is an algorithm that for every y in the image of F
computes an x with F (x) = y .

Theorem (Levin, 1973)
There is an optimal inverter Iopt for F (with respect to F). That is, for
every inverter I and every y in the image of F , we have

tIopt(y) ≤ O
(
tI(y) + tF(I(y))

)2
,

Intuitively, I is as fast as any other optimal inverter.

A preordering on algorithms

Let Q ⊆ Σ∗ be a decidable problem.

Definition
Let A and B be two algorithms for Q. We say A is as fast as B on yes
instances, written A ≤ B, if for every x ∈ Q

tA(x) ≤ (tB(x) + |x |)O(1).

Almost optimal algorithms and Stockmeyer’s Theorem

Definition
An algorithm A for Q is almost optimal if for every algorithm B for Q we
have A ≤ B.

Theorem (Stockmeyer, 1974)
Every EXP-hard problem Q has no almost optimal algorithm. Moreover,
for every algorithm A for Q we can compute another algorithm B for Q
with A 6≤ B.

Provable algorithms

We fix:

(1) a true and effective theory T , e.g., ZFC;

(2) an effective enumeration of all algorithms A1, A2,

Therefore we can formalize by first-order logic

Ai decides Q,

and talk about that a string π is a proof for

π : T ` Ai decides Q.

The function FT

Consider the function FT defined by

FT (i , π, x , b) = x

if

1. π : T ` Ai decides Q;

2. if Ai accepts x , then b = 1;

3. if Ai rejects x , then b = 0.

Otherwise, let FT (y) = ⊥.

FT (i , π, x , b) can be computed by an algorithm FT in time

f (i) · |π| · tAi (x)

for a computable function f : N→ N.

Inverters for FT and T -provable algorithms

Let I be an inverter for FT . Then consider the algorithm AI:

1. simulate I on input x, say the output is (i , π, x , b)

2. if b = 1 then accept else reject.

Then AI decides Q, since T is a true theory. And, tAI(x) = O
(
tI(x)

)
.

Let Ai be an algorithm with π : T ` Ai decides Q. Then the
straightforward algorithm Ii computing

x 7→

{
(i , π, x , 1), if Ai accepts x ,

(i , π, x , 0), if Ai rejects x .

inverts FT . Moreover, tIi (x) = O(tAi (x)).

Recall Levin’s optimality . . .

There is an optimal inverter Iopt for FT such that for every inverter I and
every x in the image of FT we have

tIopt(x) ≤ O
(
tI(x) + tFT

(I(x))
)2
.

Now assume π : T ` Ai decides Q. We put all the pieces together:

1. AIopt
decides Q, and tAIopt

(x) = O(tIopt
(x)).

2. Ii (x) = (i , π, x , b) with tIi (x) = O(tAi (x)).

3. tFT
(Ii (x)) = tFT

(i , π, x , b) ≤ f (i) · |π| · tAi (x) = O(tAi (x)).

Thus
tAIopt

(x) ≤
(
|x |+ tAi (x)

)O(1)
.

That is, AIopt
≤ Ai .

A complexity-theoretic proof of the First Incompleteness

Theorem (Gödel, 1931)
For every sufficiently strong, effective and consistent theory T there
exists a true sentence ϕ such that T 6` ϕ.

Proof. (C. , Flum, and Müller, 2011).

Recall Stockmeyer’s Theorem:

Every EXP-hard problem Q has no almost optimal algorithm. Moreover,
for every algorithm A for Q we can compute another algorithm B for Q
with A 6≤ B.

Let Q be EXP-hard, and AIopt decides Q. By the previous discussion, we
have an algorithm Ai for Q with AIopt

6≤ Ai .

Then
T 6` Ai decides Q.

Compared to the classical proof . . .

Our diagonalization is “outside logic” and hidden in Levin’s Theorem and
Stockmeyer’s Theorem.

A complexity-theoretic proof of the Second Incompleteness

Theorem (Gödel, 1931)
Every sufficiently strong, effective and consistent theory T cannot prove
its own consistency, i.e., T 6` cons(T).

The key step of a complexity-theoretic proof:

Theorem (C. , Flum, and Müller, 2011)
Let T be a sufficiently strong and effective true theory. Then for every
theory T ∗ ⊇ T

T ∗ proves that AIopt
decides Q ⇐⇒ T ∗ ` cons(T).

Conclusions

I Logic is the root of modern computer science, although its role has
been diminishing in the last few decades.

I Without any doubt, complexity theory is a central piece for our
understanding of computation, particularly the P vs. NP problem.
Its importance is far beyond computer science.

I Combined with other mathematical tools and methods, I believe
that logic will continue to contribute to our understanding of
computation.

Thank You!

