Abstract

Forcing Axioms have been investigated in depth in axiomatic set theory as well as in set theoretic topology for decades. In the first part of this talk, we will focus on the first forcing axiom, Martin’s Axiom, by studying its typical applications. In the second part, we will introduce various forms of forcing axioms and briefly review their properties, connections and applications.
1. **Martin’s Axiom**
 - Formulation
 - Applications on Cardinal Invariants

2. **Forcing Axioms**
 - PFA and MM
 - Applications
 - Variations
1. Martin’s Axiom
 - Formulation
 - Applications on Cardinal Invariants

2. Forcing Axioms
 - PFA and MM
 - Applications
 - Variations
Birth of Martin’s axiom

Solovay [Solovay and Tennenbaum, 1971] developed the theory of iterated forcing and proved the relative consistency of nonexistence of Suslin trees.
Solovay [Solovay and Tennenbaum, 1971] developed the theory of iterated forcing and proved the relative consistency of nonexistence of Suslin trees.

A Suslin tree is an ω_1-tree with only countable chains and antichains.
Solovay [Solovay and Tennenbaum, 1971] developed the theory of iterated forcing and proved the relative consistency of nonexistence of Suslin trees. Martin and Solovay isolated a principle as a "short cut":

Theorem ([Martin and Solovay, 1970])

\[\text{MA}_{\aleph_1} \text{ implies that there is no Suslin tree.} \]
Slices of Martin’s axiom

Definition ([Martin and Solovay, 1970])

\(\text{MA}_\kappa: \) if \((\mathbb{P}, <) \) satisfies countable chain condition (c.c.c.), and if \(\mathcal{D} \) is a collection of dense subsets of \(\mathbb{P} \) with \(|\mathcal{D}| \leq \kappa \), then there exists a \(\mathcal{D} \)-generic filter of \(\mathbb{P} \).
Slices of Martin’s axiom

Definition ([Martin and Solovay, 1970])

\[\text{MA}_\kappa: \text{ if } (\mathbb{P}, <) \text{ satisfies countable chain condition (c.c.c.), and if } \mathcal{D} \text{ is a collection of dense subsets of } \mathbb{P} \text{ with } |\mathcal{D}| \leq \kappa, \text{ then there exists a } \mathcal{D}\text{-generic filter of } \mathbb{P}. \]

Definition ([Martin and Solovay, 1970])

\[\text{MA: if } (\mathbb{P}, <) \text{ satisfies countable chain condition (c.c.c.), and if } \mathcal{D} \text{ is a collection of dense subsets of } \mathbb{P} \text{ with } |\mathcal{D}| < \mathfrak{c}, \text{ then there exists a } \mathcal{D}\text{-generic filter of } \mathbb{P}. \]
Slices of Martin’s axiom

Definition ([Martin and Solovay, 1970])

MA_κ: if $(\mathbb{P}, <)$ satisfies countable chain condition (c.c.c.), and if \mathcal{D} is a collection of dense subsets of \mathbb{P} with $|\mathcal{D}| \leq \kappa$, then there exists a \mathcal{D}-generic filter of \mathbb{P}.

Definition ([Martin and Solovay, 1970])

MA: if $(\mathbb{P}, <)$ satisfies countable chain condition (c.c.c.), and if \mathcal{D} is a collection of dense subsets of \mathbb{P} with $|\mathcal{D}| < c$, then there exists a \mathcal{D}-generic filter of \mathbb{P}.
Notations

- Forking requirement: \(\forall p \in P \ \exists q \leq p \ \exists r \leq p \) such that there is no \(s \), with \(s \leq q \) and \(s \leq r \).
Notations

- Forking requirement: \(\forall p \in \mathbb{P} \ \exists q \leq p \ \exists r \leq p \) such that there is no \(s \), with \(s \leq q \) and \(s \leq r \).

- \(A \subseteq \mathbb{P} \) is an antichain, if \(\forall q, r \in A \), either \(q = r \), or there is no \(s \), with \(s \leq q \) and \(s \leq r \).
Notations

- Forking requirement: \(\forall p \in P \ \exists q \leq p \ \exists r \leq p \) such that there is no \(s \), with \(s \leq q \) and \(s \leq r \).
- \(A \subseteq P \) is an antichain, if \(\forall q, r \in A \), either \(q = r \), or there is no \(s \), with \(s \leq q \) and \(s \leq r \).
- \((P, \leq)\) satisfies countable chain condition, c.c.c. for short, if any antichain \(A \subseteq P \) is countable.
Notations

- Forking requirement: $\forall p \in P \ \exists q \leq p \ \exists r \leq p$ such that there is no s, with $s \leq q$ and $s \leq r$.

- $A \subseteq P$ is an antichain, if $\forall q, r \in A$, either $q = r$, or there is no s, with $s \leq q$ and $s \leq r$.

- (P, \leq) satisfies **countable chain condition**, c.c.c. for short, if any antichain $A \subseteq P$ is countable.

- $D \subseteq P$ is a dense subset, if $\forall p \in P \ \exists q \in D$ with $q \leq p$.
Notations

- Forking requirement: \(\forall p \in \mathbb{P} \ \exists q \leq p \ \exists r \leq p \) such that there is no \(s \), with \(s \leq q \) and \(s \leq r \).
- \(A \subseteq \mathbb{P} \) is an antichain, if \(\forall q, r \in A \), either \(q = r \), or there is no \(s \), with \(s \leq q \) and \(s \leq r \).
- \((\mathbb{P}, \leq) \) satisfies **countable chain condition**, c.c.c. for short, if any antichain \(A \subseteq \mathbb{P} \) is countable.
- \(D \subseteq \mathbb{P} \) is a dense subset, if \(\forall p \in \mathbb{P} \ \exists q \in D \) with \(q \leq p \).
- \(c \) is the continuum, the cardinality of the collection of reals.
Notations

- Forking requirement: \(\forall p \in P \ \exists q \leq p \ \exists r \leq p \) such that there is no \(s \), with \(s \leq q \) and \(s \leq r \).
- \(A \subseteq P \) is an antichain, if \(\forall q, r \in A \), either \(q = r \), or there is no \(s \), with \(s \leq q \) and \(s \leq r \).
- \((P, \leq) \) satisfies countable chain condition, c.c.c. for short, if any antichain \(A \subseteq P \) is countable.
- \(D \subseteq P \) is a dense subset, if \(\forall p \in P \ \exists q \in D \) with \(q \leq p \).
- \(\mathfrak{c} \) is the continuum, the cardinality of the collection of reals.
- \(\emptyset \neq G \subseteq P \) is a filter, if \((p \in G \land p \leq q) \rightarrow q \in G \) and \(p, q \in G \rightarrow \exists r \in G(r \leq p \land r \leq q) \).
Forcing Axioms and Their Applications

Notations

- **Forking requirement**: $\forall p \in \mathbb{P} \ \exists q \leq p \ \exists r \leq p$ such that there is no s, with $s \leq q$ and $s \leq r$.

- $A \subseteq \mathbb{P}$ is an antichain, if $\forall q, r \in A$, either $q = r$, or there is no s, with $s \leq q$ and $s \leq r$.

- (\mathbb{P}, \leq) satisfies **countable chain condition**, c.c.c. for short, if any antichain $A \subseteq \mathbb{P}$ is countable.

- $D \subseteq \mathbb{P}$ is a dense subset, if $\forall p \in \mathbb{P} \ \exists q \in D$ with $q \leq p$.

- c is the continuum, the cardinality of the collection of reals.

- $\emptyset \neq G \subseteq \mathbb{P}$ is a filter, if $(p \in G \land p \leq q) \rightarrow q \in G$ and $p, q \in G \rightarrow \exists r \in G(r \leq p \land r \leq q)$.

- $G \subseteq \mathbb{P}$ is \mathcal{D}-generic filter, if $\forall D \in \mathcal{D}, G \cap D \neq \emptyset$.
Easy facts

Fact

- MA_{\aleph_0} is true, MA_c is false.
Easy facts

Fact

- MA_ω is true, MA_c is false.
- MA states that $\bigwedge_{\kappa < c} \text{MA}_\kappa$.
Easy facts

Fact

- MA_{\aleph_0} is true, MA_c is false.
- MA states that $\bigwedge_{\kappa < c} \text{MA}_\kappa$.
- Assume the continuum hypothesis (CH), then MA holds.
Easy facts

Fact

- MA_{\aleph_0} is true, MA_c is false.
- MA states that $\bigwedge_{\kappa < c} \text{MA}_\kappa$.
- Assume the continuum hypothesis (CH), then MA holds.

Typical c.c.c. forcings include Cohen forcing, Random forcing, Suslin tree forcing, etc.
1. **Martin’s Axiom**
 - Formulation
 - Applications on Cardinal Invariants

2. **Forcing Axioms**
 - PFA and MM
 - Applications
 - Variations
The dominating number

Definition

For \(f, g \in \omega^\omega \), \(f \) is dominated by \(g \), denoted by \(f \leq^* g \), if
\[\exists m \in \omega \forall n \geq m \ f(n) \leq g(n). \]
The dominating number

Definition

- For $f, g \in \omega^\omega$, f is dominated by g, denoted by $f \leq^* g$, if
 \[\exists m \in \omega \forall n \geq m \ f(n) \leq g(n). \]
- $\mathcal{F} \subseteq \omega^\omega$ is a dominating family, if $\forall f \in \omega^\omega \exists g \in \mathcal{F} \ f \leq^* g.$
Forcing Axioms and Their Applications

Applications on Cardinal Invariants

The dominating number

Definition

- For $f, g \in \omega^\omega$, f is dominated by g, denoted by $f \leq^* g$, if $\exists m \in \omega \forall n \geq m f(n) \leq g(n)$.
- $\mathcal{F} \subseteq \omega^\omega$ is a dominating family, if $\forall f \in \omega^\omega \exists g \in \mathcal{F} f \leq^* g$.
- The dominating number, denoted by \mathfrak{d}, is the least cardinality of a dominating family.
The dominating number

Definition

- For $f, g \in \omega^\omega$, f is dominated by g, denoted by $f \leq^* g$, if $\exists m \in \omega \forall n \geq m f(n) \leq g(n)$.
- $F \subseteq \omega^\omega$ is a dominating family, if $\forall f \in \omega^\omega \exists g \in F f \leq^* g$.
- The dominating number, denoted by d, is the least cardinality of a dominating family.
- $\aleph_1 \leq d \leq \mathfrak{c}$.
Martin’s axiom and the dominating number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $\mathfrak{d} = \mathfrak{c}$.
Forcing Axioms and Their Applications

Martin’s Axiom

Applications on Cardinal Invariants

Martin’s axiom and the dominating number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $d = c$.

Proof: Assume $\kappa < c$, $F = \{ f_\alpha | \alpha < \kappa \} \subseteq \omega^\omega$, we will find some $g \in \omega^\omega$ such that g is not dominated by any function in F.

Martin’s axiom and the dominating number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $\mathfrak{d} = \mathfrak{c}$.

Proof: Assume $\kappa < \mathfrak{c}$, $\mathcal{F} = \{ f_\alpha | \alpha < \kappa \} \subseteq \omega^\omega$, we will find some $g \in \omega^\omega$ such that g is not dominated by any function in \mathcal{F}.

- Consider $\mathbb{P} = (\omega^{<\omega}, \supseteq)$. $|\mathbb{P}| = \omega$. \mathbb{P} has countable chain condition.
Martin’s axiom and the dominating number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $d = c$.

Proof: Assume $\kappa < c$, $F = \{ f_\alpha | \alpha < \kappa \} \subseteq \omega^\omega$, we will find some $g \in \omega^\omega$ such that g is not dominated by any function in F.

- Consider $P = (\omega^{<\omega}, \supseteq)$. $|P| = \omega$. P has countable chain condition.
- $\forall l \in \omega$, $E_l = \{ p | l \in \text{dom}(p) \}$ is dense.
Martin’s Axiom and Their Applications

Martin’s axiom and the dominating number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $d = c$.

Proof: Assume $\kappa < c$, $F = \{f_\alpha | \alpha < \kappa\} \subseteq \omega^\omega$, we will find some $g \in \omega^\omega$ such that g is not dominated by any function in F.

- Consider $P = (\omega^{<\omega}, \supseteq)$. $|P| = \omega$. P has countable chain condition.
- $\forall l \in \omega$, $E_l = \{p | l \in \text{dom}(p)\}$ is dense.
- $\forall \alpha < \kappa \forall m < \omega$, $D_{\alpha, m} = \{p | \exists n \in \text{dom}(p), n > m, p(n) > f_\alpha(n)\}$ is dense.
Martin’s axiom and the dominating number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies \(d = c \).

Proof: Assume \(\kappa < c \), \(\mathcal{F} = \{ f_\alpha | \alpha < \kappa \} \subseteq \omega^\omega \), we will find some \(g \in \omega^\omega \) such that \(g \) is not dominated by any function in \(\mathcal{F} \).

- Consider \(\mathbb{P} = (\omega^{<\omega}, \supseteq) \). \(|\mathbb{P}| = \omega \). \(\mathbb{P} \) has countable chain condition.
- \(\forall l \in \omega, E_l = \{ p | l \in \text{dom}(p) \} \) is dense.
- \(\forall \alpha < \kappa \ \forall m < \omega, D_{\alpha,m} = \{ p | \exists n \in \text{dom}(p), n > m, p(n) > f_\alpha(n) \} \) is dense.
- By MA, let \(G \) be \(\{ D_{\alpha,m}, E_l | \alpha < \kappa, m < \omega, l < \omega \} \)-generic.
Martin’s axiom and the dominating number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $d = c$.

Proof: Assume $\kappa < c$, $\mathcal{F} = \{f_\alpha | \alpha < \kappa\} \subseteq \omega^\omega$, we will find some $g \in \omega^\omega$ such that g is not dominated by any function in \mathcal{F}.

- Consider $\mathbb{P} = (\omega^{<\omega}, \supseteq)$. $|\mathbb{P}| = \omega$. \mathbb{P} has countable chain condition.
- $\forall l \in \omega$, $E_l = \{p | l \in \text{dom}(p)\}$ is dense.
- $\forall \alpha < \kappa \forall m < \omega$, $D_{\alpha,m} = \{p | \exists n \in \text{dom}(p), n > m, p(n) > f_\alpha(n)\}$ is dense.
- By MA, let G be $\{D_{\alpha,m}, E_l | \alpha < \kappa, m < \omega, l < \omega\}$-generic.
- Let $g = \bigcup G$. Then $g \in \omega^\omega$, and g is not dominated by any f_α.
Martin’s axiom and the dominating number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies \(d = c \).

Proof: Assume \(\kappa < c \), \(F = \{ f_\alpha | \alpha < \kappa \} \subseteq \omega^\omega \), we will find some \(g \in \omega^\omega \) such that \(g \) is not dominated by any function in \(F \).

- Consider \(P = (\omega^{<\omega}, \supseteq) \). \(|P| = \omega \). \(P \) has countable chain condition.

- \(\forall l \in \omega, E_l = \{ p | l \in \text{dom}(p) \} \) is dense.

- \(\forall \alpha < \kappa \forall m < \omega, D_{\alpha, m} = \{ p | \exists n \in \text{dom}(p), n > m, p(n) > f_\alpha(n) \} \) is dense.

- By MA, let \(G \) be \(\{ D_{\alpha, m}, E_l | \alpha < \kappa, m < \omega, l < \omega \}-\text{generic} \).

- Let \(g = \bigcup G \). Then \(g \in \omega^\omega \), and \(g \) is not dominated by any \(f_\alpha \).

Hence \(d > \kappa \), we conclude that \(d = c \).
The refining number

Definition

- Suppose $A, B \in [\omega]^\omega$, say B splits A, if both $A \cap B$ and $A \setminus B$ are infinite.
The refining number

Definition

- Suppose $A, B \in [\omega]^\omega$, say B splits A, if both $A \cap B$ and $A \setminus B$ are infinite.

- $\mathcal{A} = \{A_\alpha | \alpha < \kappa \} \subseteq [\omega]^\omega$ is unsplittable, if for any B, there is some A_α not split by B.
The refining number

Definition

- Suppose $A, B \in [\omega]^{\omega}$, say B splits A, if both $A \cap B$ and $A \setminus B$ are infinite.
- $\mathcal{A} = \{A_\alpha | \alpha < \kappa \} \subseteq [\omega]^{\omega}$ is unsplittable, if for any B, there is some A_α not split by B.
- The refining number, r, is the least cardinality of an unsplittable family.
The refining number

Definition

- Suppose $A, B \in [\omega]^\omega$, say B splits A, if both $A \cap B$ and $A \setminus B$ are infinite.

- $\mathcal{A} = \{A_\alpha | \alpha < \kappa \} \subseteq [\omega]^\omega$ is unsplittable, if for any B, there is some A_α not split by B.

- The refining number, r, is the least cardinality of an unsplittable family.

- $\aleph_1 \leq r \leq c$.
Martin’s axiom and the refining number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $r = c$.
Martin’s axiom and the refining number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $r = c$.

Proof: Assume $\kappa < c$, $\mathcal{A} = \{A_\alpha | \alpha < \kappa\} \subseteq [\omega]^\omega$. We will find some $g \in [\omega]^\omega$ which splits each A_α.

Martin’s axiom and the refining number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies \(r = c \).

Proof: Assume \(\kappa < c \), \(\mathcal{A} = \{ A_\alpha | \alpha < \kappa \} \subseteq [\omega]^\omega \). We will find some \(g \in [\omega]^\omega \) which splits each \(A_\alpha \).

- Let \(\mathbb{P} = ([\omega]^{<\omega}, \supseteq_e) \). \(|\mathbb{P}| = \omega \).
Martin's axiom and the refining number

Theorem ([Martin and Solovay, 1970])

Martin's Axiom implies $r = c$.

Proof: Assume $\kappa < c$, $\mathcal{A} = \{A_\alpha | \alpha < \kappa\} \subseteq [\omega]^\omega$. We will find some $g \in [\omega]^\omega$ which splits each A_α.

- Let $\mathcal{P} = ([\omega]<^\omega, \supseteq_e)$. $|\mathcal{P}| = \omega$. For $p \in [\omega]<^\omega$, $q \in [\omega]<^\omega$, say p end extends q, and denote $p \supseteq_e q$ if either $p = q$, or $p \supset q$ and $\min(p \setminus q) > \max(q)$.

Martin’s axiom and the refining number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $r = c$.

Proof: Assume $\kappa < c$, $\mathcal{A} = \{A_\alpha | \alpha < \kappa\} \subseteq [\omega]^{< \omega}$. We will find some $g \in [\omega]^\omega$ which splits each A_α.

- Let $\mathbb{P} = ([\omega]^{< \omega}, \supseteq_e)$. $|\mathbb{P}| = \omega$.
- For $\alpha < \kappa$, $m < \omega$, $D_{\alpha,m} = \{p : |A_\alpha \cap p| > m\}$, $E_{\alpha,m} = \{p : |(A_\alpha \cap \max(p)) \setminus p| > m\}$ are dense.
Martin’s axiom and the refining number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies \(r = c \).

Proof: Assume \(\kappa < c \), \(\mathcal{A} = \{ A_\alpha | \alpha < \kappa \} \subseteq [\omega]^\omega \). We will find some \(g \in [\omega]^\omega \) which splits each \(A_\alpha \).

- Let \(\mathcal{P} = ([\omega]^{<\omega}, \supseteq_e) \). \(|\mathcal{P}| = \omega \).
- For \(\alpha < \kappa, m < \omega \), \(D_{\alpha,m} = \{ p : |A_\alpha \cap p| > m \} \), \(E_{\alpha,m} = \{ p : |(A_\alpha \cap \max(p)) \setminus p| > m \} \) are dense.
- By Martin’s Axiom, let \(G \) be generic over these dense sets, and let \(g = \bigcup G \).
Martin’s axiom and the refining number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $r = c$.

Proof: Assume $\kappa < c$, $\mathcal{A} = \{A_\alpha | \alpha < \kappa\} \subseteq [\omega]^\omega$. We will find some $g \in [\omega]^\omega$ which splits each A_α.

- Let $\mathcal{P} = ([\omega]^{<\omega}, \supseteq_e)$. $|\mathcal{P}| = \omega$.
- For $\alpha < \kappa$, $m < \omega$, $D_{\alpha,m} = \{p : |A_\alpha \cap p| > m\}$, $E_{\alpha,m} = \{p : |(A_\alpha \cap \max(p)) \setminus p| > m\}$ are dense.
- By Martin’s Axiom, let G be generic over these dense sets, and let $g = \bigcup G$.
- Then $g \in [\omega]^\omega$ and g splits each A_α.
Martin’s axiom and the refining number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies \(r = c \).

Proof: Assume \(\kappa < c \), \(\mathcal{A} = \{ A_\alpha \mid \alpha < \kappa \} \subseteq [\omega]^{\omega} \). We will find some \(g \in [\omega]^{\omega} \) which splits each \(A_\alpha \).

- Let \(\mathbb{P} = ([\omega]^{<\omega}, \supseteq_e) \). \(|\mathbb{P}| = \omega \).
- For \(\alpha < \kappa, m < \omega \), \(D_{\alpha,m} = \{ p : |A_\alpha \cap p| > m \} \),
 \(E_{\alpha,m} = \{ p : |(A_\alpha \cap \max(p)) \setminus p| > m \} \) are dense.
- By Martin’s Axiom, let \(G \) be generic over these dense sets, and let \(g = \bigcup G \).
- Then \(g \in [\omega]^{\omega} \) and \(g \) splits each \(A_\alpha \).

Hence \(r > \kappa \), we conclude that \(r = c \).
Non-null sets

Definition

Let \(\mathcal{L} \) denote the collection of null sets, or sets of reals which have Lebesgue measure zero.
Non-null sets

Definition

- Let \mathcal{L} denote the collection of null sets, or sets of reals which have Lebesgue measure zero.
- Any countable set of reals is null.
Non-null sets

Definition

- Let \mathcal{L} denote the collection of null sets, or sets of reals which have Lebesgue measure zero.
- Any countable set of reals is null.
- There is a null set which has cardinality c.
Non-null sets

Definition

- Let \mathcal{L} denote the collection of null sets, or sets of reals which have Lebesgue measure zero.
- Any countable set of reals is null.
- There is a null set which has cardinality \mathfrak{c}.
- $\text{non}(\mathcal{L})$, is the least cardinality of some $A \subseteq \mathbb{R}$, such that $A \notin \mathcal{L}$.
- $\aleph_1 \leq \text{non}(\mathcal{L}) \leq \mathfrak{c}$.
Martin’s axiom and the non-null number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies \(\text{non}(\mathcal{L}) = c \).
Martin’s axiom and the non-null number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies \(\text{non}(\mathcal{L}) = \mathfrak{c} \).

Proof: Assume \(\kappa < \mathfrak{c} \) and \(Y = \{ y_\alpha | \alpha < \kappa \} \). We show that \(Y \in \mathcal{L} \).

\(\forall \epsilon > 0 \), find an open set \(g \) with \(\mu(g) \leq \epsilon \) and \(Y \subseteq g \).
Martin’s axiom and the non-null number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies \(\text{non}(\mathcal{L}) = \mathfrak{c} \).

Proof: Assume \(\kappa < \mathfrak{c} \) and \(Y = \{ y_\alpha | \alpha < \kappa \} \). We show that \(Y \in \mathcal{L} \).

\(\forall \epsilon > 0 \), find an open set \(g \) with \(\mu(g) \leq \epsilon \) and \(Y \subseteq g \).

\(\mathbb{P} \): a condition \(p \) is a union of open intervals with rational endpoints and \(\mu(p) < \epsilon \); \(p \leq q \) iff \(p \supseteq q \).
Martin’s axiom and the non-null number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $\text{non}(\mathcal{L}) = c$.

Proof: Assume $\kappa < c$ and $Y = \{y_\alpha | \alpha < \kappa\}$. We show that $Y \in \mathcal{L}$.

For all $\epsilon > 0$, find an open set g with $\mu(g) \leq \epsilon$ and $Y \subseteq g$.

- \mathbb{P}: a condition p is a union of open intervals with rational endpoints and $\mu(p) < \epsilon$; $p \leq q$ iff $p \supseteq q$.
- \mathbb{P} is countable.
Martin’s axiom and the non-null number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies \(\text{non}(\mathcal{L}) = c \).

Proof: Assume \(\kappa < c \) and \(Y = \{ y_\alpha | \alpha < \kappa \} \). We show that \(Y \in \mathcal{L} \).

For all \(\epsilon > 0 \), find an open set \(g \) with \(\mu(g) \leq \epsilon \) and \(Y \subseteq g \).

- \(\mathbb{P} \): a condition \(p \) is a union of open intervals with rational endpoints and \(\mu(p) < \epsilon \); \(p \leq q \) iff \(p \supseteq q \).
- \(\mathbb{P} \) is countable.
- For each \(\alpha \), \(D_\alpha = \{ p | y_\alpha \in p \} \) is dense.
Martin’s axiom and the non-null number

Theorem ([Martin and Solovay, 1970])

*Martin’s Axiom implies $\text{non}(\mathcal{L}) = \mathfrak{c}$."

Proof: Assume $\kappa < \mathfrak{c}$ and $Y = \{y_\alpha | \alpha < \kappa\}$. We show that $Y \in \mathcal{L}$. For all $\epsilon > 0$, find an open set g with $\mu(g) \leq \epsilon$ and $Y \subseteq g$.

- \mathcal{P}: A condition p is a union of open intervals with rational endpoints and $\mu(p) < \epsilon$; $p \leq q$ if $p \supseteq q$.
- \mathcal{P} is countable.
- For each α, $D_\alpha = \{p | y_\alpha \in p\}$ is dense.
- By Martin’s Axiom, let G be generic over these dense sets, and let $g = \bigcup G$.
Martin’s axiom and the non-null number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $\text{non}(\mathcal{L}) = \mathfrak{c}$.

Proof: Assume $\kappa < \mathfrak{c}$ and $Y = \{y_\alpha | \alpha < \kappa\}$. We show that $Y \in \mathcal{L}$.

$\forall \epsilon > 0$, find an open set g with $\mu(g) \leq \epsilon$ and $Y \subseteq g$.

- \mathbb{P}: a condition p is a union of open intervals with rational endpoints and $\mu(p) < \epsilon$; $p \leq q$ iff $p \supseteq q$.
- \mathbb{P} is countable.
- For each α, $D_\alpha = \{p | y_\alpha \in p\}$ is dense.
- By Martin’s Axiom, let G be generic over these dense sets, and let $g = \bigcup G$.
- Then $Y \subseteq g$ and g is an open set.
Martin’s axiom and the non-null number

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $\text{non}(\mathcal{L}) = \mathfrak{c}$.

Proof: Assume $\kappa < \mathfrak{c}$ and $Y = \{y_\alpha | \alpha < \kappa\}$. We show that $Y \in \mathcal{L}$.

- $\forall \epsilon > 0$, find an open set g with $\mu(g) \leq \epsilon$ and $Y \subseteq g$.

- P: a condition p is a union of open intervals with rational endpoints and $\mu(p) < \epsilon$; $p \leq q$ iff $p \supseteq q$.

- P is countable.

- For each α, $D_\alpha = \{p | y_\alpha \in p\}$ is dense.

- By Martin’s Axiom, let G be generic over these dense sets, and let $g = \bigcup G$.

- Then $Y \subseteq g$ and g is an open set.

- Key: $\mu(g) \leq \epsilon$.

Hence $\text{non}(\mathcal{L}) > \kappa$, we conclude that $\text{non}(\mathcal{L}) = \mathfrak{c}$.
Covering number for null sets

Definition

- A *union of countably many null sets does not cover* \mathbb{R}.
Covering number for null sets

Definition

- A union of countably many null sets does not cover \mathbb{R}
- A covering family from \mathcal{I} is some $\mathcal{X} \subseteq \mathcal{I}$, such that $\bigcup \mathcal{X} = \mathbb{R}$.
Definition

- A union of countably many null sets does not cover \mathbb{R}.
- A covering family from \mathcal{I} is some $\mathcal{X} \subseteq \mathcal{I}$, such that $\bigcup \mathcal{X} = \mathbb{R}$.
- The covering number for \mathcal{L}, denoted by $\text{cov}(\mathcal{L})$, is the least cardinality of a family $\mathcal{X} \subseteq \mathcal{L}$, such that $\bigcup \mathcal{X} = \mathbb{R}$.

Theorem ([Martin and Solovay, 1970]) Martin’s Axiom implies $\text{cov}(\mathcal{L}) = c$.

\[\aleph_1 \leq \text{cov}(\mathcal{L}) \leq c. \]
Covering number for null sets

Definition

- A union of countably many null sets does not cover \mathbb{R}
- A covering family from \mathcal{I} is some $\mathcal{X} \subseteq \mathcal{I}$, such that $\bigcup \mathcal{X} = \mathbb{R}$.
- The covering number for \mathcal{L}, denoted by $\text{cov}(\mathcal{L})$, is the least cardinality of a family $\mathcal{X} \subseteq \mathcal{L}$, such that $\bigcup \mathcal{X} = \mathbb{R}$.
- $\aleph_1 \leq \text{cov}(\mathcal{L}) \leq c$.
Covering number for null sets

Definition

- A union of countably many null sets does not cover \mathbb{R}
- A covering family from \mathcal{I} is some $\mathcal{X} \subseteq \mathcal{I}$, such that $\bigcup \mathcal{X} = \mathbb{R}$.
- The covering number for \mathcal{L}, denoted by $\text{cov}(\mathcal{L})$, is the least cardinality of a family $\mathcal{X} \subseteq \mathcal{L}$, such that $\bigcup \mathcal{X} = \mathbb{R}$.
- $\aleph_1 \leq \text{cov}(\mathcal{L}) \leq \mathfrak{c}$.

Theorem ([Martin and Solovay, 1970])

Martin’s Axiom implies $\text{cov}(\mathcal{L}) = \mathfrak{c}$.
The random forcing [Solovay, 1970] consists of Borel sets of the interval \((0, 1)\) with positive measure, \(p \leq q\) iff \(p \subseteq q\).
Random forcing

The random forcing [Solovay, 1970] consists of Borel sets of the interval \((0, 1)\) with positive measure, \(p \leq q\) iff \(p \subseteq q\).

Lemma

Random forcing satisfies countable chain condition.
The random forcing [Solovay, 1970] consists of Borel sets of the interval $(0, 1)$ with positive measure, $p \leq q$ iff $p \subseteq q$.

Lemma

Random forcing satisfies countable chain condition.

Proof: If $X \subseteq \mathbb{P}$ is an antichain, then $\forall p, q \in X$, either $p = q$, or $p \cap q = \emptyset$.

The random forcing [Solovay, 1970] consists of Borel sets of the interval \((0, 1)\) with positive measure, \(p \leq q\) iff \(p \subseteq q\).

Lemma

Random forcing satisfies countable chain condition.

Proof: If \(X \subseteq \mathcal{P}\) is an antichain, then \(\forall p, q \in X\), either \(p = q\), or \(p \cap q = \emptyset\).

Let \(X_n = \{p \in X : \mu(p) > 1/n\}\). Since the measure of \((0, 1)\) is 1, \(X_n\) has less than \(n\) elements. Therefore, \(X = \bigcup_{n<\omega} X_n\) is countable.
Random real

\[E_n = \{ p \mid \exists m < 2^n, p \subseteq (\frac{m}{2^n}, \frac{m+1}{2^n}) \} \text{ is dense.} \]
Random real

- \(E_n = \{ p | \exists m < 2^n, p \subseteq (\frac{m}{2^n}, \frac{m+1}{2^n}) \} \) is dense.

- If \(G \) is generic over each \(E_n \), then for each \(n \), there is a unique \(m = m(n) \) such that \(\bigcup (E_n \cap G) \subseteq (\frac{m}{2^n}, \frac{m+1}{2^n}) \).
Random real

- $E_n = \{ p | \exists m < 2^n, p \subseteq (\frac{m}{2^n}, \frac{m+1}{2^n}) \}$ is dense.
- If G is generic over each E_n, then for each n, there is a unique $m = m(n)$ such that $\bigcup (E_n \cap G) \subseteq (\frac{m}{2^n}, \frac{m+1}{2^n})$.
- Define $g : \omega \rightarrow 2$:

 $g(n) = 0$ if $m(n)$ is even, $g(n) = 1$ if $m(n)$ is odd.
Random real

- $E_n = \{ p | \exists m < 2^n, p \subseteq (\frac{m}{2^n}, \frac{m+1}{2^n}) \}$ is dense.
- If G is generic over each E_n, then for each n, there is a unique $m = m(n)$ such that $\bigcup (E_n \cap G) \subseteq (\frac{m}{2^n}, \frac{m+1}{2^n})$.
- Define $g : \omega \to 2$:
 $$g(n) = 0 \text{ if } m(n) \text{ is even}, \quad g(n) = 1 \text{ if } m(n) \text{ is odd}.$$
- Define $r_g = \sum_{n=0}^{\infty} \frac{g(n)}{2^n}$.

Random real

- $E_n = \{p|\exists m < 2^n, p \subseteq (\frac{m}{2^n}, \frac{m+1}{2^n})\}$ is dense.
- If G is generic over each E_n, then for each n, there is a unique $m = m(n)$ such that $\bigcup (E_n \cap G) \subseteq (\frac{m}{2^n}, \frac{m+1}{2^n})$.
- Define $g : \omega \rightarrow 2$:
 - $g(n) = 0$ if $m(n)$ is even, $g(n) = 1$ if $m(n)$ is odd.
- Define $r_g = \sum_{n=0}^{\infty} \frac{g(n)}{2^n}$.
- $r_g \in \bigcap G$ is called the random real.
Martin’s axiom and covering number for null sets

To prove $MA \vdash \text{cov}(\mathcal{L}) = \mathfrak{c}$, assume $\kappa < \mathfrak{c}$ and $\mathcal{A} = \{ A_\alpha | \alpha < \kappa \} \subseteq \mathcal{L}$. We use random forcing to show that $\bigcup \mathcal{A} \not\in (0, 1)$.

For each $\alpha < \kappa$, let $D_\alpha = \{ p | p \cap A_\alpha = \emptyset \}$. Given $q \in P$, $\alpha < \kappa$, let B be a \mathcal{G}_δ set such that $B \in \mathcal{L}$ and $B \supseteq A_\alpha$. Let $p = q \setminus B$, then $p \leq q$ and $p \in D_\alpha$. So D_α is dense.

By Martin’s Axiom, let G be generic over D_α's and E_n's, and let r_g be the random real decided by G. $G \cap D_\alpha$, \emptyset guarantees that $r_g < A_\alpha$. Hence $g < \bigcup \mathcal{A}$ and $\text{cov}(\mathcal{L}) > \kappa$, we conclude that $\text{cov}(\mathcal{L}) = \mathfrak{c}$.
To prove $MA \vdash \text{cov}(L) = \mathfrak{c}$, assume $\kappa < \mathfrak{c}$ and $\mathcal{A} = \{A_\alpha | \alpha < \kappa\} \subseteq L$. We use random forcing to show that $\bigcup \mathcal{A} \not\in (0, 1)$.

- For each $\alpha < \kappa$, let $D_\alpha = \{p | p \cap A_\alpha = \emptyset\}$.
Martin’s axiom and covering number for null sets

To prove $MA \vdash \text{cov}(\mathcal{L}) = \omega$, assume $\kappa < \omega$ and $\mathcal{A} = \{A_\alpha | \alpha < \kappa\} \subseteq \mathcal{L}$. We use random forcing to show that $\bigcup \mathcal{A} \notin (0, 1)$.

- For each $\alpha < \kappa$, let $D_\alpha = \{p | p \cap A_\alpha = \emptyset\}$.
- Given $q \in \mathbb{P}, \alpha < \kappa$, let B be a G_δ set such that $B \in \mathcal{L}$ and $B \supseteq A_\alpha$. Let $p = q \setminus B$, then $p \leq q$ and $p \in D_\alpha$. So D_α is dense.
Martin’s axiom and covering number for null sets

To prove $\mathsf{MA} \vdash \text{cov}(\mathcal{L}) = \mathfrak{c}$, assume $\kappa < \mathfrak{c}$ and $\mathcal{A} = \{A_\alpha | \alpha < \kappa\} \subseteq \mathcal{L}$. We use random forcing to show that $\bigcup \mathcal{A} \not\in (0, 1)$.

- For each $\alpha < \kappa$, let $D_\alpha = \{p | p \cap A_\alpha = \emptyset\}$.
- Given $q \in \mathbb{P}$, $\alpha < \kappa$, let B be a G_δ set such that $B \in \mathcal{L}$ and $B \supseteq A_\alpha$. Let $p = q \setminus B$, then $p \leq q$ and $p \in D_\alpha$. So D_α is dense.
- By Martin’s Axiom, let G be generic over D_α’s and E_n’s, and let r_g be the random real decided by G.
Martin’s axiom and covering number for null sets

To prove $MA \vdash \text{cov}(\mathcal{L}) = \mathfrak{c}$, assume $\kappa < \mathfrak{c}$ and $\mathcal{A} = \{A_\alpha | \alpha < \kappa\} \subseteq \mathcal{L}$. We use random forcing to show that $\bigcup \mathcal{A} \nsubseteq (0, 1)$.

- For each $\alpha < \kappa$, let $D_\alpha = \{p | p \cap A_\alpha = \emptyset\}$.
- Given $q \in \mathbb{P}$, $\alpha < \kappa$, let B be a G_δ set such that $B \in \mathcal{L}$ and $B \supseteq A_\alpha$. Let $p = q \setminus B$, then $p \leq q$ and $p \in D_\alpha$. So D_α is dense.
- By Martin’s Axiom, let G be generic over D_α’s and E_n’s, and let r_g be the random real decided by G.
- $G \cap D_\alpha \neq \emptyset$ guarantees that $r_g \notin A_\alpha$.
Martin’s axiom and covering number for null sets

To prove $MA \vdash \text{cov}(\mathcal{L}) = \mathfrak{c}$, assume $\kappa < \mathfrak{c}$ and $\mathcal{A} = \{A_\alpha | \alpha < \kappa\} \subseteq \mathcal{L}$. We use random forcing to show that $\bigcup \mathcal{A} \not\in (0, 1)$.

- For each $\alpha < \kappa$, let $D_\alpha = \{p | p \cap A_\alpha = \emptyset\}$.
- Given $q \in \mathbb{P}$, $\alpha < \kappa$, let B be a G_δ set such that $B \in \mathcal{L}$ and $B \supseteq A_\alpha$. Let $p = q \setminus B$, then $p \leq q$ and $p \in D_\alpha$. So D_α is dense.
- By Martin’s Axiom, let G be generic over D_α’s and E_n’s, and let r_g be the random real decided by G.
- $G \cap D_\alpha \neq \emptyset$ guarantees that $r_g \notin A_\alpha$.

Hence $g \notin \bigcup \mathcal{A}$ and $\text{cov}(\mathcal{L}) > \kappa$, we conclude that $\text{cov}(\mathcal{L}) = \mathfrak{c}$.
Forcing Axioms and Their Applications

1. **Martin’s Axiom**
 - Formulation
 - Applications on Cardinal Invariants

2. **Forcing Axioms**
 - PFA and MM
 - Applications
 - Variations
Baumgartner [Baumgartner, 1983] generalized the property of countable chain condition to “Axiom A”, which includes typical forcings like Sacks forcing, Mathias forcing and Laver forcing.
Baumgartner [Baumgartner, 1983] generalized the property of countable chain condition to “Axiom A”, which includes typical forcings like Sacks forcing, Mathias forcing and Laver forcing.

Shelah [Shelah, 1982] soon made a great step further by developing the notion of “properness”.

Baumgartner [Baumgartner, 1983] generalized the property of countable chain condition to “Axiom A”, which includes typical forcings like Sacks forcing, Mathias forcing and Laver forcing.

Shelah [Shelah, 1982] soon made a great step further by developing the notion of “properness”.

\mathbb{P} is proper, if for every $\kappa \geq \omega_1$, every stationary $S \subseteq [\kappa]^\omega$, S is stationary in $\forall^\mathbb{P}$.
Baumgartner [Baumgartner, 1983] generalized the property of countable chain condition to “Axiom A”, which includes typical forcings like Sacks forcing, Mathias forcing and Laver forcing.

Shelah [Shelah, 1982] soon made a great step further by developing the notion of “properness”.

<table>
<thead>
<tr>
<th>countable chain condition</th>
<th>Axiom A</th>
<th>properness</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite support</td>
<td>finite iteration</td>
<td>countable support</td>
</tr>
<tr>
<td>preserve cardinals</td>
<td>preserve \aleph_1</td>
<td>preserve \aleph_1</td>
</tr>
</tbody>
</table>
Proper Forcing Axiom

Definition ([Baumgartner, 1984])

Proper Forcing Axiom (PFA): if \((\mathbb{P}, \prec)\) is proper, and if \(\mathcal{D}\) is a collection of dense subsets of \(\mathbb{P}\) with \(|\mathcal{D}| = \aleph_1\), then there exists a \(\mathcal{D}\)-generic filter of \(\mathbb{P}\).
Proper Forcing Axiom

Definition ([Baumgartner, 1984])

Proper Forcing Axiom (PFA): if (\mathbb{P}, \prec) is proper, and if \mathcal{D} is a collection of dense subsets of \mathbb{P} with $|\mathcal{D}| = \aleph_1$, then there exists a \mathcal{D}-generic filter of \mathbb{P}.

Clearly, PFA \rightarrow MA$_{\aleph_1}$. Moreover,
Proper Forcing Axiom

Definition ([Baumgartner, 1984])

Proper Forcing Axiom (PFA): if $(\mathbb{P}, <)$ is proper, and if \mathcal{D} is a collection of dense subsets of \mathbb{P} with $|\mathcal{D}| = \aleph_1$, then there exists a \mathcal{D}-generic filter of \mathbb{P}.

Clearly, PFA \rightarrow MA$_{\aleph_1}$. Moreover,

Theorem ([Baumgartner, 1984])

PFA implies \negMA$_{\aleph_2}$.
Martin’s Maximum

A proper forcing preserves not only ω_1, but also the stationarity of subsets of ω_1. Indeed, this is the least requirement for a similar principle:

Definition ([Foreman et al., 1988]) Martin’s Maximum (MM): if $(P, <)$ preserves the stationary subsets of ω_1, and if D is a collection of dense subsets of P with $|D| = \aleph_1$, then there exists a D-generic filter of P. Clearly, MM implies PFA.
A proper forcing preserves not only ω_1, but also the stationarity of subsets of ω_1. Indeed, this is the least requirement for a similar principle:

Definition ([Foreman et al., 1988])

Martin’s Maximum (MM): if (P, \prec) preserves the stationary subsets of ω_1, and if D is a collection of dense subsets of P with $|D| = \aleph_1$, then there exists a D-generic filter of P.

Clearly, MM implies PFA.
A proper forcing preserves not only ω_1, but also the stationarity of subsets of ω_1. Indeed, this is the least requirement for a similar principle:

Definition ([Foreman et al., 1988])

Martin’s Maximum (MM): if $(\mathbb{P}, <)$ preserves the stationary subsets of ω_1, and if \mathcal{D} is a collection of dense subsets of \mathbb{P} with $|\mathcal{D}| = \mathfrak{N}_1$, then there exists a \mathcal{D}-generic filter of \mathbb{P}.

Clearly, MM implies PFA.
1 Martin’s Axiom
 - Formulation
 - Applications on Cardinal Invariants

2 Forcing Axioms
 - PFA and MM
 - Applications
 - Variations
Applications: Cardinal arithmetic

Theorem ([Martin and Solovay, 1970])

MA implies that \(c \) is regular, and \(\forall \kappa < c, 2^\kappa = c \).
Applications: Cardinal arithmetic

Theorem ([Martin and Solovay, 1970])

MA implies that c is regular, and $\forall \kappa < c, 2^\kappa = c$.

Theorem ([Todorčević, 1989], [Veličković, 1992])

PFA implies that $c = \aleph_2$.
Forcing Axioms and Their Applications

Applications: Cardinal arithmetic

Theorem ([Martin and Solovay, 1970])

MA implies that \mathfrak{c} is regular, and $\forall \kappa < \mathfrak{c}, 2^\kappa = \mathfrak{c}$.

Theorem ([Todorčević, 1989], [Veličković, 1992])

PFA implies that $\mathfrak{c} = \aleph_2$.

So PFA implies MA.
Applications: Cardinal arithmetic

Theorem ([Martin and Solovay, 1970])

MA implies that \mathfrak{c} is regular, and $\forall \kappa < \mathfrak{c}, 2^\kappa = \mathfrak{c}$.

Theorem ([Todorčević, 1989], [Veličković, 1992])

PFA implies that $\mathfrak{c} = \aleph_2$.

Theorem ([Viale, 2006])

PFA proves the singular cardinal hypothesis.

Namely: for every singular strong limit cardinal κ, $2^\kappa = \kappa^+$.
Theorem ([Martin and Solovay, 1970])

Assume MA, then \(\text{add}(\mathcal{L}) = \aleph_1 \).

Namely, the union of \(< \aleph_1 \) many Lebesgue measure zero sets has Lebesgue measure zero.
Applications: Continuum and linear orders

Theorem ([Martin and Solovay, 1970])
Assume MA, then \(\text{add}(\mathcal{L}) = \mathfrak{c} \).

Theorem ([Baumgartner, 1984])
Assume PFA, then all \(\aleph_1 \)-dense sets of reals are order isomorphic.

\(X \subseteq \mathbb{R} \) is \(\aleph_1 \)-dense, if \(\forall x < y \), there are exactly \(\aleph_1 \) many reals of \(X \) lie in the interval \((x, y) \).
Applications: Continuum and linear orders

Theorem ([Martin and Solovay, 1970])
Assume MA, then $\text{add}(\mathcal{L}) = \mathfrak{c}$.

Theorem ([Baumgartner, 1984])
Assume PFA, then all \mathfrak{c}_1-dense sets of reals are order isomorphic.

Theorem ([Moore, 2006])
Assume PFA, then there is a five elements basis for uncountable linear orders.

Any \mathfrak{c}_1-dense $X \subseteq \mathbb{R}$, (ω_1, ϵ), (ω_1, ϖ), a Countryman line C and its reverse C^*.
Applications: Trees

Theorem ([Baumgartner et al., 1970])
Assume MA$_{\aleph_1}$, then every Aronszajn tree is special.

An Aronszajn tree T is an ω_1-tree with only countable chains and levels. T is special, if there is an order preserving mapping from T into the rationals.
Applications: Trees

Theorem ([Baumgartner et al., 1970])

Assume MA_{\aleph_1}, then every Aronszajn tree is special.

Theorem ([Abraham and Shelah, 1985])

Assume PFA, then all \aleph_1-Aronszajn trees are club isomorphic.

T and T' are club isomorphic, if there is a closed and unbounded $C \subseteq \omega_1$, such that $T \upharpoonright C = T' \upharpoonright C$.
Forcing Axioms and Their Applications

Applications: Higher structures

Theorem ([Todorčević, 1984])

Assume PFA, then for every uncountable cardinal κ, \square_κ fails.

\square_κ: there is a sequence $\langle C_\alpha : \alpha \in \text{Lim}(\kappa^+) \rangle$, $\kappa < \alpha < \kappa^+$, with each C_α a club of α, $\text{otp}(C_\alpha) \leq \kappa$ for $\text{cf}(\alpha) < \kappa$, and $C_\alpha = C_\beta \cap \alpha$ for $\alpha \in \text{Lim}(C_\beta)$.
Theorem ([Todorčević, 1984])

Assume PFA, then for every uncountable cardinal κ, \square_κ fails.

Theorem ([Foreman et al., 1988])

Assume MM, then the nonstationary ideal on ω_1 is \mathfrak{S}_2-saturated.

Namely, the boolean algebra $\mathcal{P}(\omega_1) / I$ has \mathfrak{S}_2-c.c.
Applications: Popular principles

Theorem ([Todorčević, 1989])

Assume PFA, then the open coloring axiom (OCA) holds.

Theorem ([Abraham and Todorčević, 1997], [Todorčević, 2000])

Assume PFA, then the P-ideal dichotomy (PID) holds.
Applications: Popular principles

<table>
<thead>
<tr>
<th>Theorem ([Todorčević, 1989])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume PFA, then the open coloring axiom (OCA) holds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem ([Abraham and Todorčević, 1997], [Todorčević, 2000])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume PFA, then the P-ideal dichotomy (PID) holds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem ([Moore, 2005])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume PFA, then the mapping reflection principle (MRP) holds.</td>
</tr>
</tbody>
</table>
1. **Martin’s Axiom**
 - Formulation
 - Applications on Cardinal Invariants

2. **Forcing Axioms**
 - PFA and MM
 - Applications
 - Variations
Forcing axioms in general

Definition

If Γ is a class of partial orders, κ is a cardinal:

- $\text{FA}_\kappa(\Gamma)$: For every $P \in \Gamma$, and if D is a collection of dense subsets of P with $|D| \leq \kappa$, then there exists a D-generic filter of P.

- $\text{FA}_{<\kappa}(\Gamma)$: For every $P \in \Gamma$, and if D is a collection of dense subsets of P with $|D| < \kappa$, then there exists a D-generic filter of P.

Fact MA_κ is $\text{FA}_\kappa(\text{c.c.c.})$; PFA is FA_{\aleph_1} (proper); MM is FA_{\aleph_1} (stationary subsets of ω_1 preserving).
Forcing axioms in general

Definition

If Γ is a class of partial orders, κ is a cardinal:

- $\text{FA}_\kappa(\Gamma)$: For every $P \in \Gamma$, and if D is a collection of dense subsets of P with $|D| \leq \kappa$, then there exists a D-generic filter of P.

- $\text{FA}_{<\mathfrak{c}}(\Gamma)$: For every $P \in \Gamma$, and if D is a collection of dense subsets of P with $|D| < \mathfrak{c}$, then there exists a D-generic filter of P.

Fact

- MA_κ is $\text{FA}_\kappa(\text{c.c.c.})$;
- PFA is FA_{\aleph_1} (proper);
- MM is FA_{\aleph_1} (stationary subsets of ω_1 preserving).
Variations of MA (when $\kappa < \mathfrak{c}$)

\[\text{MA} \xrightarrow{} \text{MA}_\kappa \]

\[\text{FA}_{< \mathfrak{c}}(\text{Knaster's condition}) \xrightarrow{} \text{FA}_\kappa(\text{Knaster's condition}) \]

\[\text{FA}_{< \mathfrak{c}}(\sigma - \text{linked}) \xrightarrow{} \text{FA}_\kappa(\sigma - \text{linked}) \]

\[\text{FA}_{< \mathfrak{c}}(\sigma - \text{centered}) \xrightarrow{} \text{FA}_\kappa(\sigma - \text{centered}) \]
Bounded forcing axioms

- BFA$_\kappa(\Gamma)$: For every $P \in \Gamma$, and if \mathcal{D} is a collection of dense subsets of P such that $|\mathcal{D}| \leq \kappa$ and for each $D \in \mathcal{D}$, $|D| \leq \kappa$, then there exists a \mathcal{D}-generic filter of P.
Bounded forcing axioms

- \(\text{BFA}_\kappa(\Gamma) \): For every \(\mathbb{P} \in \Gamma \), and if \(\mathcal{D} \) is a collection of dense subsets of \(\mathbb{P} \) such that \(|\mathcal{D}| \leq \kappa \) and for each \(D \in \mathcal{D} \), \(|D| \leq \kappa \), then there exists a \(\mathcal{D} \)-generic filter of \(\mathbb{P} \).

- \(\text{FA}_{\kappa,\lambda}(\Gamma) \): For every \(\mathbb{P} \in \Gamma \), and if \(\mathcal{D} \) is a collection of dense subsets of \(\mathbb{P} \) such that \(|\mathcal{D}| \leq \kappa \) and for each \(D \in \mathcal{D} \), \(|D| \leq \lambda \), then there exists a \(\mathcal{D} \)-generic filter of \(\mathbb{P} \).
Forcing Axioms and Their Applications

- Forcing Axioms
 - Variations

Bounded forcing axioms

- **BFA\(_\kappa(\Gamma)\):** For every \(\mathbb{P} \in \Gamma\), and if \(\mathcal{D}\) is a collection of dense subsets of \(\mathbb{P}\) such that \(|\mathcal{D}| \leq \kappa\) and for each \(D \in \mathcal{D}\), \(|D| \leq \kappa\), then there exists a \(\mathcal{D}\)-generic filter of \(\mathbb{P}\).

- **FA\(_{\kappa,\lambda}(\Gamma)\):** For every \(\mathbb{P} \in \Gamma\), and if \(\mathcal{D}\) is a collection of dense subsets of \(\mathbb{P}\) such that \(|\mathcal{D}| \leq \kappa\) and for each \(D \in \mathcal{D}\), \(|D| \leq \lambda\), then there exists a \(\mathcal{D}\)-generic filter of \(\mathbb{P}\).

- **BFA\(_{\kappa}(\Gamma)\) is FA\(_{\kappa,\kappa}(\Gamma)\).**
Bounded forcing axioms

- $\text{BFA}_\kappa(c.c.c.)$ is equivalent to MA_κ;
Bounded forcing axioms

- $\text{BFA}_\kappa(c.c.c.)$ is equivalent to MA_κ;
- $\text{BFA}_{\aleph_1}(\text{proper})$ is BPFA [Goldstern and Shelah, 1995];
Bounded forcing axioms

- $\text{BFA}_\kappa (\text{c.c.c.})$ is equivalent to MA_κ;
- $\text{BFA}_{\aleph_1} (\text{proper})$ is BPFA [Goldstern and Shelah, 1995];
 BPFA is consistently weaker than PFA;
Bounded forcing axioms

- $\text{BFA}_\kappa(\text{c.c.c.})$ is equivalent to MA_κ;
- $\text{BFA}_{\aleph_1}(\text{proper})$ is BPFA [Goldstern and Shelah, 1995]; BPFA is consistently weaker than PFA;
- BMM is $\text{BFA}_{\aleph_1}(\text{stationary subsets of } \omega_1 \text{ preserving})$.
Bounded forcing axioms

- $\text{BFA}_\kappa(\text{c.c.c.})$ is equivalent to MA_κ;
- $\text{BFA}_{\aleph_1}(\text{proper})$ is BPFA [Goldstern and Shelah, 1995]; BPFA is consistently weaker than PFA;
- BMM is BFA_{\aleph_1} (stationary subsets of ω_1 preserving).

Theorem ([Bagaria, 2000])

The following are equivalent:

- $\text{BFA}_\kappa(\mathcal{P})$
- $(\mathcal{P}(\kappa), \in) <_{\Sigma_1} (\mathcal{V}^\mathcal{P}, \in)$
- $(H_{\kappa^+}, \in) <_{\Sigma_1} (\mathcal{V}^\mathcal{P}, \in)$
Other variations of PFA

- semiproper (Shelah): SPFA, equivalent to MM;
Other variations of PFA

- semiproper (Shelah): SPFA, equivalent to MM;
- α-proper (Shelah): $< \omega_1$ – PFA;
Other variations of PFA

- semiproper (Shelah): SPFA, equivalent to MM;
- α-proper (Shelah): $< \omega_1$ – PFA;
- preserving a coherent Suslin tree (Todorčević): PFA(S);
Other variations of PFA

- semiproper (Shelah): SPFA, equivalent to MM;
- α-proper (Shelah): $< \omega_1$ – PFA;
- preserving a coherent Suslin tree (Todorčević): PFA(S);
- distributive and proper (Magidor): DPFA;
Other variations of PFA

- semiproper (Shelah): SPFA, equivalent to MM;
- α-proper (Shelah): $< \omega_1$ – PFA;
- preserving a coherent Suslin tree (Todorčević): PFA(S);
- distributive and proper (Magidor): DPFA;
 The property of “no new reals” is not preserved by countable support iteration;
Other variations of PFA

- semiproper (Shelah): SPFA, equivalent to MM;
- α-proper (Shelah): $< \omega_1$ – PFA;
- preserving a coherent Suslin tree (Todorčević): PFA(S);
- distributive and proper (Magidor): DPFA;
- wPFA ([Bagaria et al., 2017]).
A comparison of variations of PFA:

<table>
<thead>
<tr>
<th></th>
<th>imply</th>
<th>not imply</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPFA</td>
<td>MA_{ω_1}, $c = \aleph_2$</td>
<td>OCA, MRP, PID</td>
</tr>
<tr>
<td>PFA(S)</td>
<td>OCA, $c = \aleph_2$, $\neg \square_k$</td>
<td>SH, PID</td>
</tr>
<tr>
<td>$< \omega_1 - \text{PFA}$</td>
<td>OCA, PID, $c = \aleph_2$</td>
<td>$\neg \text{CG}(\omega_1)$</td>
</tr>
<tr>
<td>DPFA</td>
<td>PID, MRP</td>
<td>OCA, MA_{ω_1}</td>
</tr>
</tbody>
</table>
Subcomplete forcing axiom

- Subcomplete forcings [Jensen, 2009], [Jensen, 2014] do not add reals, preserve stationarity of subsets of ω_1, are closed under revised countable support iteration, but may change cofinality to ω.
Subcomplete forcing axiom

- Subcomplete forcings [Jensen, 2009], [Jensen, 2014] do not add reals, preserve stationarity of subsets of ω_1, are closed under revised countable support iteration, but may change cofinality to ω.

- Examples: countably closed forcing, Namba forcing (under CH), Prikry forcing, etc.
Subcomplete forcing axiom

SCFA is $\text{FA}_{\omega_1}(\text{subcomplete})$; [Jensen, 2009], [Jensen, 2014]
SCFA is $\text{FA}_{\aleph_1} (\text{subcomplete})$; [Jensen, 2009], [Jensen, 2014]

- MM implies SCFA;
- SCFA implies the SCH and $\neg \Box \kappa$, for $\kappa \geq \omega_1$;
Subcomplete forcing axiom

SCFA is $\text{FA}_{\aleph_1} (\text{subcomplete})$; [Jensen, 2009], [Jensen, 2014]

- MM implies SCFA;
- SCFA implies the SCH and $\neg \square_\kappa$, for $\kappa \geq \omega_1$;
- SCFA is consistent with CH, or even \Diamond.
Large cardinal strength (to be updated)

<table>
<thead>
<tr>
<th></th>
<th>an upper bound</th>
<th>a lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>(\omega)</td>
<td>(\omega)</td>
</tr>
<tr>
<td>PFA</td>
<td>supercompact</td>
<td>(\omega) many Woodins</td>
</tr>
<tr>
<td>MM</td>
<td>supercompact</td>
<td>(\omega) many Woodins</td>
</tr>
<tr>
<td>BPFA</td>
<td>(\Sigma_1)-reflecting</td>
<td>(\Sigma_1)-reflecting</td>
</tr>
<tr>
<td>BMM</td>
<td>(\omega + 1) many Woodins</td>
<td>(\forall X, X#) exists</td>
</tr>
<tr>
<td>(\omega_1 - \text{PFA})</td>
<td>supercompact</td>
<td>(\omega) many Woodins</td>
</tr>
<tr>
<td>DPFA</td>
<td>supercompact</td>
<td>(\omega) many Woodins</td>
</tr>
<tr>
<td>PFA(S)</td>
<td>supercompact</td>
<td>(\omega) many Woodins</td>
</tr>
<tr>
<td>wPFA</td>
<td>remarkable</td>
<td>remarkable</td>
</tr>
<tr>
<td>SCFA</td>
<td>supercompact</td>
<td>(\omega) many Woodins</td>
</tr>
</tbody>
</table>
Connections

\[
\begin{align*}
\text{MM} & \rightarrow \text{BMM} & \rightarrow \text{BPFA} & \rightarrow c = \aleph_2 \land \text{MA}_{\aleph_1} & \rightarrow \text{MA} \\
\text{SPFA} & \rightarrow \text{PFA} & \rightarrow < \omega_1 - \text{PFA} & \rightarrow \text{PID} & \rightarrow \text{SCH} \\
\text{SCFA} & \rightarrow \text{PFA}(S) & \rightarrow \text{DPFA} & \rightarrow \text{MRP} & \rightarrow \neg \Box_\kappa \\
\text{wPFA} & & & & \\
\text{OCA} & & & & \\
\text{SH} & & & & \\
\end{align*}
\]

References II

Iterated forcing.

Applications of the proper forcing axiom.

Martin’s maximum, saturated ideals, and non-regular ultrafilters. part i.
Annals of Mathematics, pages 1–47.

The bounded proper forcing axiom.

Subcomplete forcing and -forcing.

Forcing axioms compatible with ch. handwritten notes.
References III

References IV

Thanks for attention!