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Introduction

P: a finite set of propositions;

p ∈ P;

ϕ: the original formula;

ψ: a uniform interpolant of ϕ on p̄ (P \ p) satisfies the
following properties:

ψ uses var(ϕ) without p;

ϕ |= ψ;

For any query η which does not contain p, ϕ |= η iff ψ |= η.

How to compute ψ?
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A brute-force approach to propositional logic

1 Transform ϕ into an equivalent principal DNF ψ
(a disjunction of full terms using propositions occurred in ϕ);

2 Obtain ψp by eliminating any occurrence of p or ¬p, or
replacing any occurrence of p or ¬p with > in ψ.

Example
ϕ = p ∧ q ∨ ¬p ∧ ¬r;

ψ = (p∧ q∧ r)∨ (p∧ q∧¬r)∨ (¬p∧ q∧¬r)∨ (¬p∧¬q∧¬r);

ψp = (q ∧ r) ∨ (q ∧ ¬r) ∨ (¬q ∧ ¬r).

How about multi-agent modal logics?

Modal logic: propositional logic + Ki operators;

Kiϕ: agent i knows ϕ.
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Modal language: LK
C

Definition (Syntax of LK
C)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Cϕ,

where p ∈ P, i ∈ A, and ϕ ∈ LKC .

Definition (Two sublanguages)

1 LKn : LKC without C operator;

2 LKPC: LKC with propositional common knowledge, i.e., any ϕ
appearing in Cϕ must be propositional.
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Kripke models

Definition (Kripke models)

A Kripke model is a tuple 〈S,R, V 〉 where

S: a non-empty set of states,

R: for each i ∈ A, Ri ⊆ S × S is a relation on states.

V : S → 2P is a function assigning to each proposition in a
subset of states.

A pair (M, s) is called a pointed model.

Logic systems Restrictions on R

K no restrictions
D Seriality
T Reflexivity

K45 Transitivity + Euclidean
KD45 Seriality + Transitivity + Euclidean

S5 Reflexivity + Euclidean
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Cover modalites

Definition (Cover modalities)

1 ∇iΦ = Ki(
∨
ϕ∈Φ ϕ) ∧

∧
ϕ∈Φ K̂iϕ;

2 ∇Φ = C(
∨
ϕ∈Φ ϕ) ∧

∧
ϕ∈Φ Ĉϕ.

We can use ∇i (resp. ∇) modality instead of Ki (resp. C)
modality.
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Canonical formulas

Definition (Canonical formulas)

Let P ⊆ P be finite. We inductively define the set EPk as follows:

EP0 = {
∧
p∈X p ∧

∧
p∈P\X ¬p | X ⊆ P};

EPk+1 = {δ0 ∧
∧
i∈A∇iΦi | δ0 ∈ EP0 and Φi ⊆ EPk }.

δk ∈ Ek: completely characterizes a Kripke model up to depth k
a full terms in modal logics.

Proposition

Any formula in LKn can be equivalently transformed into a
disjunction of satisfiable canonical formulas.
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Canonical formulas

Figure: Kripke model

1 p ∧ q;

2 p ∧ q ∧∇i{p ∧ ¬q,¬p ∧ q};
3 p ∧ q∧
∇i{p ∧ ¬q ∧∇i{p ∧ q, p ∧ ¬q}∧
¬p ∧ q∧∇i{¬p ∧ q,¬p ∧ ¬q}}
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Computation of uniform interpolants

1 Transform ϕ to a disjunction of satisfiable canonical formulas∨
δ∈Φ δ;

2 Obtain δp by eliminating any occurrence of p or ¬p, or
replacing any occurrence of p or ¬p with > in δ;

3
∨
δ∈Φ δ

p is a uniform interpolation of ϕ on p̄.

Example

ϕ = K̂ip ∧ K̂i¬p;

ϕ ≡ δ1 ∨ δ2;

δ1 = p ∧∇i{p,¬p};
δ2 = ¬p ∧∇i{p,¬p};
δp1 ∨ δ

p
2 ≡ > ∧∇i{>} ≡ K̂i>.

Liangda Fang, Yongmei Liu and Hans van Ditmarsch 12/ 19



Introduction Preliminaries Uniform interpolation Conclusions and future work

Computation of uniform interpolants

1 Transform ϕ to a disjunction of satisfiable canonical formulas∨
δ∈Φ δ;

2 Obtain δp by eliminating any occurrence of p or ¬p, or
replacing any occurrence of p or ¬p with > in δ;

3
∨
δ∈Φ δ

p is a uniform interpolation of ϕ on p̄.

Example

ϕ = K̂ip ∧ K̂i¬p;

ϕ ≡ δ1 ∨ δ2;

δ1 = p ∧∇i{p,¬p};
δ2 = ¬p ∧∇i{p,¬p};
δp1 ∨ δ

p
2 ≡ > ∧∇i{>} ≡ K̂i>.

Liangda Fang, Yongmei Liu and Hans van Ditmarsch 12/ 19



Introduction Preliminaries Uniform interpolation Conclusions and future work

Main theorem

Theorem

Let L be Kn, Dn, Tn, K45n, KD45n or S5n.
Let δ be a pc-canonical formula satisfiable in L.
Then, δp is a uniform interpolant of δ on p̄.

Definition (Uniform interpolation)

A logic L has uniform interpolation: for any L-formula ϕ and any
proposition p, there exists an L-formula ψ which is a uniform
interpolant of ϕ on p̄.

Corollary

Kn, Dn, Tn, K45n, KD45n and S5n have uniform interpolation.
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Common knowledge case

Negative result: KC does not have uniform interpolation.
[Studer, 2009]

We consider the propositional common knowledge case, i.e.,
LKPC where any ϕ appearing in Cϕ must be propositional.
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Pc-canonical formulas

Definition (Pc-canonical formulas)

Let P ⊆ P be finite. We inductively define the set CPk as follows:

CP0 = {θ ∧∇ΦA | θ ∈ EP0 and ΦA ⊆ EP0 };
CPk+1 = {θ ∧ (

∧
i∈A∇iΦi) ∧∇ΦA | θ ∈ EP0 , Φi ⊆

CPk and ΦA ⊆ EP0 }.

Proposition

Any formula in LKPC can be equivalently transformed into a
disjunction of satisfiable pc-canonical formulas.

Liangda Fang, Yongmei Liu and Hans van Ditmarsch 15/ 19



Introduction Preliminaries Uniform interpolation Conclusions and future work

Pc-canonical formulas

Definition (Pc-canonical formulas)

Let P ⊆ P be finite. We inductively define the set CPk as follows:

CP0 = {θ ∧∇ΦA | θ ∈ EP0 and ΦA ⊆ EP0 };
CPk+1 = {θ ∧ (

∧
i∈A∇iΦi) ∧∇ΦA | θ ∈ EP0 , Φi ⊆

CPk and ΦA ⊆ EP0 }.

Proposition

Any formula in LKPC can be equivalently transformed into a
disjunction of satisfiable pc-canonical formulas.

Liangda Fang, Yongmei Liu and Hans van Ditmarsch 15/ 19



Introduction Preliminaries Uniform interpolation Conclusions and future work

Main theorem 2

Theorem

Let L be KC, DC, TC, K45C, KD45C or S5C.
Let δ be a pc-canonical formula satisfiable in L.
Then, δp is a uniform interpolant of δ on p̄.

Corollary

KPC, DPC, TPC, K45PC, KD45PC and S5PC have uniform
interpolation.
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Conclusions

Prove that Kn, Dn, Tn, K45n, KD45n and S5n have uniform
interpolation.

Extend the above results to propositional common knowledge
case.
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Future work

A practical approach for computing uniform interpolant;

More general cases of common knowledge;

Distributed knowledge;

Progression and diagnose in multi-agent settings.
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Thank you!
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