Uniform Interpolantion in Multi-Agent Modal Logics

Liangda Fang, Yongmei Liu and Hans van Ditmarsch

Dept. of Computer Science Jinan University

May 21, 2016

Accepted at the IJCAI-2016

Introduction	Preliminaries	Uniform interpolation	Conclusions and future work
Introduction			

- \mathcal{P} : a finite set of propositions;
- $p \in \mathcal{P}$;
- φ : the original formula;
- ψ : a uniform interpolant of φ on \bar{p} ($\mathcal{P} \setminus p$) satisfies the following properties:
 - ψ uses $var(\varphi)$ without p;
 - $\varphi \models \psi$;
 - For any query η which does not contain $p,\,\varphi\models\eta$ iff $\psi\models\eta.$

How to compute ψ ?

Introduction

A brute-force approach to propositional logic

- Transform φ into an equivalent principal DNF ψ (a disjunction of full terms using propositions occurred in φ);
- Obtain ψ^p by eliminating any occurrence of p or ¬p, or replacing any occurrence of p or ¬p with ⊤ in ψ.

個 ト く ヨ ト く ヨ ト

Introduction

A brute-force approach to propositional logic

- Transform φ into an equivalent principal DNF ψ

 (a disjunction of full terms using propositions occurred in φ);
- Obtain ψ^p by eliminating any occurrence of p or ¬p, or replacing any occurrence of p or ¬p with ⊤ in ψ.

Example

•
$$\varphi = p \wedge q \vee \neg p \wedge \neg r;$$

•
$$\psi = (p \wedge q \wedge r) \vee (p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge \neg r);$$

•
$$\psi^p = (q \wedge r) \lor (q \wedge \neg r) \lor (\neg q \wedge \neg r).$$

- 4 昂 ト 4 臣 ト 4 臣 ト

Introduction

A brute-force approach to propositional logic

- Transform φ into an equivalent principal DNF ψ

 (a disjunction of full terms using propositions occurred in φ);
- Obtain ψ^p by eliminating any occurrence of p or ¬p, or replacing any occurrence of p or ¬p with ⊤ in ψ.

Example

•
$$\varphi = p \wedge q \vee \neg p \wedge \neg r;$$

•
$$\psi = (\mathbf{p} \land q \land r) \lor (\mathbf{p} \land q \land \neg r) \lor (\neg \mathbf{p} \land q \land \neg r) \lor (\neg \mathbf{p} \land q \land \neg r);$$

•
$$\psi^p = (q \wedge r) \lor (q \wedge \neg r) \lor (\neg q \wedge \neg r).$$

How about multi-agent modal logics?

- Modal logic: propositional logic + \mathbf{K}_i operators;
- $\mathbf{K}_i \varphi$: agent *i* knows φ .

<ロ> (四) (四) (日) (日) (日)

Outline

3 Uniform interpolation

⊸ ≣ ≯

Outline

- 3 Uniform interpolation
- ④ Conclusions and future work

□ > 《 E > 《 E >

Modal language: $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$

Definition (Syntax of $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K}_i \varphi \mid \mathbf{C} \varphi,$$

where $p \in \mathcal{P}$, $i \in \mathcal{A}$, and $\varphi \in \mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$.

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Modal language: $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$

Definition (Syntax of $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K}_i \varphi \mid \mathbf{C} \varphi,$$

where $p \in \mathcal{P}$, $i \in \mathcal{A}$, and $\varphi \in \mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$.

Definition (Two sublanguages)

- $\mathcal{L}_n^{\mathbf{K}}$: $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$ without \mathbf{C} operator;
- **2** $\mathcal{L}_{\mathbf{PC}}^{\mathbf{K}}$: $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$ with propositional common knowledge, *i.e.*, any φ appearing in $\mathbf{C}\varphi$ must be propositional.

イロト イヨト イヨト イヨト

11	ntroduction	Preliminaries	Uniform Interpolation	Conclusions and future work
Kr	ipke models	5		
	Definition (Kripke mode	ls)	
	A Kripke model is a tuple $\langle S,R,V angle$ where			
	• S: a nor	n-empty set o	f states,	

- R: for each $i \in \mathcal{A}$, $R_i \subseteq S \times S$ is a relation on states.
- $V\colon\,S\to 2^{\mathcal{P}}$ is a function assigning to each proposition in a subset of states.
- A pair (M, s) is called a pointed model.

Introduction	Preliminaries	Uniform interpolation	Conclusions and future work
Kripke mo	dels		
Definitio			
A 17 1			

- A Kripke model is a tuple ⟨S, R, V⟩ where
 S: a non-empty set of states,
 - R: for each $i \in A$, $R_i \subseteq S \times S$ is a relation on states.
 - $V\colon\,S\to 2^{\mathcal{P}}$ is a function assigning to each proposition in a subset of states.
- A pair $\left(M,s\right)$ is called a pointed model.

Logic systems	Restrictions on R	
K	no restrictions	
D	Seriality	
Т	Reflexivity	
K45	Transitivity + Euclidean	
KD45	KD45 Seriality + Transitivity + Euclidean	
S5	Reflexivity + Euclidean	

Cover modalites

Definition (Cover modalities)

$$\mathbf{2} \ \nabla \Phi = \mathbf{C}(\bigvee_{\varphi \in \Phi} \varphi) \land \bigwedge_{\varphi \in \Phi} \hat{\mathbf{C}} \varphi.$$

We can use ∇_i (resp. ∇) modality instead of \mathbf{K}_i (resp. C) modality.

- 4 回 2 - 4 □ 2 - 4 □

Canonical formulas

Definition (Canonical formulas)

Let $P \subseteq \mathcal{P}$ be finite. We inductively define the set E_k^P as follows: • $E_0^P = \{ \bigwedge_{p \in \mathcal{X}} p \land \bigwedge_{p \in P \setminus \mathcal{X}} \neg p \mid \mathcal{X} \subseteq P \};$ • $E_{k+1}^P = \{ \delta_0 \land \bigwedge_{i \in \mathcal{A}} \nabla_i \Phi_i \mid \delta_0 \in E_0^P \text{ and } \Phi_i \subseteq E_k^P \}.$ $\delta_k \in E_k:$ completely characterizes a Kripke model up to depth ka full terms in modal logics.

- 4 回 🕨 - 4 注 🕨 - 4 注 🕨

Canonical formulas

Definition (Canonical formulas)

Let $P \subseteq \mathcal{P}$ be finite. We inductively define the set E_k^P as follows: • $E_0^P = \{ \bigwedge_{p \in \mathcal{X}} p \land \bigwedge_{p \in P \setminus \mathcal{X}} \neg p \mid \mathcal{X} \subseteq P \};$

•
$$E_{k+1}^P = \{\delta_0 \land \bigwedge_{i \in \mathcal{A}} \nabla_i \Phi_i \mid \delta_0 \in E_0^P \text{ and } \Phi_i \subseteq E_k^P\}.$$

 $\delta_k \in E_k: \text{ completely characterizes a Kripke model up to depth } k$ a full terms in modal logics.

Proposition

Any formula in $\mathcal{L}_n^{\mathbf{K}}$ can be equivalently transformed into a disjunction of satisfiable canonical formulas.

イロト イヨト イヨト イヨト

Canonical formulas

Figure: Kripke model

Outline

2 Preliminaries

- 3 Uniform interpolation
- ④ Conclusions and future work

·≣ ► < ≡ ►

₫ ▶

Computation of uniform interpolants

- Obtain δ^p by eliminating any occurrence of p or ¬p, or replacing any occurrence of p or ¬p with ⊤ in δ;

Computation of uniform interpolants

- Obtain δ^p by eliminating any occurrence of p or ¬p, or replacing any occurrence of p or ¬p with ⊤ in δ;
- $\ \, { \bigcirc } \ \, \bigvee_{\delta\in\Phi} \delta^p \ \, \text{is a uniform interpolation of } \varphi \ \, \text{on } \bar p.$

Example

• $\varphi = \hat{\mathbf{K}}_i p \wedge \hat{\mathbf{K}}_i \neg p;$ • $\varphi \equiv \delta_1 \vee \delta_2;$ • $\delta_1 = p \wedge \nabla_i \{p, \neg p\};$ • $\delta_2 = \neg p \wedge \nabla_i \{p, \neg p\};$ • $\delta_1^p \vee \delta_2^p \equiv \top \wedge \nabla_i \{\top\} \equiv \hat{\mathbf{K}}_i \top.$

Theorem

Let L be K_n, D_n, T_n, K45_n, KD45_n or S5_n. Let δ be a pc-canonical formula satisfiable in L. Then, δ^p is a uniform interpolant of δ on \bar{p} .

Liangda Fang, Yongmei Liu and Hans van Ditmarsch

d⊒ ▶ < ≣

Theorem

Let L be K_n , D_n , T_n , $K45_n$, $KD45_n$ or $S5_n$. Let δ be a pc-canonical formula satisfiable in L. Then, δ^p is a uniform interpolant of δ on \bar{p} .

Definition (Uniform interpolation)

A logic L has uniform interpolation: for any L-formula φ and any proposition p, there exists an L-formula ψ which is a uniform interpolant of φ on \bar{p} .

Theorem

Let L be K_n, D_n, T_n, K45_n, KD45_n or S5_n. Let δ be a pc-canonical formula satisfiable in L. Then, δ^p is a uniform interpolant of δ on \bar{p} .

Definition (Uniform interpolation)

A logic L has uniform interpolation: for any L-formula φ and any proposition p, there exists an L-formula ψ which is a uniform interpolant of φ on \bar{p} .

Corollary

 K_n , D_n , T_n , $K45_n$, $KD45_n$ and $S5_n$ have uniform interpolation.

Common knowledge case

- Negative result: KC does not have uniform interpolation. [Studer, 2009]
- We consider the propositional common knowledge case, *i.e.*, $\mathcal{L}_{\mathbf{PC}}^{\mathbf{K}}$ where any φ appearing in $\mathbf{C}\varphi$ must be propositional.

Pc-canonical formulas

Definition (Pc-canonical formulas)

Let $P \subseteq \mathcal{P}$ be finite. We inductively define the set C_k^P as follows:

•
$$C_0^P = \{\theta \land \nabla \Phi_{\mathcal{A}} \mid \theta \in E_0^P \text{ and } \Phi_{\mathcal{A}} \subseteq E_0^P\};$$

•
$$C_{k+1}^P = \{\theta \land (\bigwedge_{i \in \mathcal{A}} \nabla_i \Phi_i) \land \nabla \Phi_{\mathcal{A}} \mid \theta \in E_0^P, \Phi_i \subseteq C_k^P \text{ and } \Phi_{\mathcal{A}} \subseteq E_0^P \}.$$

⊡ ▶ < ≣ ▶

_ ∢ ≣ →

Pc-canonical formulas

Definition (Pc-canonical formulas)

Let $P \subseteq \mathcal{P}$ be finite. We inductively define the set C_k^P as follows:

•
$$C_0^P = \{\theta \land \nabla \Phi_{\mathcal{A}} \mid \theta \in E_0^P \text{ and } \Phi_{\mathcal{A}} \subseteq E_0^P\};$$

•
$$C_{k+1}^P = \{\theta \land (\bigwedge_{i \in \mathcal{A}} \nabla_i \Phi_i) \land \nabla \Phi_{\mathcal{A}} \mid \theta \in E_0^P, \Phi_i \subseteq C_k^P \text{ and } \Phi_{\mathcal{A}} \subseteq E_0^P \}.$$

Proposition

Any formula in \mathcal{L}_{PC}^{K} can be equivalently transformed into a disjunction of satisfiable pc-canonical formulas.

Theorem

Let L be KC, DC, TC, K45C, KD45C or S5C. Let δ be a pc-canonical formula satisfiable in L. Then, δ^p is a uniform interpolant of δ on \bar{p} .

Corollary

KPC, DPC, TPC, K45PC, KD45PC and S5PC have uniform interpolation.

Conclusions

- Prove that K_n, D_n, T_n, K45_n, KD45_n and S5_n have uniform interpolation.
- Extend the above results to propositional common knowledge case.

Liangda Fang, Yongmei Liu and Hans van Ditmarsch

Future work

- A practical approach for computing uniform interpolant;
- More general cases of common knowledge;
- Distributed knowledge;
- Progression and diagnose in multi-agent settings.

Thank you!

Liangda Fang, Yongmei Liu and Hans van Ditmarsch

□ ► < E ► < E ►</p>