### Equivalence relations and Borel reduction 2016 Chinese Mathematical Logic Conference Fudan University

### Longyun Ding

School of Mathematical Sciences Nankai University

22 May 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

#### Equivalence relations and invariants

Dichotomy theorems Orbit equivalence relations  $\Sigma_1^1$  equivalence relations

# Outline

### 1 Equivalence relations and invariants

- 2 Dichotomy theorems
- Orbit equivalence relations
- $\textcircled{4} \Sigma^1_1 \text{ equivalence relations}$

・ロン ・回 と ・ ヨ と ・ ヨ と …

# Classical examples (1)

#### Example

For  $A,B\in\mathbb{C}^{m\times n}$ , define  $A\sim B\iff A=TBS$ , where T,S are invertible matrices.

Let r(A) be rank of A. Then

$$A\sim B\iff r(A)=r(B).$$

#### Example

For  $A, B \in \mathbb{C}^{n \times n}$ , define  $A \approx B \iff A = TBT^{-1}$ , where T is an invertible matrix.

Let J(A) be the Jordan normal form of A. Then

 $A\approx B\iff J(A)=J(B).$ 

・ロン ・回 と ・ヨン ・ヨン

# Classical examples (1)

#### Example

For  $A,B\in\mathbb{C}^{m\times n}$ , define  $A\sim B\iff A=TBS$ , where T,S are invertible matrices.

Let r(A) be rank of A. Then

$$A\sim B\iff r(A)=r(B).$$

#### Example

For  $A, B \in \mathbb{C}^{n \times n}$ , define  $A \approx B \iff A = TBT^{-1}$ , where T is an invertible matrix.

Let J(A) be the Jordan normal form of A. Then

$$A\approx B\iff J(A)=J(B).$$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

# Classical examples (2)

#### Example

Every finitely generated abelian group  ${\cal G}$  is isomorphic to a direct sum

$$\mathbb{Z}^m \oplus \bigoplus_{i=0}^n \bigoplus_{j=0}^{e_i} \mathbb{Z}(p_i^j)^{t_{ij}}.$$

Let  $M(G) = (m, t_{ij})_{i \leq n, j \leq e_i}$ . Then

$$G \cong H \iff M(G) = M(H).$$

**Note:** r(A), J(A), M(G) are not continuous mappings.

Equivalence relations and invariants Dichotomy theorems

Orbit equivalence relations  $\Sigma_{\pm}^{1}$  equivalence relations

# Classical examples (3)

#### Example

For compact topological spaces X, denote C(X) the spaces of all continuous function  $X \to \mathbb{C}$  equipped with the sup norm.

#### Theorem (Gelfand-Naimark)

Let X, Y be compact Hausdorff spaces. Then X is homeomorphic to Y iff C(X) is isomorphic to C(Y) (as a C\*-algebra).

・ロン ・回 と ・ ヨン ・ ヨン

Equivalence relations and invariants Dichotomy theorems

Orbit equivalence relations  $\Sigma_{\pm}^{1}$  equivalence relations

# Classical examples (3)

#### Example

For compact topological spaces X, denote C(X) the spaces of all continuous function  $X \to \mathbb{C}$  equipped with the sup norm.

### Theorem (Gelfand-Naimark)

Let X, Y be compact Hausdorff spaces. Then X is homeomorphic to Y iff C(X) is isomorphic to C(Y) (as a C\*-algebra).

・ロン ・回 と ・ヨン ・ヨン

#### Equivalence relations and invariants

Dichotomy theorems Orbit equivalence relations  $\Sigma_1^1$  equivalence relations

# Reduction

### Definition

Let E,F be two equivalence relations on X,Y respectively,  $\theta:X\to Y$  is a reduction of E to F if

 $aEb \iff \theta(a)F\theta(b)$ 

for  $a, b \in X$ .

#### Fact

Let  $f: X/E \to X$  be a choice function, and let  $\theta(a) = f([a]_E)$ . Then  $\theta$  is a reduction of E to id(X).

Note: We need some restrictions on reduction mapping!

・ロン ・回 と ・ ヨ と ・ ヨ と …

#### Equivalence relations and invariants

Dichotomy theorems Orbit equivalence relations  $\Sigma_1^1$  equivalence relations

# Reduction

### Definition

Let E,F be two equivalence relations on X,Y respectively,  $\theta:X\to Y$  is a reduction of E to F if

 $aEb \iff \theta(a)F\theta(b)$ 

for  $a, b \in X$ .

#### Fact

Let  $f: X/E \to X$  be a choice function, and let  $\theta(a) = f([a]_E)$ . Then  $\theta$  is a reduction of E to id(X).

Note: We need some restrictions on reduction mapping!

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

## Polish spaces

#### Definition

**Polish space:** a separable, completely metrizable topological space.

#### Example

•  $\mathbb{C}^{m \times n}$ ;  $\mathbb{R}^n$ ; separable Banach spaces;

2 
$$\mathcal{C} = \{0, 1\}^{\mathbb{N}}; \mathcal{N} = \mathbb{N}^{\mathbb{N}}$$

 $\bigcirc$  For a countable abelian group G, note that

$$R_G = \{(a, b, c) : a = b + c\} \subseteq \mathbb{N}^3.$$

"Countable abelian groups" is a closed subset of  $\{0,1\}^{\mathbb{N}^3} \cong \mathcal{C}$ 

・ロン ・回 と ・ ヨン ・ ヨン

# Polish spaces

#### Definition

**Polish space:** a separable, completely metrizable topological space.

#### Example

- **1**  $\mathbb{C}^{m \times n}$ ;  $\mathbb{R}^n$ ; separable Banach spaces;
- $\mathbf{\mathcal{C}} = \{0,1\}^{\mathbb{N}}; \ \mathcal{N} = \mathbb{N}^{\mathbb{N}}$

**3** For a countable abelian group G, note that

$$R_G = \{(a, b, c) : a = b + c\} \subseteq \mathbb{N}^3.$$

"Countable abelian groups" is a closed subset of  $\{0,1\}^{\mathbb{N}^3} \cong \mathcal{C}$ .

・ロン ・回 と ・ ヨン ・ ヨン

э

# Polish spaces

#### Definition

**Polish space:** a separable, completely metrizable topological space.

#### Example

•  $\mathbb{C}^{m \times n}$ ;  $\mathbb{R}^n$ ; separable Banach spaces;

$$\mathbf{O} \ \mathcal{C} = \{0,1\}^{\mathbb{N}}; \ \mathcal{N} = \mathbb{N}^{\mathbb{N}};$$

**3** For a countable abelian group G, note that

$$R_G = \{(a, b, c) : a = b + c\} \subseteq \mathbb{N}^3.$$

"Countable abelian groups" is a closed subset of  $\{0,1\}^{\mathbb{N}^3} \cong \mathcal{C}$ .

・ロン ・回 と ・ ヨ と ・ ヨ と …

# Polish spaces

#### Definition

**Polish space:** a separable, completely metrizable topological space.

#### Example

•  $\mathbb{C}^{m \times n}$ ;  $\mathbb{R}^n$ ; separable Banach spaces;

$$\mathcal{C} = \{0,1\}^{\mathbb{N}}; \ \mathcal{N} = \mathbb{N}^{\mathbb{N}};$$

 $\odot$  For a countable abelian group G, note that

$$R_G = \{(a, b, c) : a = b + c\} \subseteq \mathbb{N}^3.$$

"Countable abelian groups" is a closed subset of  $\{0,1\}^{\mathbb{N}^3} \cong \mathcal{C}$ .

・ロン ・回 と ・ ヨ と ・ ヨ と …

 $\begin{array}{c} \mbox{Equivalence relations and invariants}\\ \mbox{Dichotomy theorems}\\ \mbox{Orbit equivalence relations}\\ \Sigma_1^1 \mbox{ equivalence relations} \end{array}$ 

## Borel sets, Borel functions and Borel reductions

### Definition

 $\mathbf{B}(X)$ : **Borel sets** of X is the  $\sigma$ -algebra generated by open sets.

 ${\bf B}(X)$  contains all open, closed,  $F_{\sigma},G_{\delta},G_{\delta\sigma},F_{\sigma\delta},$  etc., sets.

Let X, Y be two Polish spaces.

#### Definition

A function  $f: X \to Y$  is **Borel function** if  $f^{-1}(U)$  is Borel for U open in Y.

Let E, F be equivalence relations on X, Y respectively.  $E \leq_B F$ : There is a Borel reduction of E to F;  $E \sim_B F$ :  $E \leq_B F$  and  $F \leq_B E$ ;  $E <_B F$ :  $E \leq_B F$  but not  $F \leq_B E$ .  $\begin{array}{c} \mbox{Equivalence relations and invariants}\\ \mbox{Dichotomy theorems}\\ \mbox{Orbit equivalence relations}\\ \Sigma_1^1 \mbox{ equivalence relations} \end{array}$ 

### Borel sets, Borel functions and Borel reductions

### Definition

 $\mathbf{B}(X)$ : **Borel sets** of X is the  $\sigma$ -algebra generated by open sets.

 $\mathbf{B}(X)$  contains all open, closed,  $F_{\sigma}, G_{\delta}, G_{\delta\sigma}, F_{\sigma\delta}$ , etc., sets.

Let X, Y be two Polish spaces.

#### Definition

A function  $f: X \to Y$  is **Borel function** if  $f^{-1}(U)$  is Borel for U open in Y.

Let E, F be equivalence relations on X, Y respectively.  $E \leq_B F$ : There is a Borel reduction of E to F;  $E \sim_B F$ :  $E \leq_B F$  and  $F \leq_B E$ ;  $E <_B F$ :  $E \leq_B F$  but not  $F \leq_B E$ .  $\begin{array}{c} \mbox{Equivalence relations and invariants}\\ \mbox{Dichotomy theorems}\\ \mbox{Orbit equivalence relations}\\ \Sigma_1^1 \mbox{ equivalence relations} \end{array}$ 

## Borel sets, Borel functions and Borel reductions

#### Definition

 $\mathbf{B}(X)$ : **Borel sets** of X is the  $\sigma$ -algebra generated by open sets.

 $\mathbf{B}(X)$  contains all open, closed,  $F_{\sigma}, G_{\delta}, G_{\delta\sigma}, F_{\sigma\delta}$ , etc., sets.

Let X, Y be two Polish spaces.

### Definition

A function  $f: X \to Y$  is **Borel function** if  $f^{-1}(U)$  is Borel for U open in Y.

Let E, F be equivalence relations on X, Y respectively.  $E \leq_B F$ : There is a Borel reduction of E to F;  $E \sim_B F$ :  $E \leq_B F$  and  $F \leq_B E$ ;  $E <_B F$ :  $E \leq_B F$  but not  $F \leq_B E$ .

### Standard Borel spaces

#### Definition

A measurable space (X, S) is a standard Borel space if there is a Polish topology  $\tau$  on X with  $S = \mathbf{B}(X, \tau)$ .

#### Theorem

Let X be a Polish space,  $Y \subseteq X$ . Then  $(Y, \mathbf{B}(Y))$  is a standard Borel space iff Y is a Borel subset of X.

#### Example

"finitely generated abelian groups" is a Borel subset of "countable abelian groups", so it is a standard Borel space.

・ロト ・回ト ・ヨト ・ヨト

### Standard Borel spaces

#### Definition

A measurable space (X, S) is a standard Borel space if there is a Polish topology  $\tau$  on X with  $S = \mathbf{B}(X, \tau)$ .

#### Theorem

Let X be a Polish space,  $Y \subseteq X$ . Then  $(Y, \mathbf{B}(Y))$  is a standard Borel space iff Y is a Borel subset of X.

#### Example

"finitely generated abelian groups" is a Borel subset of "countable abelian groups", so it is a standard Borel space.

### Standard Borel spaces

#### Definition

A measurable space (X, S) is a *standard Borel space* if there is a Polish topology  $\tau$  on X with  $S = \mathbf{B}(X, \tau)$ .

#### Theorem

Let X be a Polish space,  $Y \subseteq X$ . Then  $(Y, \mathbf{B}(Y))$  is a standard Borel space iff Y is a Borel subset of X.

#### Example

"finitely generated abelian groups" is a Borel subset of "countable abelian groups", so it is a standard Borel space.

( ) < </p>

# Effros Borel spaces

#### Example (Effros Borel spaces)

Given a Polish space X, we denote by F(X) the set of closed subsets of X. We endow F(X) with the  $\sigma\text{-algebra generated}$  by the sets

$$\{F \in F(X) : F \cap U \neq \emptyset\},\$$

where U varies over open subsets of X.

#### Fact

If X is Polish, the Effros Borel space of F(X) is a standard Borel space.

・ロン ・回 と ・ ヨ と ・ ヨ と …

## About Gelfand-Naimark's theorem

### Fact

 Every compact metric space homeomorphic to a closed subset of Hilbert Cub [0, 1]<sup>ℕ</sup>.

2 Every separable Banach space isometrically isomorphic to a closed linear subspace of C[0,1].

Let  $\operatorname{Hom}_{\operatorname{cpt}}$  be the homeomorphism relation on  $F([0,1]^{\mathbb{N}})$ , and let  $\cong_{\operatorname{SB}}$  be the isometrically isomorphism on  $\operatorname{Subs}(C[0,1]) \subseteq F(C[0,1])$  of all closed linear subspaces of C[0,1]. Then

Hom<sub>cpt</sub>  $\leq_B \cong_{SB}$ .

## About Gelfand-Naimark's theorem

### Fact

- Every compact metric space homeomorphic to a closed subset of Hilbert Cub [0, 1]<sup>N</sup>.
- Every separable Banach space isometrically isomorphic to a closed linear subspace of C[0, 1].

Let  $\operatorname{Hom}_{\operatorname{cpt}}$  be the homeomorphism relation on  $F([0,1]^{\mathbb{N}})$ , and let  $\cong_{\operatorname{SB}}$  be the isometrically isomorphism on  $\operatorname{Subs}(C[0,1]) \subseteq F(C[0,1])$  of all closed linear subspaces of C[0,1]. Then

 $\operatorname{Hom}_{\operatorname{cpt}} \leq_B \cong_{\operatorname{SB}} .$ 

## About Gelfand-Naimark's theorem

#### Fact

- Every compact metric space homeomorphic to a closed subset of Hilbert Cub [0, 1]<sup>N</sup>.
- Every separable Banach space isometrically isomorphic to a closed linear subspace of C[0, 1].

Let  $\operatorname{Hom}_{\operatorname{cpt}}$  be the homeomorphism relation on  $F([0,1]^{\mathbb{N}})$ , and let  $\cong_{\operatorname{SB}}$  be the isometrically isomorphism on  $\operatorname{Subs}(C[0,1]) \subseteq F(C[0,1])$  of all closed linear subspaces of C[0,1]Then

 $\operatorname{Hom}_{\operatorname{cpt}} \leq_B \cong_{\operatorname{SB}} .$ 

## About Gelfand-Naimark's theorem

#### Fact

- Every compact metric space homeomorphic to a closed subset of Hilbert Cub [0, 1]<sup>ℕ</sup>.
- Every separable Banach space isometrically isomorphic to a closed linear subspace of C[0, 1].

Let  $\operatorname{Hom}_{\operatorname{cpt}}$  be the homeomorphism relation on  $F([0,1]^{\mathbb{N}})$ , and let  $\cong_{\operatorname{SB}}$  be the isometrically isomorphism on  $\operatorname{Subs}(C[0,1]) \subseteq F(C[0,1])$  of all closed linear subspaces of C[0,1]. Then

 $\operatorname{Hom}_{\operatorname{cpt}} \leq_B \cong_{\operatorname{SB}} .$ 

## About Gelfand-Naimark's theorem

#### Fact

- Every compact metric space homeomorphic to a closed subset of Hilbert Cub [0, 1]<sup>ℕ</sup>.
- Every separable Banach space isometrically isomorphic to a closed linear subspace of C[0, 1].

Let  $\operatorname{Hom}_{\operatorname{cpt}}$  be the homeomorphism relation on  $F([0,1]^{\mathbb{N}})$ , and let  $\cong_{\operatorname{SB}}$  be the isometrically isomorphism on  $\operatorname{Subs}(C[0,1]) \subseteq F(C[0,1])$  of all closed linear subspaces of C[0,1]. Then

 $\operatorname{Hom}_{\operatorname{cpt}} \leq_B \cong_{\operatorname{SB}} .$ 

Smooth equivalence relations

### We denote by id(X) the *identity relation* on X.

 $\operatorname{id}(n) <_B \operatorname{id}(\mathbb{N}) <_B \operatorname{id}(\mathbb{R}).$ 

#### Definition

We say E is **smooth** if  $E \leq_B id(\mathbb{R})$ .

#### Fact

Let X, Y be Polish spaces, then X is Borel isomorphic to Y (i.e., there is a Borel bijection from X to Y) iff |X| = |Y|.

Smooth equivalence relations

### We denote by id(X) the *identity relation* on X.

 $\operatorname{id}(n) <_B \operatorname{id}(\mathbb{N}) <_B \operatorname{id}(\mathbb{R}).$ 

#### Definition

We say E is **smooth** if  $E \leq_B id(\mathbb{R})$ .

#### Fact

Let X, Y be Polish spaces, then X is Borel isomorphic to Y (i.e., there is a Borel bijection from X to Y) iff |X| = |Y|.

・ロト ・同ト ・ヨト ・ヨト

Smooth equivalence relations

We denote by id(X) the *identity relation* on X.

 $\operatorname{id}(n) <_B \operatorname{id}(\mathbb{N}) <_B \operatorname{id}(\mathbb{R}).$ 

#### Definition

We say E is **smooth** if  $E \leq_B id(\mathbb{R})$ .

#### Fact

Let X, Y be Polish spaces, then X is Borel isomorphic to Y (i.e., there is a Borel bijection from X to Y) iff |X| = |Y|.

( ) < </p>

# $\mathbf{\Sigma}_1^1$ sets and $\mathbf{\Pi}_1^1$ sets

#### Definition

Let X be a Polish space. A subset  $A \subseteq X$  is **analytic** (or  $\Sigma_1^1$ ) if there is a Polish space Y and a closed subset  $C \subseteq X \times Y$  such that

$$x \in A \iff \exists y \in Y((x,y) \in C).$$

A subset  $A \subseteq X$  is **co-analytic** (or  $\Pi_1^1$ ) if  $X \setminus A$  is  $\Sigma_1^1$ .

#### Theorem (Suslin)

Let  $A \subseteq X$ . Then A is Borel iff it is both  $\Sigma_1^1$  and  $\Pi_1^1$ .

**fact:** All  $\sigma(\Sigma_1^1)$  sets in  $\mathbb{R}$  are Lebesgue measurable.

・ロト ・回ト ・ヨト ・ヨト

# $\mathbf{\Sigma}_1^1$ sets and $\mathbf{\Pi}_1^1$ sets

#### Definition

Let X be a Polish space. A subset  $A \subseteq X$  is **analytic** (or  $\Sigma_1^1$ ) if there is a Polish space Y and a closed subset  $C \subseteq X \times Y$  such that

$$x \in A \iff \exists y \in Y((x,y) \in C).$$

A subset  $A \subseteq X$  is **co-analytic** (or  $\Pi_1^1$ ) if  $X \setminus A$  is  $\Sigma_1^1$ .

Theorem (Suslin)

Let  $A \subseteq X$ . Then A is Borel iff it is both  $\Sigma_1^1$  and  $\Pi_1^1$ .

fact: All  $\sigma(\mathbf{\Sigma}_1^1)$  sets in  $\mathbb{R}$  are Lebesgue measurable.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

# $\mathbf{\Sigma}_1^1$ sets and $\mathbf{\Pi}_1^1$ sets

#### Definition

Let X be a Polish space. A subset  $A \subseteq X$  is **analytic** (or  $\Sigma_1^1$ ) if there is a Polish space Y and a closed subset  $C \subseteq X \times Y$  such that

$$x \in A \iff \exists y \in Y((x,y) \in C).$$

A subset  $A \subseteq X$  is **co-analytic** (or  $\Pi_1^1$ ) if  $X \setminus A$  is  $\Sigma_1^1$ .

#### Theorem (Suslin)

Let  $A \subseteq X$ . Then A is Borel iff it is both  $\Sigma_1^1$  and  $\Pi_1^1$ .

fact: All  $\sigma(\Sigma_1^1)$  sets in  $\mathbb{R}$  are Lebesgue measurable.

・ロト ・同ト ・ヨト ・ヨト

### Non-smooth equivalence relations

 $T \mbox{ is a transversal for } E \mbox{ if } T \mbox{ meets each } E \mbox{-class at exactly one point.}$ 

#### Theorem

let E be a Borel equivalence relation on a Polish space X. If E is smooth, then E has a  $\sigma(\Sigma_1^1)$  transversal.

#### Definition

**Vitali equivalence relation:** For  $x, y \in \mathbb{R}$  we define

 $xE_vy \iff x-y \in \mathbb{Q}.$ 

**Note:** Any transversal of  $E_v$  is not Lebesgue measurable, so  $E_v$  is not smooth.

・ロン ・回 と ・ ヨン ・ ヨン

### Non-smooth equivalence relations

T is a  $\mbox{transversal}$  for E if T meets each  $E\mbox{-class}$  at exactly one point.

#### Theorem

let E be a Borel equivalence relation on a Polish space X. If E is smooth, then E has a  $\sigma(\Sigma_1^1)$  transversal.

#### Definition

**Vitali equivalence relation:** For  $x, y \in \mathbb{R}$  we define

 $xE_vy \iff x-y \in \mathbb{Q}.$ 

**Note:** Any transversal of  $E_v$  is not Lebesgue measurable, so  $E_v$  is not smooth.

## Outline





Orbit equivalence relations

 $\textcircled{4} \Sigma^1_1 \text{ equivalence relations}$ 

・ロン ・回 と ・ ヨ と ・ ヨ と …

### 1st dichotomy theorem

We say an equivalence relation E on X is Borel,  $\Sigma_1^1$ , or  $\Pi_1^1$  if it is so in  $X^2$ .

### Theorem (Silver, 1980)

Let E be a  $\Pi_1^1$  equivalence relation. Then E has either at most countably many or perfectly many equivalence classes, i.e.,

 $E \leq_B \operatorname{id}(\mathbb{N})$  or  $\operatorname{id}(\mathbb{R}) \leq_B E$ .



◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ
### 2nd dichotomy theorem

#### Definition

 $E_0$  is the equivalence relation on  $2^{\mathbb{N}}$  defined by

$$xE_0y \iff \exists m \forall n \ge m(x(n) = y(n)).$$

**Fact:**  $E_0 \sim_B E_v = \mathbb{R}/\mathbb{Q}$ .

#### Theorem (Harrington-Kechris-Louveau, 1990)

Let E be a Borel equivalence relation. Then either  $E \leq_B id(\mathbb{R})$  or  $E_0 \leq_B E$ .

(ロ) (四) (モ) (モ)

### 2nd dichotomy theorem

#### Definition

 $E_0$  is the equivalence relation on  $2^{\mathbb{N}}$  defined by

$$xE_0y \iff \exists m \forall n \ge m(x(n) = y(n)).$$

**Fact:**  $E_0 \sim_B E_v = \mathbb{R}/\mathbb{Q}$ .

#### Theorem (Harrington-Kechris-Louveau, 1990)

Let *E* be a Borel equivalence relation. Then either  $E \leq_B id(\mathbb{R})$  or  $E_0 \leq_B E$ .

・ロン ・回 と ・ ヨ と ・ ヨ と …



◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

### 3rd dichotomy theorem

### Definition

 $E_1$  is the equivalence relation on  $\mathbb{R}^{\mathbb{N}}$  defined by

$$xE_1y \iff \exists m \forall n \ge m(x(n) = y(n)).$$

**Fact:**  $E_1 = \mathbb{R}^{\mathbb{N}}/c_{00}$ , where  $c_{00} = \bigcup_n \mathbb{R}^n$ .

Theorem (Kechris-Louveau, 1997)

If  $E \leq_B E_1$ , then  $E \leq_B E_0$  or  $E \sim_B E_1$ .

### 3rd dichotomy theorem

### Definition

 $E_1$  is the equivalence relation on  $\mathbb{R}^{\mathbb{N}}$  defined by

$$xE_1y \iff \exists m \forall n \ge m(x(n) = y(n)).$$

**Fact:**  $E_1 = \mathbb{R}^{\mathbb{N}}/c_{00}$ , where  $c_{00} = \bigcup_n \mathbb{R}^n$ .

Theorem (Kechris-Louveau, 1997)

If  $E \leq_B E_1$ , then  $E \leq_B E_0$  or  $E \sim_B E_1$ .

・ロン ・回 と ・ ヨ と ・ ヨ と …



æ

### 4th dichotomy theorem

#### Definition

Let E be an equivalence relation on X. The equivalence relation  $E^\omega$  on  $X^{\mathbb N}$  defined by

$$xE^{\omega}y\iff \forall n(x(n)Ey(n)).$$

Fact:  $E_0^{\omega} \sim_B \mathbb{R}^{\mathbb{N}}/\mathbb{Q}^{\mathbb{N}}$ .

Theorem (Hjorth-Kechris, 1997)

If  $E \leq_B E_0^{\omega}$ , then  $E \leq_B E_0$  or  $E \sim_B E_0^{\omega}$ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

### 4th dichotomy theorem

#### Definition

Let E be an equivalence relation on X. The equivalence relation  $E^\omega$  on  $X^{\mathbb N}$  defined by

$$xE^{\omega}y\iff \forall n(x(n)Ey(n)).$$

Fact:  $E_0^{\omega} \sim_B \mathbb{R}^{\mathbb{N}}/\mathbb{Q}^{\mathbb{N}}$ .

Theorem (Hjorth-Kechris, 1997)

If  $E \leq_B E_0^{\omega}$ , then  $E \leq_B E_0$  or  $E \sim_B E_0^{\omega}$ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・



### Outline

Equivalence relations and invariants

2 Dichotomy theorems



4  $\Sigma_1^1$  equivalence relations

・ロン ・回 と ・ ヨ と ・ ヨ と …

### Polish G-spaces and orbit equivalence relations

#### Definition

**Polish group:** A topological group whose underlying space is Polish.

 $\begin{array}{l} G: \mbox{ Polish group,} \\ X: \mbox{ Polish space,} \\ a: G \times X \to X: \mbox{ continuous } G\mbox{-action on } X \end{array}$ 

Definition

Orbit equivalence relation:

 $xE_G^X y \iff \exists g \in G(g \cdot x = y).$ 

Any  $E_G^X$  is  $\Sigma_1^1$  equivalence relation.

・ロン ・回 と ・ ヨ と ・ ヨ と

### Polish G-spaces and orbit equivalence relations

#### Definition

**Polish group:** A topological group whose underlying space is Polish.

G: Polish group, X: Polish space,  $a: G \times X \to X$ : continuous G-action on X.

#### Definition

Orbit equivalence relation:

$$xE_G^X y \iff \exists g \in G(g \cdot x = y).$$

Any  $E_G^X$  is  $\Sigma_1^1$  equivalence relation.

・ロン ・回 と ・ ヨン ・ ヨン

### Polish G-spaces and orbit equivalence relations

#### Definition

**Polish group:** A topological group whose underlying space is Polish.

G: Polish group, X: Polish space,  $a: G \times X \to X$ : continuous G-action on X.

#### Definition

Orbit equivalence relation:

$$xE_G^X y \iff \exists g \in G(g \cdot x = y).$$

Any  $E_G^X$  is  $\Sigma_1^1$  equivalence relation.

# Polish groups

#### Countable groups with discrete topology.

- ② S<sub>∞</sub>: all bijections of N → N with pointwise convergence topology.
- Ouriversal Polish group H([0,1]<sup>N</sup>): every Polish group is isomorphic to one of its closed subgroups. (Uspenskii, 1986)
- Surjectively universal Polish group F<sub>Γ</sub>(N<sub>ω</sub>): every Polish group is isomorphic to one of its topological quotient group.
   (D. 2012)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

# Polish groups

- Countable groups with discrete topology.
- ② S<sub>∞</sub>: all bijections of N → N with pointwise convergence topology.
- Olish group H([0,1]<sup>N</sup>): every Polish group is isomorphic to one of its closed subgroups. (Uspenskii, 1986)
- Surjectively universal Polish group F<sub>Γ</sub>(N<sub>ω</sub>): every Polish group is isomorphic to one of its topological quotient group.
   (D. 2012)

# Polish groups

- Countable groups with discrete topology.
- ② S<sub>∞</sub>: all bijections of N → N with pointwise convergence topology.
- Oliversal Polish group H([0, 1]<sup>N</sup>): every Polish group is isomorphic to one of its closed subgroups. (Uspenskii, 1986)
- Surjectively universal Polish group F<sub>Γ</sub>(N<sub>ω</sub>): every Polish group is isomorphic to one of its topological quotient group.
   (D. 2012)

# Polish groups

- Countable groups with discrete topology.
- ② S<sub>∞</sub>: all bijections of N → N with pointwise convergence topology.
- Oliversal Polish group H([0, 1]<sup>N</sup>): every Polish group is isomorphic to one of its closed subgroups. (Uspenskii, 1986)

### Countable Borel equivalence relations

# An equivalence relation E on X is countable if every equivalence class of E is countable.

#### Theorem (Feldman - Moore)

Let E be a countable Borel equivalence relation on a Polish space X. Then  $E = E_G^X$  for some countable discrete group G.

 $E_{\infty}$ : an universal countable Borel equivalence relation.

・ロト ・同ト ・ヨト ・ヨト



## Below $E_0$

### Theorem (Jackson-Kechris-Louveau, 2002)

 $E_{\mathbb{R}^n}^X \leq_B E_0.$ 

#### Theorem (Gao-Jackson, 2015)

For any countable abelian discrete group G,  $E_G^X \leq_B E_0$ .

#### Theorem (D.-Gao, 2015)

Let G be a abelian closed subgroup of  $S_{\infty}$  and  $E_G^X \leq E_{\infty}$ , then  $E_G^X \leq_B E_0$ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

## Below $E_0$

### Theorem (Jackson-Kechris-Louveau, 2002)

 $E_{\mathbb{R}^n}^X \leq_B E_0.$ 

### Theorem (Gao-Jackson, 2015)

For any countable abelian discrete group G,  $E_G^X \leq_B E_0$ .

#### Theorem (D.-Gao, 2015)

Let G be a abelian closed subgroup of  $S_{\infty}$  and  $E_G^X \leq E_{\infty}$ , then  $E_G^X \leq_B E_0$ .

・ロン ・回 と ・ ヨ と ・ ヨ と …

# Below $E_0$

### Theorem (Jackson-Kechris-Louveau, 2002)

 $E_{\mathbb{R}^n}^X \leq_B E_0.$ 

### Theorem (Gao-Jackson, 2015)

For any countable abelian discrete group G,  $E_G^X \leq_B E_0$ .

### Theorem (D.-Gao, 2015)

Let G be a abelian closed subgroup of  $S_{\infty}$  and  $E_G^X \leq E_{\infty}$ , then  $E_G^X \leq_B E_0$ .

・ロット (雪) (目) (日)



### **Borel complete** $E_{S_{\infty}}^{\infty}$ : every $E_{S_{\infty}}^{X}$ is Borel reducible to it.

#### Theorem

The isomorphism relations of all countable graphs, countable trees, countable linear orderings and countable groups are Borel complete, i.e.,

$$E_{S_{\infty}}^{\infty} \sim_B (\cong_{\operatorname{Graph}}) \sim_B (\cong_{\operatorname{Tr}}) \sim_B (\cong_{\operatorname{LO}}) \sim_B (\cong_{\operatorname{Group}}).$$



# Upper bound of $E_G^X$

### Theorem (Gao-Kechris, 2003)

Let  $\cong_{\mathrm{PM}}$  be the isometric isomorphism relation between Polish metric spaces. Then  $E_G^X \leq_B \cong_{\mathrm{PM}}$  for every Polish *G*-space *X*.

Theorem (Melleray-Weaver, 2007)

 $\cong_{\rm PM} \sim \cong_{\rm SB}.$ 

Theorem (Zielinski, 2015)

 $\cong_{\rm SB} \sim \operatorname{Hom}_{\rm cpt}$ .

・ロン ・日ン ・日ン ・日ン

# Upper bound of $E_G^X$

### Theorem (Gao-Kechris, 2003)

Let  $\cong_{\mathrm{PM}}$  be the isometric isomorphism relation between Polish metric spaces. Then  $E_G^X \leq_B \cong_{\mathrm{PM}}$  for every Polish *G*-space *X*.

### Theorem (Melleray-Weaver, 2007)

 $\cong_{\rm PM} \sim \cong_{\rm SB}.$ 

#### Theorem (Zielinski, 2015)

 $\cong_{\rm SB} \sim \operatorname{Hom}_{\rm cpt}$ .

# Upper bound of $E_G^X$

### Theorem (Gao-Kechris, 2003)

Let  $\cong_{\mathrm{PM}}$  be the isometric isomorphism relation between Polish metric spaces. Then  $E_G^X \leq_B \cong_{\mathrm{PM}}$  for every Polish *G*-space *X*.

Theorem (Melleray-Weaver, 2007)

 $\cong_{\rm PM} \sim \cong_{\rm SB}.$ 

Theorem (Zielinski, 2015)

 $\cong_{\rm SB} \sim \operatorname{Hom}_{\rm cpt}$ .

・ロ・ ・ 日・ ・ ヨ・ ・ 日・



L. Ding Equivalence relations and Borel reduction

### Outline

Equivalence relations and invariants

2 Dichotomy theorems

Orbit equivalence relations



・ロト ・回ト ・ヨト ・ヨト

## $\Sigma_1^1$ equivalence relations

### Theorem (Kechris-Louveau, 1997)

 $E_1 \not\leq_B E_G^X$  for any Polish G-space X.

・ロン ・回 ・ ・ ヨン ・ ヨン

### Upper bound of $\Sigma^1_1$ equivalence relations

### $\bigcirc \cong_{SB}^{L}$ : separable Banach spaces, linear isomorphism;

Hom<sup>Lip</sup><sub>SB</sub>: separable Banach spaces, Lipschitz isomorphism;
 Hom<sup>U</sup><sub>PM</sub>: Polish metric spaces, uniform homeomorphism ;

 ${rak 3}\cong_{
m AG}$ : abelian Polish groups, topological isomorphism.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

For any  $\Sigma_1^1$  equivalence relation E, we have

 $E \leq_B \cong_{\mathrm{SB}}^{\mathrm{L}} \sim_B \mathrm{Hom}_{\mathrm{SB}}^{\mathrm{Lip}} \sim_B \mathrm{Hom}_{\mathrm{PM}}^{\mathrm{U}} \sim_B \cong_{\mathrm{AG}} .$ 

・ロト ・回ト ・ヨト ・ヨト

### Upper bound of $\Sigma^1_1$ equivalence relations

- <sup>Lip</sup><sub>SB</sub>: separable Banach spaces, linear isomorphism;

   <sup>Hom</sup><sub>SB</sub><sup>Lip</sup>: separable Banach spaces, Lipschitz isomorphism;

   <sup>Hom</sup><sub>PM</sub>: Polish metric spaces, uniform homeomorphism;
- $\textcircled{3}\cong_{\mathrm{AG}}$ : abelian Polish groups, topological isomorphism.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

For any  $\Sigma_1^1$  equivalence relation E, we have

 $E \leq_B \cong_{\mathrm{SB}}^{\mathrm{L}} \sim_B \mathrm{Hom}_{\mathrm{SB}}^{\mathrm{Lip}} \sim_B \mathrm{Hom}_{\mathrm{PM}}^{\mathrm{U}} \sim_B \cong_{\mathrm{AG}} .$ 

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

### Upper bound of $\Sigma^1_1$ equivalence relations

- $\bigcirc \cong_{SB}^{L}$ : separable Banach spaces, linear isomorphism;
- O Hom<sup>Lip</sup><sub>SB</sub>: separable Banach spaces, Lipschitz isomorphism;
- ${f 0}$  Hom<sup>U</sup><sub>PM</sub>: Polish metric spaces, uniform homeomorphism ;
- $\textcircled{O}\cong_{\mathrm{AG}}$ : abelian Polish groups, topological isomorphism.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

For any  $\Sigma_1^1$  equivalence relation E, we have

 $E \leq_B \cong_{\mathrm{SB}}^{\mathrm{L}} \sim_B \mathrm{Hom}_{\mathrm{SB}}^{\mathrm{Lip}} \sim_B \mathrm{Hom}_{\mathrm{PM}}^{\mathrm{U}} \sim_B \cong_{\mathrm{AG}} .$ 

・ロン ・回 と ・ ヨ と ・ ヨ と …

### Upper bound of $\Sigma^1_1$ equivalence relations

- $\bigcirc \cong_{SB}^{L}$ : separable Banach spaces, linear isomorphism;
- **2** Hom<sup>Lip</sup><sub>SB</sub>: separable Banach spaces, Lipschitz isomorphism;
- $\textcircled{O} Hom^U_{PM}: \text{ Polish metric spaces, uniform homeomorphism ;}$
- ${f O}\cong_{AG}$ : abelian Polish groups, topological isomorphism.

#### Theorem (Ferenczi-Louveau-Rosendal, 2009)

For any  $\Sigma_1^1$  equivalence relation E, we have

 $E \leq_B \cong_{\mathrm{SB}}^{\mathrm{L}} \sim_B \mathrm{Hom}_{\mathrm{SB}}^{\mathrm{Lip}} \sim_B \mathrm{Hom}_{\mathrm{PM}}^{\mathrm{U}} \sim_B \cong_{\mathrm{AG}} .$ 

・ロン ・回 と ・ ヨ と ・ ヨ と

## Upper bound of $\Sigma^1_1$ equivalence relations

- $\bigcirc \cong_{SB}^{L}$ : separable Banach spaces, linear isomorphism;
- $\bigcirc$  Hom<sup>Lip</sup><sub>SB</sub>: separable Banach spaces, Lipschitz isomorphism;
- $\textcircled{O} Hom^U_{PM}: \ \mbox{Polish metric spaces, uniform homeomorphism ;}$
- ${\small \textcircled{0}} \cong_{AG}: \text{ abelian Polish groups, topological isomorphism.}$

#### Theorem (Ferenczi-Louveau-Rosendal, 2009)

For any  $\Sigma_1^1$  equivalence relation E, we have

$$E \leq_B \cong_{\mathrm{SB}}^{\mathrm{L}} \sim_B \mathrm{Hom}_{\mathrm{SB}}^{\mathrm{Lip}} \sim_B \mathrm{Hom}_{\mathrm{PM}}^{\mathrm{U}} \sim_B \cong_{\mathrm{AG}} .$$


Equivalence relations and invariants Dichotomy theorems Orbit equivalence relations  $\mathbf{\Sigma}_1^1$  equivalence relations

## The end

## Thank you!

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ