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Classical examples (1)

Example

For A,B ∈ Cm×n, define A ∼ B ⇐⇒ A = TBS, where T, S are
invertible matrices.

Let r(A) be rank of A. Then

A ∼ B ⇐⇒ r(A) = r(B).

Example

For A,B ∈ Cn×n, define A ≈ B ⇐⇒ A = TBT−1, where T is
an invertible matrix.

Let J(A) be the Jordan normal form of A. Then

A ≈ B ⇐⇒ J(A) = J(B).

L. Ding Equivalence relations and Borel reduction



Equivalence relations and invariants
Dichotomy theorems

Orbit equivalence relations
Σ1

1 equivalence relations

Classical examples (1)

Example

For A,B ∈ Cm×n, define A ∼ B ⇐⇒ A = TBS, where T, S are
invertible matrices.

Let r(A) be rank of A. Then

A ∼ B ⇐⇒ r(A) = r(B).

Example

For A,B ∈ Cn×n, define A ≈ B ⇐⇒ A = TBT−1, where T is
an invertible matrix.

Let J(A) be the Jordan normal form of A. Then

A ≈ B ⇐⇒ J(A) = J(B).

L. Ding Equivalence relations and Borel reduction



Equivalence relations and invariants
Dichotomy theorems

Orbit equivalence relations
Σ1

1 equivalence relations

Classical examples (2)

Example

Every finitely generated abelian group G is isomorphic to a direct
sum

Zm ⊕
n⊕
i=0

ei⊕
j=0

Z(pji )
tij .

Let M(G) = (m, tij)i≤n,j≤ei . Then

G ∼= H ⇐⇒ M(G) =M(H).

Note: r(A), J(A),M(G) are not continuous mappings.
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Classical examples (3)

Example

For compact topological spaces X, denote C(X) the spaces of all
continuous function X → C equipped with the sup norm.

Theorem (Gelfand-Naimark)

Let X,Y be compact Hausdorff spaces. Then X is homeomorphic
to Y iff C(X) is isomorphic to C(Y ) (as a C*-algebra).
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Reduction

Definition

Let E,F be two equivalence relations on X,Y respectively,
θ : X → Y is a reduction of E to F if

aEb ⇐⇒ θ(a)Fθ(b)

for a, b ∈ X.

Fact

Let f : X/E → X be a choice function, and let θ(a) = f([a]E).
Then θ is a reduction of E to id(X).

Note: We need some restrictions on reduction mapping!
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Polish spaces

Definition

Polish space: a separable, completely metrizable topological
space.

Example

1 Cm×n; Rn; separable Banach spaces;

2 C = {0, 1}N; N = NN;

3 For a countable abelian group G, note that

RG = {(a, b, c) : a = b+ c} ⊆ N3.

“Countable abelian groups” is a closed subset of {0, 1}N3 ∼= C.
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Borel sets, Borel functions and Borel reductions

Definition

B(X): Borel sets of X is the σ-algebra generated by open sets.

B(X) contains all open, closed, Fσ, Gδ, Gδσ, Fσδ, etc., sets.

Let X,Y be two Polish spaces.

Definition

A function f : X → Y is Borel function if f−1(U) is Borel for U
open in Y .

Let E,F be equivalence relations on X,Y respectively.
E ≤B F : There is a Borel reduction of E to F ;
E ∼B F : E ≤B F and F ≤B E;
E <B F : E ≤B F but not F ≤B E.
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Standard Borel spaces

Definition

A measurable space (X,S) is a standard Borel space if there is a
Polish topology τ on X with S = B(X, τ).

Theorem

Let X be a Polish space, Y ⊆ X. Then (Y,B(Y )) is a standard
Borel space iff Y is a Borel subset of X.

Example

“finitely generated abelian groups” is a Borel subset of “countable
abelian groups”, so it is a standard Borel space.
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Effros Borel spaces

Example (Effros Borel spaces)

Given a Polish space X, we denote by F (X) the set of closed
subsets of X. We endow F (X) with the σ-algebra generated by
the sets

{F ∈ F (X) : F ∩ U 6= ∅},

where U varies over open subsets of X.

Fact

If X is Polish, the Effros Borel space of F (X) is a standard Borel
space.
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About Gelfand-Naimark’s theorem

Fact

1 Every compact metric space homeomorphic to a closed subset
of Hilbert Cub [0, 1]N.

2 Every separable Banach space isometrically isomorphic to a
closed linear subspace of C[0, 1].

Let Homcpt be the homeomorphism relation on F ([0, 1]N),
and let ∼=SB be the isometrically isomorphism on
Subs(C[0, 1]) ⊆ F (C[0, 1]) of all closed linear subspaces of C[0, 1].
Then

Homcpt ≤B ∼=SB .
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Smooth equivalence relations

We denote by id(X) the identity relation on X.

id(n) <B id(N) <B id(R).

Definition

We say E is smooth if E ≤B id(R).

Fact

Let X,Y be Polish spaces, then X is Borel isomorphic to Y (i.e.,
there is a Borel bijection from X to Y ) iff |X| = |Y |.
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Σ1
1 sets and Π1

1 sets

Definition

Let X be a Polish space. A subset A ⊆ X is analytic (or Σ1
1) if

there is a Polish space Y and a closed subset C ⊆ X ×Y such that

x ∈ A ⇐⇒ ∃y ∈ Y ((x, y) ∈ C).

A subset A ⊆ X is co-analytic (or Π1
1) if X \A is Σ1

1.

Theorem (Suslin)

Let A ⊆ X. Then A is Borel iff it is both Σ1
1 and Π1

1.

fact: All σ(Σ1
1) sets in R are Lebesgue measurable.
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Non-smooth equivalence relations

T is a transversal for E if T meets each E-class at exactly
one point.

Theorem

let E be a Borel equivalence relation on a Polish space X. If E is
smooth, then E has a σ(Σ1

1) transversal.

Definition

Vitali equivalence relation: For x, y ∈ R we define

xEvy ⇐⇒ x− y ∈ Q.

Note: Any transversal of Ev is not Lebesgue measurable, so
Ev is not smooth.
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1st dichotomy theorem

We say an equivalence relation E on X is Borel, Σ1
1, or Π1

1 if
it is so in X2.

Theorem (Silver, 1980)

Let E be a Π1
1 equivalence relation. Then E has either at most

countably many or perfectly many equivalence classes, i.e.,

E ≤B id(N) or id(R) ≤B E.
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• id(1)
• id(2)

...

• id(N)
• id(R)
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2nd dichotomy theorem

Definition

E0 is the equivalence relation on 2N defined by

xE0y ⇐⇒ ∃m∀n ≥ m(x(n) = y(n)).

Fact: E0 ∼B Ev = R/Q.

Theorem (Harrington-Kechris-Louveau, 1990)

Let E be a Borel equivalence relation. Then either E ≤B id(R) or
E0 ≤B E.
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3rd dichotomy theorem

Definition

E1 is the equivalence relation on RN defined by

xE1y ⇐⇒ ∃m∀n ≥ m(x(n) = y(n)).

Fact: E1 = RN/c00, where c00 =
⋃
nRn.

Theorem (Kechris-Louveau, 1997)

If E ≤B E1, then E ≤B E0 or E ∼B E1.
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4th dichotomy theorem

Definition

Let E be an equivalence relation on X. The equivalence relation
Eω on XN defined by

xEωy ⇐⇒ ∀n(x(n)Ey(n)).

Fact: Eω0 ∼B RN/QN.

Theorem (Hjorth-Kechris, 1997)

If E ≤B Eω0 , then E ≤B E0 or E ∼B Eω0 .
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Polish G-spaces and orbit equivalence relations

Definition

Polish group: A topological group whose underlying space is
Polish.

G: Polish group,
X: Polish space,
a : G×X → X: continuous G-action on X.

Definition

Orbit equivalence relation:

xEXG y ⇐⇒ ∃g ∈ G(g · x = y).

Any EXG is Σ1
1 equivalence relation.
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Polish groups

1 Countable groups with discrete topology.

2 S∞: all bijections of N→ N with pointwise convergence
topology.

3 Universal Polish group H([0, 1]N): every Polish group is
isomorphic to one of its closed subgroups. (Uspenskii, 1986)

4 Surjectively universal Polish group FΓ(Nω): every Polish
group is isomorphic to one of its topological quotient group.
(D. 2012)
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Countable Borel equivalence relations

An equivalence relation E on X is countable if every
equivalence class of E is countable.

Theorem (FeldmanõMoore)

Let E be a countable Borel equivalence relation on a Polish space
X. Then E = EXG for some countable discrete group G.

E∞: an universal countable Borel equivalence relation.
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Below E0

Theorem (Jackson-Kechris-Louveau, 2002)

EXRn ≤B E0.

Theorem (Gao-Jackson, 2015)

For any countable abelian discrete group G, EXG ≤B E0.

Theorem (D.-Gao, 2015)

Let G be a abelian closed subgroup of S∞ and EXG ≤ E∞, then
EXG ≤B E0.
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S∞-spaces

Borel complete E∞S∞
: every EXS∞

is Borel reducible to it.

Theorem

The isomorphism relations of all countable graphs, countable trees,
countable linear orderings and countable groups are Borel
complete, i.e.,

E∞S∞ ∼B (∼=Graph) ∼B (∼=Tr) ∼B (∼=LO) ∼B (∼=Group).
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Upper bound of EX
G

Theorem (Gao-Kechris, 2003)

Let ∼=PM be the isometric isomorphism relation between Polish
metric spaces. Then EXG ≤B ∼=PM for every Polish G-space X.

Theorem (Melleray-Weaver, 2007)
∼=PM ∼ ∼=SB.

Theorem (Zielinski, 2015)
∼=SB ∼ Homcpt.
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Outline

1 Equivalence relations and invariants

2 Dichotomy theorems

3 Orbit equivalence relations

4 Σ1
1 equivalence relations
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Σ1
1 equivalence relations

Theorem (Kechris-Louveau, 1997)

E1 6≤B EXG for any Polish G-space X.
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Upper bound of Σ1
1 equivalence relations

1 ∼=L
SB: separable Banach spaces, linear isomorphism;

2 HomLip
SB : separable Banach spaces, Lipschitz isomorphism;

3 HomU
PM: Polish metric spaces, uniform homeomorphism ;

4 ∼=AG: abelian Polish groups, topological isomorphism.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

For any Σ1
1 equivalence relation E, we have

E ≤B ∼=L
SB ∼B HomLip

SB ∼B HomU
PM ∼B ∼=AG .
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The end

Thank you!
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