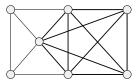
Random Graphs, First-Order Logic, and AC⁰ Circuits

Yijia Chen Fudan University

The clique problem

Definition

Let G be a graph. A clique in G is a subgraph, wherein every two vertices are adjacent in G. A k-clique is a clique that contains k vertices.



A graph with a 5-clique.

The *k*-clique problems in first-order logic

1. For every fixed $k \in \mathbb{N}$

$$G$$
 has a k -clique \iff $G \models \exists x_1 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} Ex_i x_j.$

2. There is no FO-sentence φ with k-1 variables such that

$$G$$
 has a k -clique \iff $G \models \varphi$.

The proof uses Ehrenfeucht-Fraissé-game from model theory.

G with a built-in ordering, or even arithmetic

In computer science, G is always stored by some data structure, e.g., the adjacency matrix A = A(G) where

$$A_{ij} = egin{cases} 1 & ext{if there is an edge between the i-th and j-th vertices} \ 0 & ext{otherwise}. \end{cases}$$

In particular, we assume an ordering on the vertices, hence the ordered graph $\langle G, < \rangle$.

We could even allow arithmetic on G, i.e.,

$$\langle G, <, +, \times \rangle$$
.

Embarrassingly

Problem

Let $k \in \mathbb{N}$. Is there an FO-sentence φ using only k-1 variables such that

G has a k-clique
$$\iff$$
 $\langle G, < \rangle \models \varphi$?

Or even

G has a k-clique
$$\iff$$
 $\langle G, <, +, \times \rangle \models \varphi$?

Rossman's result

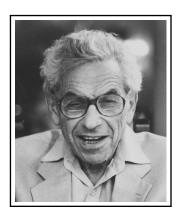
Theorem (Rossman, 2008)

Let $k \in \mathbb{N}$. There is no FO-sentence φ using at most k/4 variables such that

G has a k-clique
$$\iff$$
 $\langle G, <, +, \times \rangle \models \varphi$.

Rossman's proof uses Erdős-Rényi random graphs and AC⁰-circuits.

Random Graphs and FO



Erdős-Rényi random graphs

Definition

Let $n \in \mathbb{N}$ and $p \in \mathbb{R}$ with $0 \le p \le 1$. Then $G \in \mathsf{ER}(n,p)$ is the Erdős-Rényi random graph on vertex set [n] constructed by adding every edge $e \in \binom{[n]}{2}$ independently with probability p.

Example

Let $n \in \mathbb{N}$ and \mathscr{G}_n be the class of graphs with vertex set [n]. Then, $\mathsf{ER}(n,1/2)$ is the uniform distribution on \mathscr{G}_n .

The 0-1 Law for FO

Theorem (Glebskii, Kogan, Liagonkii, and V.A. Talanov, 1969; Fagin 1976)

Let $\varphi \in \mathsf{FO}$. Then

$$\lim_{n\to\infty} \Pr_{G\in \mathsf{ER}(n,1/2)} \left[G \models \varphi \right] = \begin{cases} 1 & \text{if } G^{\infty} \models \varphi \\ 0 & \text{if } G^{\infty} \not\models \varphi, \end{cases}$$

where G^{∞} is the infinite Rado graph.

A consequence of the 0-1 law

Definition

PARITY =
$$\{G \mid G \text{ has even number of vertices}\}.$$

The sequence

$$\frac{\left|\left\{G\in\mathscr{G}_{n}\;\middle|\;G\;\text{has even number of elements}\right\}\right|}{\left|\mathscr{G}_{n}\right|}$$

does not converge.

Corollary

Parity $\notin FO$.

The breakdown of the 0-1 law on ordered graphs

Let

$$\varphi :=$$
 "there is an edge between the first and the second vertices."

Then

$$\lim_{n\to\infty}\frac{\left|\left\{G\in\mathscr{G}_n\;\big|\;\langle G,<\rangle\models\varphi\right\}\right|}{|\mathscr{G}_n|}=\frac{1}{2}.$$

Definition

$$PARITY^* = \{G \mid G \text{ has even number of red vertices}\}.$$

Theorem (Furst, Saxe, and Sipser, 1981; Ajtai, 1983)

There is no FO-sentence φ such that

$$G \in PARITY^* \iff \langle G, <, +, \times \rangle \models \varphi.$$

Hence, there is no FO-sentence φ such that

$$G \in PARITY \iff \langle G, < \rangle \models \varphi.$$

The Ehrenfeucht-Fraı̈ssé-game is extremely hard to play on $\langle G, < \rangle$, let alone $\langle G, <, +, \times \rangle$.

The actual theorem of Furst et. al and Ajtai

Theorem

 $\operatorname{PARITY}^* \notin AC^0$, i.e., the parity problem has no AC^0 -circuits.

What is AC⁰?

A sequence $(C_n)_{n\in\mathbb{N}}$ of Boolean circuits is in AC⁰ if there is a constant $d\in\mathbb{N}$ such that for every $n\in\mathbb{N}$

- (i) the number of inputs of C_n is polynomially bounded in n;
- (ii) the depth of C_n is bounded by d;
- (iii) the size of C_n is polynomially bounded in n.

The k-clique problem can be computed by the following sequence of depth-2 circuits

$$\bigvee_{K \in \binom{[n]}{k}} \bigwedge_{\{i,j\} \in \binom{K}{2}} X_{\{i,j\}},$$

which are of size $n^{k+O(1)}$.

From FO to AC⁰

Theorem

For every $\varphi \in FO$ there is a family of AC^0 -circuits $\left(\mathsf{C}_n\right)_{n \in \mathbb{N}}$ such that for every structure \mathcal{A} with n elements

$$\mathcal{A} \models \varphi \iff \mathsf{C}_n(\mathcal{A}) = 1.$$

From AC⁰ to FO

 AC^0 -circuits can decide uncomputable problems, hence $AC^0 \not\subseteq FO$.

Theorem

Let $(C_n)_{n\in\mathbb{N}}$ be a family of AC^0 -circuits. Moreover, assume

$$1^n \mapsto C_n$$

can be computed by a deterministic logarithmic time Turing machine. Then, there is an FO-sentence φ such that every structure $\mathcal A$ with n elements we have

$$C_n(A) = 1 \iff \langle A, <, +, \times \rangle \models \varphi.$$

 $(C_n)_{n\in\mathbb{N}}$ is said to be dlogtime-uniform.

Remark

The circuits $(C_n)_{n\in\mathbb{N}}$ is the previous theorem is in fact dlogtime-uniform.

Håstad's Switching Lemma

Lemma (Håstad, 1986)

Let f be expressible as a k-DNF, and ρ a random restriction that assigns random values to $t \ge n/2$ randomly selected input bits. Then for every $s \ge 2$,

$$\Pr_{\rho}\left[f\mid_{\rho}\text{ is not expressible as s-CNF}\right]\leqslant\left(\frac{(n-t)k^{10}}{n}\right)^{s/2}.$$

Håstad's Switching Lemma can be roughly viewed as probabilistic quantifier elimination.

The moral

By going from FO to ${\sf AC}^0$, we can use many tools from combinatorics and probability that are very hard to apply to FO directly.

Our Results

Recall

Definition

Let $n \in \mathbb{N}$ and $p \in \mathbb{R}$ with $0 \le p \le 1$. Then $G \in ER(n, p)$ is the Erdős-Rényi random (ordered) graph on vertex set [n] constructed by adding every edge $e \in \binom{[n]}{2}$ independently with probability p.

Lemma

The expected size of a maximum clique in $G \in ER(n, 1/2)$ is approximately $2 \log n$.

Planting a clique of size $5 \log n$

Theorem

$$\lim_{n\to\infty}\Pr_{G\in \mathsf{ER}(n,1/2)}\left[G \text{ contains a clique of size } 5\log n\right]=0.$$

We consider a "planted clique" distribution G + K with $K \in P(n, 5 \log n)$:

Definition

Let $n, k \in \mathbb{N}$. Then P(n, k) is the uniform distribution over all cliques of size k on the vertex set [n].

The planted clique conjecture

Conjecture (Jerrum, 1992; Kucera, 1995)

For every polynomial time algorithm $\mathbb A$ there is a polynomial $p \in \mathbb N[X]$ such that for all sufficiently large $n \in \mathbb N$

$$\Pr_{\substack{G \in \text{ER}(n,1/2) \\ K \in P(n,5 \log n)}} \left[\mathbb{A}(G+K) \neq K \right] \geq \frac{1}{p(n)}.$$

That is, \mathbb{A} fails to find the planted clique with non-negligible probability.

Assuming the planted clique conjecture

- 1. The classical clique problem is hard on average.
- 2. $(G, K) \mapsto G + K$ is a one-way function [Juels and Peinado, 2000].
- 3. Nash equilibrium is hard to approximate [Minder and Vilenchik, 2009; Hazan and Krauthgamer, 2011].
- 4. It is hard to decide whether a graph is Ramsey [Santhanam, 2010].

Our main technical result

Theorem

Assume:

- (i) AC⁰ circuits,
- (ii) $\alpha: \mathbb{N} \to \mathbb{R}^+$ with $\lim_{n \to \infty} \alpha(n) = 0$,
- (iii) $k : \mathbb{N} \to \mathbb{N}$ with $k(n) \leqslant n^{1-\varepsilon}$ for $1 \ge \varepsilon > 0$.

Then

$$\underset{n\to\infty}{\text{lim}} \Pr_{\substack{G\in ER(n,n^{-\alpha(n)}),\\K\in P(n,k(n))}} \left[C_n(G)=C_n(G+K)\right]=1.$$

Our main technical result (cont'd)

Theorem

Assume Then

$$\lim_{n\to\infty} \Pr_{\substack{G\in \text{ER}(n,n^{-\alpha(n)}),\\K\in P(n,k(n))}} \left[\mathsf{C}_n(G) = \mathsf{C}_n(G+K) \right] = 1.$$

By taking $\alpha(n) = 1/\log n$ and $k(n) = 5\log n$

$$\lim_{n\to\infty} \Pr_{\substack{G\in \mathsf{ER}(n,1/2),\\K\in P(n,5\log n)}} \left[\mathsf{C}_n(G)=\mathsf{C}_n(G+K)\right]=1.$$

Thus,

$$\lim_{n\to\infty} \left| \Pr_{G\in \mathsf{ER}(n,1/2)} \left[\mathsf{C}_n(G) = 1 \right] - \Pr_{\substack{G\in \mathsf{ER}(n,1/2),\\K\in P(n,5\log n)}} \left[\mathsf{C}_n(G+K) = 1 \right] \right| = 0.$$

Our main technical result (cont'd)

If we take

$$\alpha(n) = \frac{1}{\log \log \log n} \quad \text{and} \quad k(n) = n^{0.999},$$

then with high probability $G \in \mathsf{ER}(n, n^{-\alpha(n)})$ has no clique of size

$$2 \log \log \log n$$
,

but still we have

$$\lim_{n\to\infty} \Pr_{\substack{G\in \mathsf{ER}(n,n^{-\alpha(n)}),\\K\in P(n,n^{0.999})}} \left[\mathsf{C}_n(G)=\mathsf{C}_n(G+K)\right]=1.$$

An application in logic

Theorem

For every $m \in \mathbb{N}$

$$\lim_{n\to\infty} \Pr_{\substack{G\in \mathsf{ER}(n,1/2),\\K\in P(n,5\log n)}} \left[\langle G,<,+,\times\rangle \equiv_m \big\langle (G+K),<,+,\times \big\rangle \right] = 1,$$

where $\langle G,<,+,\times\rangle\equiv_m \langle (G+K),<,+,\times\rangle$ means that for every FO-sentence φ with quantifier rank at most m

$$\langle G, <, +, \times \rangle \models \varphi \iff \langle (G + K), <, +, \times \rangle \models \varphi.$$

Thank You!