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Hilbert’s Program

I Formalize mathematics in a common framework;

I Establish Axioms to prove all mathematical truth;

I Prove that the system is consistent.

Gödel’s Answer

I For any strong enough and consistent axiom system, there is
always a true sentence which is unprovable. Such sentence
can be written as a statement about natural numbers.

I In fact, no consistent axiom system can prove its own
consistency, i.e., the statement that the system is consistent.
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A combinatorial result:

Notation
We use [X ]k to denote the collection of all k-element subsets of X ,
and N = {0, 1, 2 . . . ,N − 1}.

Ramsey’s Theorem

For every k , m, there is a number N such that for any
f : [N]k → {0, 1}, there is a subset X ⊂ N of size at least m such
that f � [X ]k is constant.



Definition
A finite set of natural numbers is large if its size is greater than or
equal to its least element.

Modified Ramsey’s Theorem

For every k , m, there is a number N such that for any
f : [N]k → {0, 1}, there is a large subset X ⊂ N of size at least m
such that f � [X ]k is constant.

Paris-Harrington Theorem

The Modified Ramsey’s Theorem is not provable in Peano
Arithmetic (PA, basic axioms about natural numbers plus
induction).
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Quantifier Complexity

Given a sentence P in arithmetic (N,+,×), we define the
quantifier complexity by the number of alternations of quantifiers
(∀ and ∃) in P.

Examples:

I Goldbach Conjecture (Π1)

I Odd Perfect Number Conjecture (Π1)

I Twin Prime Conjecture (Π2)

I “3x + 1” Conjecture (Π2)

I “P 6= NP” (Π2)

I Riemann Hypothesis (equivalent to Π1)

I π + e is rational (Σ2)

I abc Conjecture (Π3)

I “X is provable/unprovable in PA” (Σ1/Π1)
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Question
Given an unprovable sentence P, how hard it might be to prove the
sentence “P is unprovable (say in PA)” (the unprovability of P)?

Facts

I “P is unprovable” is a Π1 sentence.

I This sentence proves the con(PA), the consistency of PA.

I For the Gödel’s self-reference sentence, or the Modified
Ramsey Theorem, we only need con(PA) to prove that it is
unprovable.

I So is Con(PA) always enough to prove such unprovability
statement?
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Theorem [C.]

For every true Π1 sentence Q which proves the con(PA), there is a
true sentence P such that PA proves:

Q ⇔ “P is unprovable in PA”.

Corollary

A sentence Q is provably equivalent to the unprovability of some
sentence if and only if Q is provably equivalent to a Π1 sentence
which proves the con(PA). So the unprovability of a sentence could
be arbitrarily hard to prove.
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Proof, very sketchy

Requirements: Prov(P) ⇐⇒ ¬Q.

We use a dynamic (effective) method to construct a sentence P
assuming that we already know its Gödel number, with the
following properties:

I If we detect that ¬Q is true in the construction (we find a
witness which falsifies Q), then we make P provably true, for
example make P equivalent to 0 = 0.

I If we detect that Prov(P) is true, i.e., we find a proof from
PA to P,then we make P provably equivalent to Con(PA).
(So if this happens, then PA proves Con(PA), and by Gödel,
this implies ¬Con(PA), which implies ¬Q).
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Theorem [C.]

Given any consistent theory T extending the base theory PA, we
can always find a true sentence P such that:

I T does not prove P, and

I T does not prove “P is unprovable in PA”.



What we have learned:

I We may have to accept some open conjectures (e.g., Riemann
Hypothesis) and use them as axioms if we fail to prove them
and fail to prove that they are unprovable.

I Natural candidates of such new “axioms” are Π1 sentences
(typically, consistency of a system such as ZFC).

I Given an open conjecture P, if it is unprovable, it is still
possible we can prove P from such a new “axiom”, e.g., a
true Π1 sentence.

I So how about proving everything from true Π1 sentences?

The story continues...

The Modified Ramsey Theorem (which is Π2) is not provable in PA
from any true Π1 sentence.
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Definition
Given a sentence P, we define the level-2 unprovability (resp.
level-n) of P as the following sentence:

“P is not provable in PA from any true Π1 (resp. Πn−1) sentence”

Theorem [C.]

The level-n unprovability of a sentence could be arbitrarily hard to
prove. More precisely, A sentence Q is provably equivalent to a
level-n unprovability of some sentence if and only if it is provably
equivalent to a Πn sentence which proves the Πn-soundness of PA.

Proof, very very sketchy

Relativize the previous proof above 0(n−1).
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Epilogue: A Dialogue

Hilbert: Prove all truths.

Gödel: David, wake up! This is a dream. A true sentence P
could be unprovable.

Hilbert: OK, in this case let us at least prove that such P is
unprovable.

Gödel: Well, when you wake up from one dream, it is
possible that you are still dreaming.
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Gödel: David, wake up! This is a dream. A true sentence P
could be unprovable.

Hilbert: OK, in this case let us at least prove that such P is
unprovable.
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