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Definiteness of a structure implies

the definiteness of its truth

In my view, the conception [of the bare order
structure of the natural numbers N, with its least
element and the attendant operations of successor
and predecessor] is completely clear, and thence all
arithmetical statements are definite

Solomon Feferman
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Definiteness of a structure implies

the definiteness of its truth

It is true in the sense that the truth of a given (set) structure
is always definable, and so uniquely determined in the universe
of sets.
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Another perspective

Models of set theory can have the same structure of
arithmetic (N,+, ·, 0, 1), yet disagree on arithmetic truth.

Models of set theory can have the same reals, yet
disagree on projective truth.

Models of set theory can have a transitive rank initial
segment Vδ in common, yet disagree about its truth.

These suggest that the determinateness of truth for a
structure is also a higher-order commitment.
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The usual incompleteness

Models of set theory may have different arithmetic truth,
projective truth, set theory truth, etc. In most cases, we prove
these independence results buy adding something in or cutting
something off.
Here we can have models of set theory with the same fixed
structure resides in yet disagree on its truth or satisfaction
class.
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Main theorem

Every consistent extension of ZFC has two models M1 and M2,
which agree on the natural numbers and on the structure
(N,+, ·, 0, 1)M1 = (N,+, ·, 0, 1)M2 , but which disagree on
arithmetic truth, in the sense that there is σ ∈NM1 =NM2

such that both M1 and M2 think σ is an arithmetic sentence,
while M1 thinks σ is true, but M2 thinks it is false.
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The proof

We start with a computably saturated countable model M
of ZFC and its arithmetic structure (N, Sa)M with the
satisfaction class or truth class Sa, which is
ZFC-definable.

Since Sa is not definable in N, there exists σ, τ ∈NM

realizing the same 1-type in NM, such that σ ∈ SaM but
τ < SaM.
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The proof (continued)

Too see such σ and τ exists, consider the computable
2-type

p(s, t) =
{
φ(s)↔ φ(t)

}
φ∈LAr

∪ {s ∈ Sa ∧ t < Sa}.

It is finitely realized simply because SaM is not definable
in NM.
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The proof (continued.)

Now we have arithmetics sentences σ and τ realizing the
same 1-type in NM, yet M thinks σ is true and τ is false
in NM.

By a back and forth construction, there is an
automorphism π on NM with π(τ) = σ.
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The proof (continued..)

Extend π to be an isomorphism π∗ : M→ M′.

Thus an element m ∈NM sits inside M the same way
that π(m) sits inside M′.

The situation is that M and M′ has the same natural
numbers, and M thinks σ is truth, but M′ thinks σ is false
because σ = π(τ) and M thinks τ is false.
[QED]
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Some remarks

In the proof, we only need the structure to be able to
handle Gödel’s coding and so the satisfaction class is an
undefinable subclass of the structure. Therefore, the
theorem can be easily generalized.

The disagreement happens on a nonstandard point, and
we have no idea on what it may speak of.
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Disagree on a “readable” sentence

Theorem
Every countable model M of ZFC has elementary extensions
M1 and M2, with a transitive rank-initial segment
(Vδ,∈)M1 = (Vδ,∈)M2 in common, yet M1 thinks Vδ violates
Σn-collection firstly on an even number n, and M2 thinks it is
odd.
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Sketch of proof

Begin with a countable ZFC model M, take

T1 = ∆(M) + “Vδ ≺ V ′′

+ “the least n such that Vδ 2 Σn-collection is even′′

and T2 correspondingly.

Both T1 and T2 are consistent, take computably saturated
model pair of T1 and T2, and get the isomorphism.
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Some philosophical remarks

Coordinate system to measure one’s view on the philosophy of
mathematics

realism in ontology vs. idealism (nominalism in ontology)

realism in truth-value vs. anti-realism truth-value
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Some philosophical remarks

There is a prima facie alliance between realism in
truth-value and realism in ontology... [Although] The
ontology thesis that numbers exists objectively may
not directly follow from the semantic thesis of
truth-value realism

Stewart Shapiro
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Some philosophical remarks

Figure: Plato’s allegory of the Cave
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