On Absoluteness of Mathematical Truth

Joel D. Hamkins¹ Ruizhi Yang²

¹The City University of New York

²School of Philosophy

Fudan University

September 17, 2013

The 13th Asian Logic Conference

In my view, the conception [of the bare order structure of the natural numbers \mathbb{N} , with its least element and the attendant operations of successor and predecessor] is completely clear, and thence all arithmetical statements are definite

Solomon Feferman

In my view, the conception [of the bare order structure of the natural numbers \mathbb{N} , with its least element and the attendant operations of successor and predecessor] is completely clear, and thence all arithmetical statements are definite

Solomon Feferman

It is true in the sense that the truth of a given (set) structure is always definable, and so uniquely determined in the universe of sets.

It is true in the sense that the truth of a given (set) structure is always definable, and so uniquely determined in the universe of sets.

- Models of set theory can have the same structure of arithmetic (N, +, ·, 0, 1), yet disagree on arithmetic truth.
- Models of set theory can have the same reals, yet disagree on projective truth.
- Models of set theory can have a transitive rank initial segment V_δ in common, yet disagree about its truth.

- Models of set theory can have the same structure of arithmetic (N, +, ·, 0, 1), yet disagree on arithmetic truth.
 Models of set theory can have the same reals, yet disagree on projective truth.
- Models of set theory can have a transitive rank initial segment V_δ in common, yet disagree about its truth.

- Models of set theory can have the same structure of arithmetic (N, +, ·, 0, 1), yet disagree on arithmetic truth.
 Models of set theory can have the same reals, yet disagree on projective truth.
- Models of set theory can have a transitive rank initial segment V_δ in common, yet disagree about its truth.

- Models of set theory can have the same structure of arithmetic (𝔅, +, ·, 0, 1), yet disagree on arithmetic truth.
- Models of set theory can have the same reals, yet disagree on projective truth.
- Models of set theory can have a transitive rank initial segment V_δ in common, yet disagree about its truth.

- Models of set theory can have the same structure of arithmetic (𝔹, +, ·, 0, 1), yet disagree on arithmetic truth.
- Models of set theory can have the same reals, yet disagree on projective truth.
- Models of set theory can have a transitive rank initial segment V_δ in common, yet disagree about its truth.

The usual incompleteness

Models of set theory may have different arithmetic truth, projective truth, set theory truth, etc. In most cases, we prove these independence results buy adding something in or cutting something off.

Here we can have models of set theory with the same fixed structure resides in yet disagree on its truth or satisfaction class.

The usual incompleteness

Models of set theory may have different arithmetic truth, projective truth, set theory truth, etc. In most cases, we prove these independence results buy adding something in or cutting something off.

Here we can have models of set theory with the same fixed structure resides in yet disagree on its truth or satisfaction class.

The usual incompleteness

Models of set theory may have different arithmetic truth, projective truth, set theory truth, etc. In most cases, we prove these independence results buy adding something in or cutting something off.

Here we can have models of set theory with the same fixed structure resides in yet disagree on its truth or satisfaction class.

Main theorem

Every consistent extension of ZFC has two models M_1 and M_2 , which agree on the natural numbers and on the structure $(\mathbb{N}, +, \cdot, 0, 1)^{M_1} = (\mathbb{N}, +, \cdot, 0, 1)^{M_2}$, but which disagree on arithmetic truth, in the sense that there is $\sigma \in \mathbb{N}^{M_1} = \mathbb{N}^{M_2}$ such that both M_1 and M_2 think σ is an arithmetic sentence, while M_1 thinks σ is true, but M_2 thinks it is false.

- We start with a computably saturated countable model M of ZFC and its arithmetic structure (ℜ, Sa)^M with the satisfaction class or truth class Sa, which is ZFC-definable.
- Since Sa is not definable in \mathfrak{N} , there exists $\sigma, \tau \in \mathbb{N}^M$ realizing the same 1-type in \mathfrak{N}^M , such that $\sigma \in Sa^M$ but $\tau \notin Sa^M$.

- We start with a computably saturated countable model *M* of ZFC and its arithmetic structure (ℜ, Sa)^{*M*} with the satisfaction class or truth class Sa, which is ZFC-definable.
- Since Sa is not definable in \mathfrak{N} , there exists $\sigma, \tau \in \mathbb{N}^M$ realizing the same 1-type in \mathfrak{N}^M , such that $\sigma \in Sa^M$ but $\tau \notin Sa^M$.

- We start with a computably saturated countable model M of ZFC and its arithmetic structure (N, Sa)^M with the satisfaction class or truth class Sa, which is ZFC-definable.
- Since Sa is not definable in \mathfrak{N} , there exists $\sigma, \tau \in \mathbb{N}^M$ realizing the same 1-type in \mathfrak{N}^M , such that $\sigma \in Sa^M$ but $\tau \notin Sa^M$.

- We start with a computably saturated countable model *M* of ZFC and its arithmetic structure (ℜ, Sa)^{*M*} with the satisfaction class or truth class Sa, which is ZFC-definable.
- Since Sa is not definable in \mathfrak{N} , there exists $\sigma, \tau \in \mathbb{N}^M$ realizing the same 1-type in \mathfrak{N}^M , such that $\sigma \in Sa^M$ but $\tau \notin Sa^M$.

- We start with a computably saturated countable model *M* of ZFC and its arithmetic structure (ℜ, Sa)^{*M*} with the satisfaction class or truth class Sa, which is ZFC-definable.
- Since Sa is not definable in \mathfrak{N} , there exists $\sigma, \tau \in \mathbb{N}^M$ realizing the same 1-type in \mathfrak{N}^M , such that $\sigma \in Sa^M$ but $\tau \notin Sa^M$.

Too see such σ and τ exists, consider the computable
 2-type

$$p(s,t) = \left\{ \varphi(s) \leftrightarrow \varphi(t) \right\}_{\varphi \in L_{A_r}} \cup \{ s \in \mathsf{Sa} \land t \notin \mathsf{Sa} \}.$$

It is finitely realized simply because Sa^M is not definable in \mathfrak{N}^M .

- Now we have arithmetics sentences σ and τ realizing the same 1-type in 𝔑^M, yet *M* thinks σ is true and τ is false in 𝔑^M.
- By a back and forth construction, there is an automorphism π on N^M with π(τ) = σ.

- Now we have arithmetics sentences σ and τ realizing the same 1-type in 𝔅^M, yet *M* thinks σ is true and τ is false in 𝔅^M.
- By a back and forth construction, there is an automorphism π on N^M with π(τ) = σ.

• Extend π to be an isomorphism $\pi^* : M \to M'$.

- Thus an element $m \in \mathbb{N}^M$ sits inside M the same way that $\pi(m)$ sits inside M'.
- The situation is that M and M' has the same natural numbers, and M thinks σ is truth, but M' thinks σ is false because σ = π(τ) and M thinks τ is false. [QED]

- Extend π to be an isomorphism $\pi^* : M \to M'$.
- Thus an element $m \in \mathbb{N}^M$ sits inside M the same way that $\pi(m)$ sits inside M'.
- The situation is that *M* and *M* has the same natural numbers, and *M* thinks σ is truth, but *M* thinks σ is false because σ = π(τ) and *M* thinks τ is false. [QED]

- Extend π to be an isomorphism $\pi^* : M \to M'$.
- Thus an element $m \in \mathbb{N}^M$ sits inside M the same way that $\pi(m)$ sits inside M'.
- The situation is that M and M' has the same natural numbers, and M thinks σ is truth, but M' thinks σ is false because σ = π(τ) and M thinks τ is false.

[QED]

- Extend π to be an isomorphism $\pi^* : M \to M'$.
- Thus an element $m \in \mathbb{N}^M$ sits inside M the same way that $\pi(m)$ sits inside M'.
- The situation is that M and M' has the same natural numbers, and M thinks σ is truth, but M' thinks σ is false because σ = π(τ) and M thinks τ is false. [QED]

Some remarks

- In the proof, we only need the structure to be able to handle Gödel's coding and so the satisfaction class is an undefinable subclass of the structure. Therefore, the theorem can be easily generalized.
- The disagreement happens on a nonstandard point, and we have no idea on what it may speak of.

Some remarks

- In the proof, we only need the structure to be able to handle Gödel's coding and so the satisfaction class is an undefinable subclass of the structure. Therefore, the theorem can be easily generalized.
- The disagreement happens on a nonstandard point, and we have no idea on what it may speak of.

Disagree on a "readable" sentence

Theorem

Every countable model M of ZFC has elementary extensions M_1 and M_2 , with a transitive rank-initial segment $(V_{\delta}, \in)^{M_1} = (V_{\delta}, \in)^{M_2}$ in common, yet M_1 thinks V_{δ} violates Σ_n -collection firstly on an even number n, and M_2 thinks it is odd.

Sketch of proof

Begin with a countable ZFC model M, take

 $T_1 = \Delta(M) + "V_\delta \prec V"$

+ "the least *n* such that $V_{\delta} \nvDash \Sigma_n$ -collection is even"

and T_2 correspondingly.

Both T₁ and T₂ are consistent, take computably saturated model pair of T₁ and T₂, and get the isomorphism.

Some philosophical remarks

Coordinate system to measure one's view on the philosophy of mathematics

- realism in ontology vs. idealism (nominalism in ontology)
- realism in truth-value vs. anti-realism truth-value

Some philosophical remarks

There is a prima facie alliance between realism in truth-value and realism in ontology... [Although] The ontology thesis that numbers exists objectively may not directly follow from the semantic thesis of truth-value realism

Stewart Shapiro

Some philosophical remarks

Figure: Plato's allegory of the Cave

Thank You

yangruizhi@fudan.edu.cn