On Strong Π_1^1 -Martin-Löf Randomness

Liang Yu Institute of Mathematical Science Nanjing University

June 15, 2013

うして ふゆう ふほう ふほう ふしつ

Theorem (Spector; Gandy)

A real $x \subseteq \omega$ is Π^1_1 if and only if it is Σ_1 over $L_{\omega_1^{CK}}$

Based on Spector-Gandy Theorem, we may define a Turing reduction in the higher setting.

Definition (Greenberg, Laurent and Monin)

A real $x \leq_{hT} y$ if there is a $\Sigma_1(L_{\omega_1^{CK}})$ relation $\Phi \subseteq 2^{<\omega} \times 2^{<\omega}$ so that

- If τ_0 and τ_1 are comparable, then for any σ_0, σ_1 , if $\Phi(\sigma_0, \tau_0)$ and $\Phi(\sigma_1, \tau_1)$, then σ_0 and σ_1 are comparable; and
- **2** For any $\sigma \prec x$, there is some $\tau \prec y$ such that $\Phi(\sigma, \tau)$.

Definition (Martin-Löf)

- (i) A Martin-Löf test is a computable collection $\{V_n : n \in \mathbb{N}\}$ of c.e. sets such that $\mu(V_n) \leq 2^{-n}$.
- (ii) A real y is said to pass the Martin-Löf test if $y \notin \bigcap_{n \in \omega} V_n$.

うして ふゆう ふほう ふほう ふしつ

(iii) A real y is Martin-Löf random if it passes all the Martin-Löf tests.

Definition (Hjorth and Nies)

- (i) A Martin-Löf test is a Π_1^1 collection $\{V_n : n \in \mathbb{N}\}$ of Π_1^1 -coded open sets such that $\mu(V_n) \leq 2^{-n}$.
- (ii) A real y is said to pass the Π_1^1 Martin-Löf test if $y \notin \bigcap_{n \in \omega} V_n$.
- (iii) A real y is Π¹₁-Martin-Löf random if it passes all the Π¹₁ Martin-Löf tests.

The collection of Π_1^1 -Martin-Löf random reals is Σ_2^0 but not Π_2^0 .

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

There is a Π_1^1 -Martin-Löf random, left- Π_1^1 - real $\Omega_{\Pi_1^1}$ so that for any left Π_1^1 real $x, x \leq_{hT} \Omega_{\Pi_1^1}$.

Definition (Kurtz)

- (i) A generalized Martin-Löf test is a computable collection $\{V_n : n \in \mathbb{N}\}$ of c.e. sets such that $\lim_{n\to\infty} \mu(V_n) = 0$.
- (ii) A real y is said to pass the generalized Martin-Löf test if $y \notin \bigcap_{n \in \omega} V_n$.

うして ふゆう ふほう ふほう ふしつ

 (iii) A real y is strong ML-random if it passes all the generalized Martin-Löf tests.

Definition (Nies)

- (i) A generalized Π_1^1 Martin-Löf test is a Π_1^1 collection $\{V_n : n \in \mathbb{N}\}$ of Π_1^1 coded open sets such that $\lim_{n\to\infty} \mu(V_n) = 0.$
- (ii) A real y is said to pass the generalized Π_1^1 Martin-Löf test if $y \notin \bigcap_{n \in \omega} V_n$.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

 (iii) A real y is Π¹₁ strong ML-random if it passes all the Π¹₁-generalized Martin-Löf tests.

Theorem (Yu; Greenberg, Laurent and Monin)

 Π_1^1 strong ML-randomness is properly stronger than Π_1^1 -ML-randomness. Actually $\Omega_{\Pi_1^1}$ is not strong ML-randomn.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Proof.

We use an argument due to GLM.

Lemma

Suppose that $\{U_n\}_{n \in \omega}$ is a uniformly Π_1^1 -sequence of open sets. If there is a $\Sigma_1(L_{\omega,CK})$ enumeration $\{U_{n,\gamma}\}_{n\in\omega,\gamma<\omega,CK}$ of the sequence with two numbers k and m > 1 such that for every n, $U_n = \bigcup_{\gamma < \omega_{\gamma}^{\mathrm{CK}}} \hat{U}_{n,\gamma}$ and for every $\gamma < \omega_1^{\mathrm{CK}}$: (a) $\hat{U}_{n+1,\gamma} \subseteq \hat{U}_{n,\gamma}$ and each string in \hat{U}_n has length at least $2^{k \cdot n}$, (b) $\forall \sigma \in 2^{k \cdot n - m} (\mu(\hat{U}_{n, \gamma} \cap [\sigma]) < 2^{-1 + m - k \cdot n}), and$ (c) For $\gamma < \omega_1^{\text{CK}}$ and any real z, if $z \in \hat{U}_{n,<\gamma} \setminus \hat{U}_{n,\gamma}$, where $\hat{U}_{n,<\gamma} = \bigcup_{\beta<\gamma} \hat{U}_{n,\beta}$, then $z \notin \hat{U}_{n,\beta}$ for any $\beta \geq \gamma$. Then $\{U_n\}_{n\in\omega}$ is a generalized Π_1^1 -ML-test.

Characterizing the difference via hyperarithmetic reduction

Theorem (Chong and Yu)

For any hyperdegree \mathbf{a} , \mathbf{a} contains a Π_1^1 -ML-random but not strong Π_1^1 -ML-random real if and only if $\mathbf{a} \geq_h \mathbf{0}'$.

うして ふゆう ふほう ふほう ふしつ

Proof.

Combining the Lemma with Kučera coding.

Π_1^1 -Difference Randomness

Definition

(i) A d-Π¹₁ test is a Π¹₁ collection {V_n : n ∈ ℕ} of Π¹₁ open sets and a Σ¹₁-closed-set T such that ∀nµ(V_n ∩ T) < 2⁻ⁿ.
(ii) A real y is said to pass the d-Π¹₁ test if y ∉ ∩_{n∈ω} V_n ∩ T.
(iii) A real y is Π¹₁ difference random if it passes all the-Π¹₁ tests.

うして 山口 マート エー・ エー・ ショー

Characterizing Π_1^1 -Difference-Randomness via hT-reduction

Theorem (Nies)

A Π_1^1 -ML-random real x is not Π_1^1 difference random if and only if $\Omega_{\Pi_1^1} \leq_{hT} x$.

Proof.

 $\leftarrow.$ A routine argument from classical randomness due to Levin-Miller-Yu.

 $\begin{array}{l} \rightarrow \ \, \text{Fix a } \Sigma_1^1\text{-closed set }T \text{ and a } \Pi_1^1 \text{ collection } \{V_n:n\in\mathbb{N}\} \text{ of } \Pi_1^1 \\ \text{sets such that } x\in\bigcap_{n\in\omega}(T\cap V_n). \text{ For any }k, \text{ if }m\geq k \text{ belongs} \\ \text{to }\mathscr{O} \text{ at some stage }\beta \text{ and }\mu(T[\gamma]\cap V_m[\beta])\leq 2^{-k} \text{ for some} \\ \gamma\geq\beta, \text{ we put an open set with measure }\leq 2^{-k+1} \text{ covering the} \\ \text{difference test at stage }\gamma \text{ into } U_k. \text{ Then } \{\bigcup_{k\geq n+1}U_k\}_{n\in\omega} \text{ is a} \\ \Pi_1^1\text{-ML-test and } x\notin\bigcap_n\bigcup_{k>n+1}U_k. \text{ Then } \mathscr{O}\leq_{hT}x. \end{array}$

Strong Π_1^1 -ML-Randomness implies Difference Randomness

The classical proof is quite easy. But the higher setting is more subtle.

The classical proof is quite easy. But the higher setting is more subtle.

Theorem (Greenberg, Laurent and Monin)

No strong Π_1^1 -ML-Randomness is hT above $\Omega_{\Pi_1^1}$. So strong Π_1^1 -ML-randomness implies difference randomness.

Proof.

By a routine argument from classical randomness due to Levin-Miller-Yu, it can be shown that if x is strong Π_1^1 -ML-Random and $y \leq_h x$, then so is y. Then apply $\Omega_{\Pi_1^1}$.

The Borel Rank of Strong Π_1^1 -ML-Randomness

Theorem (Yu)

The collection of strong Π_1^1 -ML-random reals is not Σ_3^0 .

Proof.

By a forcing argument. The key point is to apply Π_1^1 -difference tests.

うして ふゆう ふほう ふほう ふしつ

Thanks!