Classical Theorems in Reverse Recursion and α -Recursion

Li Wei liwei.sg@gmail.com

Department of Mathematics National University of Singapore

15 June, 2013

Introduction to Reverse Recursion and $\alpha\text{-Recursion}$

Blocking Method

Friedberg Numbering

Study Recursion Theory "Reversely".

- Study Recursion Theory "Reversely".
- Main question: How much induction do we need to prove theorems in Recursion Theory?
 V.S. Main question of Reverse Mathematics: What set existence axiom do we need to prove theorems in algebra, analysis, geometry, etc.?

- Study Recursion Theory "Reversely".
- Main question: How much induction do we need to prove theorems in Recursion Theory?
 V.S. Main question of Reverse Mathematics: What set existence axiom do we need to prove theorems in algebra, analysis, geometry, etc.?
- ► It was started in 1980s, using first order language.

- Study Recursion Theory "Reversely".
- Main question: How much induction do we need to prove theorems in Recursion Theory?
 V.S. Main question of Reverse Mathematics: What set existence axiom do we need to prove theorems in algebra, analysis, geometry, etc.?
- ▶ It was started in 1980s, using first order language.
- The first result, which says Friedberg-Muchnik theorem is provable in Σ₁ induction, was got by S. Simpson.

Hierarchy of Induction (by Pairs and Kirby, 1978; Mytilinaios and Slaman, 1989; Slaman, 2004)

 $I\Sigma_2 \Leftrightarrow I\Pi_2: \text{ Infinite injury}$ $B\Sigma_2 \Leftrightarrow I\Delta_2$ $I\Sigma_1 \Leftrightarrow I\Pi_1: \text{ Finite injury}$ $\underline{B\Sigma_1} \Leftrightarrow I\Delta_1$

In the 1960's, Kreisel suggested the idea of generalizing the syntactic aspects of classical recursion theory, building on the earlier works of Church, Gandy, Kleene, Spector and Kreisel himself.

- In the 1960's, Kreisel suggested the idea of generalizing the syntactic aspects of classical recursion theory, building on the earlier works of Church, Gandy, Kleene, Spector and Kreisel himself.
- Sacks pursued this idea and developed recursion theory on admissible ordinals.

- In the 1960's, Kreisel suggested the idea of generalizing the syntactic aspects of classical recursion theory, building on the earlier works of Church, Gandy, Kleene, Spector and Kreisel himself.
- Sacks pursued this idea and developed recursion theory on admissible ordinals.
- Admissible ordinal α : $L_{\alpha} \models \Sigma_1$ replacement.

In general, admissible ordinals lack certain combinatorial properties that come with the standard model ω and crucial to the construction of r.e. sets.

- In general, admissible ordinals lack certain combinatorial properties that come with the standard model ω and crucial to the construction of r.e. sets.
- This results in constructions which are sometimes much more intricate than those for ω, and in certain cases, the failure of the combinatorial property leads to a negative conclusion.

Fragments of Peano Arithmetic and α -Recursion Theory each provides a platform for the study of models of computation to study recursion theory.

Fragments of Peano Arithmetic and α -Recursion Theory each provides a platform for the study of models of computation to study recursion theory.

The key properties of a computation should not depend solely on the underlying structure of the standard model. Fragments of Peano Arithmetic and α -Recursion Theory each provides a platform for the study of models of computation to study recursion theory.

- The key properties of a computation should not depend solely on the underlying structure of the standard model.
- Therefore, it is necessary and possible to consider notions of computation in a more general setting.

They also offer a framework for the investigation of logical strength.

They also offer a framework for the investigation of logical strength.

Reverse Recursion Theory: investigate the inductive strength required to show theorems in Recursion Theory. They also offer a framework for the investigation of logical strength.

- Reverse Recursion Theory: investigate the inductive strength required to show theorems in Recursion Theory.
- α-Recursion Theory: investigate the necessary and sufficient replacement axioms for theorems in Recursion Theory.

Reverse Recursion V.S. α -Recursion

	Reverse Recursion	α -Recursion
Language	Language of Arithmetic	Language of Set The-
	$\mathcal{L}(0, 1, +, \cdot)$	ory $\mathcal{L}(\in)$
Axioms	P $^-$, $I\Sigma_n$, $B\Sigma_n$, etc	Σ_1 replacement
Models	Nonstandard models	L_{lpha} , where $lpha$ is admissi-
	of arithmetic with	ble
	restricted induction	
Difficulty	lack of induction	lack of replacement
r.e. sets	Σ_1 definable	
finite sets	have a code in the model	
Turing	setwise	
reducibility		

Results

	Fragments of PA	α -recursion theory
Friedberg-	Every model of $B\Sigma_1$	every admissible ordi-
Muchnik	(Chong and Mourad)	nal (Sacks and Simp-
		son)
Sacks' Splitting	Equivalent to	every admissible ordi-
	$I\Sigma_1$ over $B\Sigma_1$	nal (Shore)
	(Mytilinaios)	
Sacks' Density	Every model of $B\Sigma_2$	every admissible ordi-
	(Groszek, Mytilinaios	nal (Shore)
	and Slaman)	
Minimal Pair	Equivalent to $I\Sigma_2$	some admissible ordi-
	over $B\Sigma_2$ (Chong,	nals [partially open]
	Qian, Slaman and	(Lerman, Sacks,
	Yang)	Shore, Maass)

Example 1 — Shore's blocking method

Theorem 1

- If α is admissible, then Sacks' splitting theorem holds in L_{α} .
- In reverse recursion theory, Sacks' splitting theorem is true in every model satisfying Σ₁ induction.

Idea. A straightforward application of the classical proof requires Σ_2 replacement in α -recursion and Σ_2 induction in reverse recursion.

Sacks' Splitting — α -Recursion

Suppose W is a non-recursive r.e. set in L_{α} and we would like to construct two r.e. sets A,B such that

- $A \cup B = W$ and $A \cap B = \emptyset$.
- $A \not\geq_T W$ and $B \not\geq_T W$.

Requirement:

$$A \neq \Phi_e^W, \qquad B \neq \Phi_e^W.$$

Each requirement is injured *finitely* many times.

Shore's blocking method — α -Recursion

If L_α does not satisfy Σ_2 replacement, then there is the least $\beta < \alpha$ such that

 $\exists f(f:\beta \to \alpha \text{ is cofinal and } \Sigma_2 \text{ definable over } L_\alpha)$

Shore's blocking method — α -Recursion

If L_α does not satisfy Σ_2 replacement, then there is the least $\beta < \alpha$ such that

 $\exists f(f:\beta \to \alpha \text{ is cofinal and } \Sigma_2 \text{ definable over } L_\alpha)$

Consider requirements, $A\neq \Phi^W_e$ for $e\mbox{'s}$ in one block as one requirement.

Straightforward extension of the idea in $\alpha\text{-Recursion}$ does not work: there is the least $\beta<\alpha$ such that

 $\exists f(f:\beta \to \alpha \text{ is cofinal and } \Sigma_2 \text{ definable over } L_\alpha)$

Modification: blocks are defined dynamically. There are cofinally many blocks.

Example 2 — Friedberg Numbering

Definition 2

Let $\{A_e\}$ be an effective list of r.e. sets. We say $\{A_e\}$ is a Friedberg Numbering if

(i)
$$e \neq d \rightarrow A_e \neq A_d$$
.

(ii) For every r.e. set A, there is an e such that $A_e = A$.

In other words, a Friedberg numbering is an effective choice function for the collection of the equivalence classes of r.e. sets under set equality.

Question: Is there a Friedberg numbering for a given model of computation?

Let $\{W_e\}$ be an effective list of all r.e. sets (may have repetitions). **Observation:** For every r.e. set W, there is an e such that $W = W_e$ and

$$\forall d < e \, (W_d \neq W_e). \tag{1}$$

Moreover, (1) is equivalent to a Σ_2 statement. Thus, there is a method to recursively approximately determine whether e has property (1).

Fragments of PA without Σ_2 Induction

Suppose $\mathcal{M} \models B\Sigma_2 + \neg I\Sigma_2$. **Question:** is the following still true? "For every r.e. set W, there is an e such that $W = W_e$ and

 $\forall d < e \, (W_d \neq W_e)."$

Fragments of PA without Σ_2 Induction

Suppose $\mathcal{M} \models B\Sigma_2 + \neg I\Sigma_2$. **Question:** is the following still true? "For every r.e. set W, there is an e such that $W = W_e$ and

 $\forall d < e \, (W_d \neq W_e)."$

Answer: No. In fact, there is no Friedberg numbering for such models.

Fragments of PA without Σ_2 Induction

Suppose $\mathcal{M} \models B\Sigma_2 + \neg I\Sigma_2$. **Question:** is the following still true? "For every r.e. set W, there is an e such that $W = W_e$ and

 $\forall d < e \, (W_d \neq W_e)."$

Answer: No. In fact, there is no Friedberg numbering for such models.

Strategy: Given a recursive list of r.e. sets $\{A_e\}$ without repetition, construct an r.e. set not in the list.

Lemma 3

For every $a \in \mathcal{M}$, there is a b such that

$$\forall d, e < a \ (d \neq e \ \rightarrow \ A_d \upharpoonright b \neq A_e \upharpoonright b).$$

Result

Theorem 4

Over $P^- + B\Sigma_2$, Σ_2 induction holds if and only if there is a Friedberg numbering of all r.e. set.

Note: $I\Sigma_2$ — infinite injury.

Let α be an admissible ordinal.

If $L_{\alpha} \models \Sigma_2$ replacement, then there is a Friedberg numbering. Now we consider the case that Σ_2 replacement fails in L_{α} . **Observation:** For every r.e. set W, there is an e such that $W = W_e$ and

$$\forall d < e \, (W_d \neq W_e). \tag{2}$$

But (2) is Π_3 so does not permit a recursive approximation. Two representative cases: ω_1^{CK} , \aleph_{ω}^L . Case 1. $\alpha = \omega_1^{CK}$

Lemma 5

There is a $\Sigma_1(L_\alpha)$ definable injection $p: \omega_1^{CK} \to \omega$.

Therefore, the construction of a Friedberg numbering can be "essentially" carried out over L_{ω} .

Case 2: $\alpha = \aleph_{\omega}^{L}$

Conclusion: There is no Friedberg numbering in L_{α} .

Strategy: Proof by diagonalization.

Suppose $\{A_e\}_{e < \alpha}$ is a recursive list of r.e. sets without repetition. The objective is to construct an r.e. set X not in the list.

Proposition 6

There is an increasing $\Sigma_2(L_\alpha)$ cofinal function $f: \omega \to \aleph^L_\omega$ such that $f(n) = \aleph^L_n$.

Remark. Unlike the case for $B\Sigma_2$, in general, given an n, there is no b such that

$$\forall d, e < \aleph_n^L \, (d \neq e \to A_d \upharpoonright b \neq A_e \upharpoonright b)$$

We use stable ordinals in \aleph_{ω}^{L} , coding, and more to get around the difficulty and ensure the diagonalization successes.

Theorem

The characterization of Friedberg numbering for admissible ordinals is stated in terms of fine structure theory:

Theorem 7

 $t\sigma 2p(\alpha) = \sigma 2cf(\alpha)$ if and only if there is a Friedberg numbering.

Thank you!