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Reverse Recursion Theory

I Study Recursion Theory “Reversely”.

I Main question: How much induction do we need to prove
theorems in Recursion Theory?
V.S. Main question of Reverse Mathematics: What set
existence axiom do we need to prove theorems in algebra,
analysis, geometry, etc.?

I It was started in 1980s, using first order language.

I The first result, which says Friedberg-Muchnik theorem is
provable in Σ1 induction, was got by S. Simpson.
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Hierarchy of Induction (by Pairs and Kirby, 1978;
Mytilinaios and Slaman, 1989; Slaman, 2004)

q BΣ1 ⇔ I∆1

q IΣ1 ⇔ IΠ1: Finite injury

q BΣ2 ⇔ I∆2

q IΣ2 ⇔ IΠ2: Infinite injury

q
qqqqqq
qqq



α-Recursion

I In the 1960’s, Kreisel suggested the idea of generalizing the
syntactic aspects of classical recursion theory, building on the
earlier works of Church, Gandy, Kleene, Spector and Kreisel
himself.

I Sacks pursued this idea and developed recursion theory on
admissible ordinals.

I Admissible ordinal α: Lα |= Σ1 replacement.
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α-Recursion

I In general, admissible ordinals lack certain combinatorial
properties that come with the standard model ω and crucial
to the construction of r.e. sets.

I This results in constructions which are sometimes much more
intricate than those for ω, and in certain cases, the failure of
the combinatorial property leads to a negative conclusion.
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Motivations

Fragments of Peano Arithmetic and α-Recursion Theory each
provides a platform for the study of models of computation to
study recursion theory.

I The key properties of a computation should not depend solely
on the underlying structure of the standard model.

I Therefore, it is necessary and possible to consider notions of
computation in a more general setting.
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They also offer a framework for the investigation of logical
strength.

I Reverse Recursion Theory: investigate the inductive strength
required to show theorems in Recursion Theory.

I α-Recursion Theory: investigate the necessary and sufficient
replacement axioms for theorems in Recursion Theory.
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Reverse Recursion V.S. α-Recursion

Reverse Recursion α-Recursion

Language Language of Arithmetic
L(0, 1,+, ·)

Language of Set The-
ory L(∈)

Axioms P−, IΣn, BΣn, etc Σ1 replacement

Models Nonstandard models
of arithmetic with
restricted induction

Lα, where α is admissi-
ble

Difficulty lack of induction lack of replacement

r.e. sets Σ1 definable

finite sets have a code in the model

Turing
reducibility

setwise



Results

Fragments of PA α-recursion theory

Friedberg-
Muchnik

Every model of BΣ1

(Chong and Mourad)
every admissible ordi-
nal (Sacks and Simp-
son)

Sacks’ Splitting Equivalent to
IΣ1 over BΣ1

(Mytilinaios)

every admissible ordi-
nal (Shore)

Sacks’ Density Every model of BΣ2

(Groszek, Mytilinaios
and Slaman)

every admissible ordi-
nal (Shore)

Minimal Pair Equivalent to IΣ2

over BΣ2 (Chong,
Qian, Slaman and
Yang)

some admissible ordi-
nals [partially open]
(Lerman, Sacks,
Shore, Maass)



Example 1 — Shore’s blocking method

Theorem 1

I If α is admissible, then Sacks’ splitting theorem holds in Lα.

I In reverse recursion theory, Sacks’ splitting theorem is true in
every model satisfying Σ1 induction.

Idea. A straightforward application of the classical proof requires
Σ2 replacement in α-recursion and Σ2 induction in reverse
recursion.



Sacks’ Splitting — α-Recursion

Suppose W is a non-recursive r.e. set in Lα and we would like to
construct two r.e. sets A,B such that

I A ∪B = W and A ∩B = ∅.
I A 6≥T W and B 6≥T W .

Requirement:
A 6= ΦW

e , B 6= ΦW
e .

Each requirement is injured finitely many times.



Shore’s blocking method — α-Recursion

If Lα does not satisfy Σ2 replacement, then there is the least
β < α such that

∃f (f : β → α is cofinal and Σ2 definable over Lα)

Consider requirements, A 6= ΦW
e for e’s in one block as one

requirement.
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Shore’s blocking method — Reverse Recursion

Straightforward extension of the idea in α-Recursion does not
work: there is the least β < α such that

∃f (f : β → α is cofinal and Σ2 definable over Lα)

Modification: blocks are defined dynamically. There are cofinally
many blocks.



Example 2 — Friedberg Numbering

Definition 2

Let {Ae} be an effective list of r.e. sets. We say {Ae} is a
Friedberg Numbering if

(i) e 6= d→ Ae 6= Ad.

(ii) For every r.e. set A, there is an e such that Ae = A.

In other words, a Friedberg numbering is an effective choice
function for the collection of the equivalence classes of r.e. sets
under set equality.
Question: Is there a Friedberg numbering for a given model of
computation?



Standard Model

Let {We} be an effective list of all r.e. sets (may have repetitions).
Observation: For every r.e. set W , there is an e such that
W = We and

∀d < e (Wd 6= We). (1)

Moreover, (1) is equivalent to a Σ2 statement. Thus, there is a
method to recursively approximately determine whether e has
property (1).



Fragments of PA without Σ2 Induction

Suppose M |= BΣ2 + ¬IΣ2.
Question: is the following still true?
“For every r.e. set W , there is an e such that W = We and

∀d < e (Wd 6= We).”

Answer: No. In fact, there is no Friedberg numbering for such
models.
Strategy: Given a recursive list of r.e. sets {Ae} without
repetition, construct an r.e. set not in the list.
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Lemma 3

For every a ∈M, there is a b such that

∀d, e < a (d 6= e → Ad � b 6= Ae � b).



Result

Theorem 4

Over P− +BΣ2, Σ2 induction holds if and only if there is a
Friedberg numbering of all r.e. set.

Note: IΣ2 — infinite injury.



Admissible Ordinals

Let α be an admissible ordinal.
If Lα |= Σ2 replacement, then there is a Friedberg numbering.
Now we consider the case that Σ2 replacement fails in Lα.
Observation: For every r.e. set W , there is an e such that
W = We and

∀d < e (Wd 6= We). (2)

But (2) is Π3 so does not permit a recursive approximation.
Two representative cases: ωCK

1 , ℵLω .



Case 1. α = ωCK
1

Lemma 5

There is a Σ1(Lα) definable injection p : ωCK
1 → ω.

Therefore, the construction of a Friedberg numbering can be
“essentially” carried out over Lω.



Case 2: α = ℵLω

Conclusion: There is no Friedberg numbering in Lα.
Strategy: Proof by diagonalization.
Suppose {Ae}e<α is a recursive list of r.e. sets without repetition.
The objective is to construct an r.e. set X not in the list.

Proposition 6

There is an increasing Σ2(Lα) cofinal function f : ω → ℵLω such
that f(n) = ℵLn .

Remark. Unlike the case for BΣ2, in general, given an n, there is
no b such that

∀d, e < ℵLn (d 6= e → Ad � b 6= Ae � b)

We use stable ordinals in ℵLω , coding, and more to get around the
difficulty and ensure the diagonalization successes.



Theorem

The characterization of Friedberg numbering for admissible
ordinals is stated in terms of fine structure theory:

Theorem 7

tσ2p(α) = σ2cf(α) if and only if there is a Friedberg numbering.



Thank you!
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