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Introduction

What are strong axioms of infinity? Or large cardinal axioms?

• There are many degrees of infinity in mathematics:

|N| = ω = ℵ0 < ℵ1 < ℵ2 < · · · < ℵω < · · · ℵℵ1 < · · · ℵℵω · · ·

• The first infinite cardinal ω has many properties that make it
“large” compared to finite numbers 0, 1, 2, . . .. For example, if
|X | = n < ω then |P(X )| < ω.

• In a sense ω is a dividing line between the finite and the
infinite:

“finite” < ω ≤ “infinite”

• Strong axioms of infinity (or “large cardinal axioms”) typically
assert that there is a cardinal κ > ω such that the relationship
between things smaller than κ and things of size κ is similar
to the relationship of “finite” to “infinite.”
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Cantor and Set Theory

• In the 1870’s Cantor’s work on convergence of trigonometric
series led him to study sets of real numbers and infinitary
enumerations.

• 1873: Cantor proved that the set of real numbers R is
uncountable. He showed there there is no 1-to-1
correspondence between N and R.

• Since every set X must be in 1-to-1 correspondence with one
of the ℵ’s, Cantor was led to the question: how big is the set
of real numbers R?

• The continuum hypothesis CH asserts that |R| = ℵ1.

• Equivalently, CH asserts that every infinite subset of |R| is
either in 1-to-1 correspondence with N or with all of R.
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First-order logic and ZFC

• There are some conceptual paradoxes in basic set theory, such
as Russell’s paradox, that led to a precise formulation of
first-order axioms for set theory: the axioms of
Zermelo-Frankel set theory ZFC.

• First-order logic (through the work of Frege and many others)
had already emerged as the main candidate system in which
to build a foundational system for mathematics.

• Within the framework of ZFC one can carry out virtually all
of mathematics. For example in ZFC, (1) one can build N, Q,
and R, (2) one can prove the theorems of calculus, functions
spaces, topological spaces, abstract algebra, etc.

• Hilbert’s Program: Prove that the foundations of
mathematics are consistent and complete.
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• Proofs in first-order logic are mathematical objects: a proof is
a finite sequence of symbols with certain properties.

• We write T ` ϕ to mean that there is a proof of ϕ from the
axioms of T .

• Gödel’s Completeness Theorem: Logical entailment and
provability are equivalent.

T |= ϕ ⇐⇒ T ` ϕ
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The first-order axioms of set theory ZFC:

• (Axiom of infinity) There is an infinite set.

• (The Pairing Axiom)
∀x∀y∃z∀w(w ∈ z ⇐⇒ w = x ∨ w = y)
If x and y are sets then {x , y} is a set.

• (The Powerset Axiom)
∀x∃y∀z(z ∈ y ⇐⇒ ∀w(w ∈ z =⇒ w ∈ x))
If x is a set then P(x) is also a set.

• etc.
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The axioms of ZFC formulated in first-order logic provided a
suitable foundational system for doing mathematics.

Hilbert’s Program: Prove that the foundations of mathematics are
consistent and complete.

There was a problem...
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Gödel’s Incompleteness Theorem. Suppose T is a consistent
recursive set of axioms extending ZF. Then T is incomplete in the
sense that there is a sentence ϕ such that

T 0 ϕ and T 0 ¬ϕ

Gödel’s 2nd Incompleteness Theorem. If T is a recursive
consistent extension of ZF, then T does not prove CON(T ).

Conclusion. Any recursive set of foundational axioms of
mathematics is either inconsistent or incomplete.
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Maybe all undecidable propositions in ZFC are “philosophical” like
“this statement is not provable” or “ZFC is consistent.”

No:

The Continuum Hypothesis (CH), is a natural mathematical
assertion that is undecided by ZFC.
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More on the Continuum Hypothesis

Fact. Every set X can be put into 1-to-1 correspondence with
some cardinal ℵα.

Fact. |R| = |P(N)| = 2ℵ0

Question. What is the cardinality of R?
ω = ℵ0, ℵ1, ℵ2, ℵ3, . . . ?

The Continuum Hypothesis (CH): |R| = ℵ1 or equivalently

CH : 2ℵ0 = ℵ1
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Theorem. (Gödel) If V is model of ZFC then there is a model L
of ZFC in which CH is true. [CON(ZFC) =⇒ CON(ZFC + CH)]

• Assuming ZFC is consistent, ZFC cannot prove ¬CH.

• L is known as Gödel’s constructible universe, obtained
recursively by iterating the definable powerset operation.
L0 = ∅, Lα+1 = Pdef(Lα), Lλ =

⋃
α<γ Lα.

Theorem. (Cohen) If V is a model of ZFC then there is a model
V [G ] of ZFC in which CH is false. [CON(ZFC) =⇒ CON(ZFC + ¬CH)]

• Assuming ZFC is consistent, ZFC cannot prove CH.

• Cohen’s proof uses his method of forcing: Starting with a
model V |= ZFC one can choose a partial order (P,≤) and
use it to obtain a forcing extension V [G ] ⊇ V with finely
tuned properties, such as ¬CH.
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The situation:

Conclusion. If ZFC is consistent then ZFC 0 CH and
ZFC 0 ¬CH.

If ZFC is consistent then it is incomplete, and what’s more, there
are natural questions that ZFC does not decide, such as CH.

Perhaps there are additional axioms that could be added to ZFC so
that in the new theory we could prove CON(ZFC) and decide CH.
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Strong axioms of infinity

An inaccessible cardinal κ, is a dividing line like the one between
the finite and the infinite, but higher up.

The statement “there is an inaccessible cardinal” is an example of
a strong axiom of infinity, or a large cardinal axiom .

0, 1, 2, ... ω, ℵ1, ℵ2, ... ℵω, ... ℵℵ1 , ... γ, ... κ, ...

Properties of ω: (1) For every n < ω we have 2n < ω.
(2) If X ⊆ ω is finite then X is bounded.

Definition. We say that κ > ω is an inaccessible cardinal if
(1) for every γ < κ we have 2γ < κ, and
(2) if X ⊆ κ has size < κ then X is bounded.
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What are large cardinals good for?
Gödel’s Second Incompleteness Theorem. ZFC does not prove
CON(ZFC) (assuming ZFC is consistent).

For every sufficient theory, T one has “T does not prove
CON(T ).”

T0 = ZFC

T1 = ZFC + CON(ZFC)

T2 = ZFC + CON(ZFC) + CON(ZFC + CON(ZFC))

Fact. The existence of an “inaccessible cardinal” implies
CON(ZFC) (as well as CON(T1), CON(T2), etc.).

Tinacc = ZFC + “there is an inaccessible cardinal”

Tinacc 0 CON(Tinacc)
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Fact. The existence of a “Mahlo cardinal” implies
CON(ZFC+“there is an inaccessible cardinal”).

So by adding strong axioms of infinity to ZFC we increase the
strength of our theory.

Assuming ZFC is consistent,

• ZFC 0 CON(ZFC), but

• ZFC + “there is an inaccessible cardinal” ` CON(ZFC)
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Large cardinals form a linear hierarchy which increases in
consistency strength.

0=1
I0—I3
n-huge
huge
almost huge
extendible
supercompact
strongly compact
strong
measurable
Ramsey
Rowbottom
indescribable
weakly compact
Mahlo
inaccessible
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Important: The added strength that large cardinals give set
theory, is useful in “everyday” mathematics.

Example:
Lebesgue defined a way to measure the size of sets of real numbers.

m([0, 1]) = 1 (the measure of the interval [0, 1] is 1)
m([3, 8]) = 5
m([0, 1] ∩Q) = 0

The function m is called “Lebesgue measure,” and is extremely
useful in analysis.
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Theorem. (Vitali, 1905) The Axiom of Choice (AC) implies there
is a set of reals X ⊂ R that is not Lebesgue measurable, meaning
that m(X ) is undefined.

Question. Is the axiom of choice necessary to prove such a set of
reals exists?

It seems as though most mathematicians would agree the answer
should be YES.

If there is an inaccessible cardinal, then we can prove the answer is
YES.

Theorem. (Solovay, 1970) If there is an inaccessible cardinal, then
there is a model of ZF + ¬AC in which every set of reals is
Lebesgue measurable.
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Question. Is Solovay’s use of an inaccessible cardinal necessary?

Theorem. (Shelah, 1984) YES. If every set of reals is Lebesgue
measurable, then ℵ1 is inaccessible in L.

Conclusion. If one wants to be able to be able to prove that the
Axiom of Choice is necessary in constructing a non-measurable set,
then one MUST accept the consistency of a large cardinal axiom.

Terminology. The theorems of Solovay and Shelah mentioned
above show that the statement “every set of reals is Lebesgue
measurable” is equiconsistent with the existence of an inaccessible
cardinal. (This terminology is used because a model satisfying one
leads to a model satisfying the other.)
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0=1
I0—I3
n-huge
huge
almost huge
extendible
supercompact
strongly compact
strong
o(κ) = κ++ ←→ “singular stong limit γ with 2γ > γ+”
measurable
Ramsey
Rowbottom
indescribable
weakly compact
Mahlo
inaccessible ←→ “every set of reals is Lebesgue measurable”
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Gödel’s Hope: Perhaps adding strong axioms of infinity to ZFC
would allow us to decide CH.

To realize Gödel’s hope we would like to say something like, “if
there is an inaccessible cardinal then CH: 2ω = ℵ1 holds.”

However...

κ
...
ℵ2 One can force CH: 2ω = ℵ1 or ¬CH: 2ω = ℵ2

ℵ1 with “small” forcing P that does not affect the
ω fact that κ is inaccessible.
...
2
1
0
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So if V |= ZFC + “there is an inaccessible cardinal” then there is
a forcing extension V [G ] such that

V [G ] |= ZFC + κ is inaccessible + CH

and another forcing extension V [H] such that

V [H] |= ZFC + κ is inaccessible + ¬CH

Essentially what this shows is:

Theorem. (Lévy-Solovay) Small forcing preserves large cardinals,
and thus, strong axioms of infinity do not decide CH.

Conclusion. CH is not only independent from ZFC, but also from
ZFC + strong axioms of infinity.
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Although large cardinal axioms do not fulfill Gödel’s hope of
deciding CH, they have turned out to be very useful tools for
obtaining consistency results.

Slogan: All known statements that one would desire a consistency
proof of, can be proven consistent from large cardinals.

Example: there is an axiom called “Martin’s Maximum” which can
be proven to be consistent from large cardinals, and which decides
CH.

MM =⇒ ¬CH : 2ω = ℵ2
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Idea: Set theorists want to understand the structure of large
cardinals—i.e., how they are ordered, their combinatorial
properties, etc. Many of the questions about large cardinals are
independent (just like CH), and can be controlled by forcing (just
like we can control the value of 2ℵ0 by forcing).

A major theme in set theory is to study the relationship between
large cardinals and forcing. For example, if κ is an inaccessible
cardinal in V , and V [G ] is some forcing extension, does κ remain
inaccessible in V [G ]?
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CH: 2ω = ℵ1

GCH: for all cardinals κ, 2κ = κ+.
We say GCH fails at κ to mean 2κ > κ+.

Using forcing, Cohen showed that 2ω can equal any reasonable
cardinal ℵ1,ℵ2,ℵ17,ℵℵ1 , etc.

Easton proved a global theorem using forcing which says that for
every regular cardinal, the value of 2κ can be anything ‘reasonable.’

Theorem. (Easton) In a model V |= ZFC, given any ‘reasonable’
function F from the regular cardinals to the cardinals, there is a
cardinal-preserving forcing extension V [G ] in which 2κ = F (κ) for
all regular cardinals κ.

• What is meant by ‘reasonable’? It follows from ZFC that for
any cardinals κ ≤ λ we have 2κ ≤ 2λ. So, one thing that a
‘reasonable’ function F must satisfy is that κ ≤ λ =⇒
F (κ) ≤ F (λ).
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Easton’s theorem is saying that in ZFC the behavior of the
continuum function κ 7→ 2κ is highly undetermined.

Note. Suppose κ is an inaccessible cardinal. The forcing used in
Easton’s theorem to control the global behavior of the continuum
function κ 7→ 2κ on the regular cardinals is not small relative to κ.
Under certain conditions, one can still prove that Easton’s forcing
preserves the inaccessibility of κ, but it takes a different argument.
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To talk about the way in which large cardinals affect the behavior
of the continuum function κ 7→ 2κ we will need a few more types
of large cardinals:

Definition. A cardinal κ is called a measurable cardinal if there is
a κ-complete non-principle ultrafilter U on P(κ).

• κ measurable =⇒ κ is inaccessible

• If κ is measurable then there must be many inaccessible
cardinals below κ.

Definition. A cardinal κ is λ-supercompact (κ < λ) if there is a
“certain type” of κ-complete ultrafilter.

• If κ is λ-supercompact (κ < λ) then κ is measurable and
there are many measurable cardinals below κ.

κ is supercompact if it is λ-supercompact for all λ > κ.
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Although large cardinals do not decide CH, they do imply certain
things about possible behaviors of the continuum function κ 7→ 2κ.

Theorem. (Scott) If κ is a measurable cardinal and 2κ > κ+ then
for many regular cardinals γ < κ we must have 2γ > γ+.

• We say that the failure of GCH at κ (2κ > κ+), reflects
below κ (2γ > γ+ for many γ < κ).

• In particular, GCH cannot first fail at a measurable cardinal.

Theorem. If GCH holds below a supercompact cardinal κ, then
GCH must hold at every cardinal—in other words, if 2γ = γ+ for
all γ < κ then it must be the case that 2γ = γ+ for all cardinals
(even those greater than κ).
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Fact 1. Easton showed that the continuum function κ 7→ 2κ can
be forced to equal any ‘reasonable’ function on the regular
cardinals.

Fact 2. The existence of large cardinals restricts the possible
behaviors of the continuum function κ 7→ 2κ.

Main Question. Given a large cardinal κ, what Easton functions
can be forced to equal the continuum function while preserving the
large cardinal property of κ?
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Easton’s Theorem and Large Cardinals

Theorem. (Menas, 1976) If κ is a supercompact cardinal and F is
any locally definable Easton function, then there is a forcing
extension in which κ remains supercompact and 2κ = F (κ) for
each regular cardinal κ.

Theorem. (Friedman-Honsik, 2008) If κ is a strong cardinal and
F is any locally definable Easton function, then there is a forcing
extension in which κ remains strong and 2κ = F (κ) for each
regular cardinal κ.
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Theorem. (C., 2012) If κ is a Woodin cardinal and F is any
Easton function with F”κ ⊆ κ, then there is a forcing extension
in which κ remains Woodin and 2κ = F (κ).

• F”κ ⊆ κ means the for every γ < κ we have F (γ) < κ.

• This theorem says that in a certain sense the existence of a
Woodin cardinal (a type of strong axiom of infinity) has little
impact on the possible behaviors of the continuum fundtion
κ 7→ 2κ.
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The Failure of GCH at a Degree of Supercompactness

Theorem. (Woodin) The existence of a measurable cardinal κ
such that 2κ = κ++ is equiconsistent with the existence of a
cardinal κ that is κ++-tall.

• Remember “equiconsistent” means a model of one leads to a
model of the other.

• This theorem says that obtaining a model in which there is a
measurable cardinal κ such that 2κ > κ+ (GCH fails at κ)
requires an additional large cardinal assumption beyond that
of a simple measurable cardinal.

• For the backward direction, the idea is: start with a model V
in which κ has the large cardinal property of being κ++-tall,
and then move to a forcing extension V [G ] in which
2κ = κ++ and κ remains measurable.
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Theorem. (C., 2010) The existence of a cardinal κ that is
λ-supercompact (where κ < λ) such that 2λ = λ++ is
equiconsistent with the existence of a λ-supercompact cardinal κ
that is also λ++-tall.

0,1,2... ω, ℵ1, ... κ, κ+, ... λ, λ+, λ++, ...
2κ = λ++ =⇒ 2κ

+
= λ++ =⇒ 2λ = λ++

• The theorem is proved by using forcing to make 2κ = λ++,
which then implies that 2λ = λ++ since κ ≤ λ.

• This suggests the question, can one prove a similar theorem to
obtain a model in which κ is λ-supercompact and 2κ = κ+

and 2λ = λ++?
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Theorem. (Friedman-Honzik, 2012) If κ is λ-supercompact and
λ++-tall then there is a forcing extension in which κ is
λ-supercompact, 2κ = κ+, and 2λ = λ++.

The natural question to ask now is, can one prove a similar
theorem but force any ‘reasonable’ behavior (in the sense of
Easton) of the continuum function γ 7→ 2γ on the interval [κ, λ]?

Theorem. (Cody-Magidor, 2012)
Suppose F : [κ, λ] ∩ REG→ CARD is a function that is a
‘reasonable’ candidate for the continuum function (in the sense of
Easton). If κ is λ-supercompact and F (λ)-tall, then there is a
forcing extension in which κ is λ-supercompact and the continuum
function on the interval [κ, λ] can have any ‘reasonable’ behavior.
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