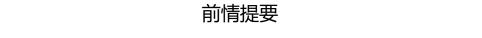
数理逻辑

杨睿之

复旦大学哲学学院

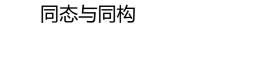
2021-2022 冬季



前情提要

我们定义了两种"定义"

- 结构内的可定义性: 给定结构
 - 定义的是该结构论域上的某个 k-元关系
 - 由一个 公式 定义
- 定义结构类: 给定语言
 - 定义的是该语言的某个结构类
 - 由 一则 闭语句定义 (初等类);由 一集 闭语句定义 (广义初等类)



定义 (同态)

给定语言 \mathcal{L} 。令 \mathfrak{A} 和 \mathfrak{B} 为两个 \mathcal{L} 结构。我们称函数 $h: |\mathfrak{A}| \to |\mathfrak{B}|$ 是一个从 \mathfrak{A} 到 \mathfrak{B} 的 同态 (homomorphism),当且仅当它满足下述条件

■ 对每个 n 元 谓词符号 P, 和每组 $a_1, \ldots, a_n \in |\mathfrak{A}|$, 有

$$(a_1,\ldots,a_n)\in P^{\mathfrak{A}}\Leftrightarrow (h(a_1),\ldots,h(a_n))\in P^{\mathfrak{B}}$$

对每个 n 元 函数符号 f, 和每组 $a_1, \ldots, a_n \in |\mathfrak{A}|$, 有

直观上,同态保持两个结构对谓词符号、函数符号和常数符号的解释。

那么,什么时候算是也保持对等词和量词的解释呢?

定义(嵌入与同构)

令 $h: |\mathfrak{A}| \to |\mathfrak{B}|$ 是从 \mathfrak{A} 到 \mathfrak{B} 的同态

- 如果同态 *h* 是 单射 的,我们称 *h* 是一个从 ¾ 到 ৩ 的 嵌入 (embedding);
- 如果 h 是双射 (既是单射,又是满射),我们称 h 是一个从 纽 到 妥 的 同构 (isomorphism)。此时,我们称 纽 与 妥 同构,记 纽 ≅ 妥

定理 (同态定理)

给定语言 \mathcal{L} 。假定 h 是从 \mathcal{L} 结构 \mathfrak{A} 到 \mathfrak{B} 的同态, s 是 \mathfrak{A} 赋值。则

- 1 对任意项 t, $h(\bar{s}(t)) = \overline{h \circ s}(t)$
- \mathbf{z} 对任何不含量词目不含等词的公式 α .

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$

 $oxed{3}$ 若 h 是单射,则 lpha 可含等词;若 h 是双射,可含量词

定义

如果 $h: |\mathfrak{A}| \to |\mathfrak{A}|$ 是从 \mathfrak{A} 到 \mathfrak{A} 的一个同构,那么我们称 h 是 \mathfrak{A} 上的 自同构 (automorphism)

推论

令 h 是 \mathfrak{A} 上的一个自同构,并且 $R \subset |\mathfrak{A}|^n$ 是一个 \mathfrak{A} 中 可定义的 n 元关系,则对任意 $|\mathfrak{A}|$ 中元素 a_1, \ldots, a_n 有,

$$(a_1,\ldots,a_n)\in R \Leftrightarrow (h(a_1),\ldots,h(a_n))\in R$$

上述定理为我们提示了一种证明"不可定义"的方法。

例

还是考虑结构

$$b \leftarrow a \rightarrow c$$

证明 {b} 是不可定义的

初等等价

定义

给定语言 \mathcal{L} 。我们说两个 \mathcal{L} -结构 \mathfrak{A} 与 \mathfrak{B} 初等等价 ,记作 \mathfrak{A} = \mathfrak{B} ,当且仅当对任意 \mathcal{L} 闭语句 σ 有,

 $\mathfrak{A} \models \sigma \Leftrightarrow \mathfrak{B} \models \sigma$

初等等价

一些推论:

给定语言 ∠和 ∠-结构 ¾和 ூ

- $\mathfrak{A} \cong \mathfrak{B} \Rightarrow \mathfrak{A} \equiv \mathfrak{B}$, 反之未必
- $\mathfrak{A} = \mathfrak{B}$, 当且仅当对任意 \mathcal{L} -初等类 \mathcal{K} 有

 $\mathfrak{A}\in\mathcal{K}\Leftrightarrow\mathfrak{B}\in\mathcal{K}$

一阶逻辑希尔伯特系统的可靠性

定理 (可靠性定理)

给定语言 \mathcal{L} 的公式集 Γ 和公式 φ ,

$$\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$$

证明.

对证明序列归纳

假设 $\langle \beta_1, \ldots, \beta, n \rangle$ 见证 $\Gamma \vdash \varphi$ 。归纳证明:对任意 $1 \le i \le n$ 有, $\Gamma \models \beta_i$

- 如果 $\beta_i \in \Gamma$
- 如果 β_i 是公理
- 如果存在 j, k < i,使得 $\beta_k = \beta_i \rightarrow \beta_i$

接下来,我们只需要证明所有公理是有效的

回顾一阶逻辑希尔伯特系统的公理:

首先,公理包括所列公式 (模式)的所有 全称概括。所以, 我们需要证明:

如果公式 φ 是普遍有效的,那么 $\forall x \varphi$ 也是 (习题 5.1.11)

一阶逻辑希尔伯特系统的公理:

- \blacksquare 对应的命题逻辑公式 α^P 是重言式的一阶逻辑公式 α
- 2 $\forall x\alpha \rightarrow \alpha_t^x$, 其中项 t 可无冲替代 α 中 x
- $\exists \forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta)$
- **4** $\alpha \rightarrow \forall x\alpha$, 其中 x 不在 α 中自由出现

任给 \mathcal{L} -结构 \mathfrak{A} 和 \mathfrak{A} -赋值 s,定义命题逻辑真值指派 $\nu_{(\mathfrak{A},s)}$,使得对任意 \mathcal{L} 中素公式 β 有,

$$v_{(\mathfrak{A},s)}(\beta^P) = 1 \Leftrightarrow (\mathfrak{A},s) \models \beta$$

归纳证明, 对所有 \mathcal{L} -公式 α 有,

$$\overline{v_{(\mathfrak{A},s)}}(\alpha^P) = 1 \Leftrightarrow (\mathfrak{A},s) \models \alpha$$

若 α^P 是重言式,则对任意 (\mathfrak{A},s) 有, $\overline{\nu_{(\mathfrak{A},s)}}(\alpha^P)=1$

一阶逻辑希尔伯特系统的公理:

- I 对应的命题逻辑公式 α^P 是重言式的一阶逻辑公式 α
- 2 $\forall x\alpha \rightarrow \alpha_t^x$, 其中项 t 可无冲替代 α 中 x
- $\exists \forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta)$
- **4** $\alpha \rightarrow \forall x\alpha$, 其中 x 不在 α 中自由出现

假设 t 可以无冲突地替换公式 φ 中的 x 并且 $(\mathfrak{A}, s) \models \forall x \varphi$, 我们只需证明 $(\mathfrak{A}, s) \models \varphi_t^x$ 。而由下述引理,

引理 (替换引理)

如果项 t 可以无冲突地替换变元 x,则

$$(\mathfrak{A},s) \models \varphi_t^x \Leftrightarrow (\mathfrak{A},s_{\overline{s}(t)}^x) \models \varphi$$

我们只需证: $(\mathfrak{A}, s_{\mathfrak{A}(r)}^x) \models \varphi$, 而由 $(\mathfrak{A}, s) \models \forall x \varphi$, 这显然成立

引理 (替换引理)

如果项 t 可以无冲突地替换变元 x,则

$$(\mathfrak{A}, s) \models \varphi_t^x \Leftrightarrow (\mathfrak{A}, s_{\overline{s}(t)}^x) \models \varphi$$

证明.

对公式 φ 归纳

■ φ 是原子公式 引理: $\bar{s}(u_t^x) = \overline{s_{\bar{s}(t)}^x}(u)$

引理 (替换引理)

如果项t可以无冲突地替换变元x,则

$$(\mathfrak{A},s) \models \varphi^x_t \Leftrightarrow (\mathfrak{A},s^x_{\bar{s}(t)}) \models \varphi$$

证明.

对公式 φ 归纳

$$\mathbf{\Phi} \varphi = \forall y \psi$$

一阶逻辑希尔伯特系统的公理:

- I 对应的命题逻辑公式 α^P 是重言式的一阶逻辑公式 α
- 2 $\forall x\alpha \rightarrow \alpha_t^x$, 其中项 t 可无冲替代 α 中 x
- $\exists \forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta)$ (习题 5.1.8)
- 4 $\alpha \to \forall x \alpha$, 其中 x 不在 α 中自由出现 (习题 5.19)

若语言中含有等词,则还有

- 1 $x \approx x$
- \mathbf{z} $x \approx y \rightarrow \alpha \rightarrow \alpha'$, 其中 α 为原子公式, 且 α' 是将 α 中若干个 α' 替换为 α' 所得到的公式 (习题 5.1.10)

完全性定理

完全性定理

定理 (完全性定理)

给定语言 \mathcal{L} . Γ 是 \mathcal{L} 公式集, φ 是 \mathcal{L} 公式, 则

$$\Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi$$

也即,对任意公式集 Σ ,如果 Σ 一致,那么 Σ 可满足

定理 (紧致性定理)

给定语言 \mathcal{L} , Γ 是一集 \mathcal{L} 公式。那么 Γ 是可满足的当且仅当它的每个有穷子集是可满足的。

证明.

定理

给定含有等词的语言 \mathcal{L} , Σ 是 \mathcal{L} 的一个闭语句集。假设它有任意大的有穷模型,那么它就有无穷模型。

推论

给定含有等词的语言 \mathcal{L} 。所有有穷 \mathcal{L} 结构组成的类不是广义初等类,所有无穷结构组成的类不是初等类。

类似地:

定理

- 连通图不是广义初等类
- 所有 Torsion 群组成的类不是广义初等类
- 所有 Torsion-free 的群组成的类不是初等类
- 所有特征 0 的域组成的类不是初等类。因此,对任何域的一阶语言的闭语句 σ,如果它在所有特征 0 的域中成立,那么它也在某个特征 p 的域中成立

• • • • •

存在非标准的算术模型

定理

令 $\mathfrak{N} = (\mathbb{N}, 0, S, +, \cdot)$ 是标准算术模型。那么存在一个非标准 算术模型 \mathfrak{N}^* , $\mathfrak{N} = \mathfrak{N}^*$ 且 \mathfrak{N}^* 含有 "无穷" (非标准) 自然数

下期预告

- 一阶逻辑希尔伯特公理系统的完全性
- 勒文海姆-斯寇伦定理

习题

5.3.6 (1), 5.3.8