数理逻辑

杨睿之

复旦大学哲学学院

2021-2022 冬季

定理 (前束范式定理)

对任何公式 α 都存在量词前束公式 α' (形如

 $Q_1x_1\dots Q_nx_n\beta$), 使得

$$\alpha \vdash \dashv \alpha'$$

定理 (前束范式定理)

对任何公式 α 都存在量词前束公式 α' (形如

 $Q_1x_1\dots Q_nx_n\beta$), 使得

 $\alpha \vdash \dashv \alpha'$

一阶逻辑的语义

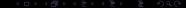
- 语言 \mathcal{L} 中参数符号的语义—— \mathcal{L} 结构
- 自由变元的语义——赋值 $s: V \to |\mathfrak{A}|$
- 项的语义——由 \mathfrak{A} 和 s 唯一决定的 $\bar{s}: \mathcal{T}_{\mathcal{L}} \to |\mathfrak{A}|$
- 公式的语义——满足关系: (¾, s) = φ

- 合同引理
- 记法:
 - $\blacksquare \varphi(x_1,\ldots,x_n)$
 - $\blacksquare \mathfrak{A} \models \varphi[d_1,\ldots,d_n]$
- 闭语句与真: ¾ ⊧ σ, ¾ ⊧ Σ
 - 此时, 我们称 \mathfrak{A} 是 σ (或 Σ) 的模型
- 逻辑蕴含: Γ ⊧ φ, α ⊧ β

定义 (语义蕴含)

给定语言 \mathcal{L} 。称公式集 Γ 逻辑蕴含 φ ,记 $\Gamma \models \varphi$,当且仅当对任意 \mathcal{L} -结构 \mathfrak{A} 和任意 \mathfrak{A} -赋值 s 都有:如果 \mathfrak{A} 和 s 满足 Γ 中所有公式(记 $(\mathfrak{A},s) \models \Gamma$),那么 $(\mathfrak{A},s) \models \varphi$ 约定

- 以后 = 依语境主要表示 满足 关系和 逻辑蕴涵 关系
- |■ α ⊨ β 即 {α} ⊨ β; α ⊨ β (逻辑等效)
- $\models \alpha$ 即 $\emptyset \models \alpha$ (逻辑有效)



可定义性

Berry paradox

"the smallest positive integer not definable in fewer than twelve words"

Berry paradox

"the smallest positive integer not definable in fewer than twelve words"

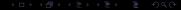
结构内的可定义性

定义

给定语言 \mathcal{L} , \mathcal{L} -结构 \mathfrak{A} 以及 \mathcal{L} 中公式 $\varphi(x_1,\ldots,x_k)$, 我们称 φ 在结构 \mathfrak{A} 中定义了 ($|\mathfrak{A}|$ 上的) k- 元关系 R , 当且仅当

$$R = \{(a_1, \dots, a_k) \in |\mathfrak{A}|^k \mid \mathfrak{A} \models \varphi[a_1, \dots, a_k]\}$$

我们称一个 k-元关系 $R \subset |\mathfrak{A}|^k$ 是 \mathcal{L} 结构 \mathfrak{A} 中可定义的, 当且仅当存在一个 \mathcal{L} 公式在结构 \mathfrak{A} 中定义它



结构内的可定义性

例

考虑只含有一个二元谓词符号的语言 $\mathcal{L} = \{R\}$,以及 \mathcal{L} 结构 $(\{a,b,c\},\{(a,b),(a,c)\})$,如图

$$b \leftarrow a \rightarrow c$$

- {*a*, *b*, *c*} 的哪些子集是可定义的?
- 哪些 $\{a,b,c\}$ 上的二元关系是可定义的?



结构内的可定义性

例

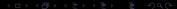
考察关于数论的语言 $\mathcal{L} = \{0, S, +, \cdot\}$ 。 令 \mathcal{L} 结构 \mathfrak{N} 的论域 为自然数集 \mathbb{N} ,其他的符号都按照通常的解释,则

- 序关系 $\{(m,n) \mid m < n\}$ 在 \mathfrak{N} 中是可定义的
- 对每一个自然数 n, 单点集 $\{n\}$ 都是 \mathfrak{N} 中可定义的
- 所有素数的集合在 沉 中是可定义的

思考:有否不可定义的自然数的子集?能不能举出例子?

回顾:

- 在命题逻辑中,我们会说一个布尔函数 $G: 2^n \to 2$ 被一个命题逻辑公式 α 定义,当且仅当 $G = B^n_\alpha$
- 命题逻辑中赋值 $v: \mathcal{A} \to 2$ 的角色类似谓词逻辑中的 结构 \mathfrak{A}
- 一个布尔函数 $G = B_{\alpha}^{n}$ 对应与一个赋值集合 $\{v: \mathcal{A} \to 2 \mid \bar{v}(\alpha) = 1\}$



定义

给定语言 \mathcal{L} 。 令 \mathcal{L} 是 \mathcal{L} 闭语句集。我们称

 $\operatorname{Mod} \Sigma = \{\mathfrak{A} \mid \mathfrak{A} \neq \mathcal{L} \text{ 结构且}, \ \mathfrak{A} \models \mathcal{L} \}$

是 Σ 所定义的 \mathcal{L} 结构类 (所有 Σ 的模型组成的类) 若 $\Sigma = \{\tau\}$,我们记 $\{\tau\}$ 所定义的结构类为 $Mod \tau$



定义

给定语言 \mathcal{L} ,

- 我们称一个 \mathcal{L} 结构类 \mathcal{K} 是 \mathcal{L} -初等类 (elementary class), 当且仅当存在 一个 \mathcal{L} 闭语句 τ 使得 $\mathcal{K} = \operatorname{Mod} \tau$
- 我们称 \mathcal{K} 是 \mathcal{L} -广义初等类 ,当且仅当存在一个 \mathcal{L} 闭 语句集 \mathcal{L} 使得 \mathcal{K} = $\mathrm{Mod}\,\mathcal{L}$

广义初等类与初等类到底有何区别?

例

令语言 ∠ 只含有等词。

- 语句 ε₂:∃x∃y(x ≉ y) 定义的 £-结构类是什么?
- 所有含有 2-4 个元素的集合组成的类是 £-初等类?
- 所有无穷集合组成的类是不是 £-广义初等类? 是不是初等类?

例

考虑含有等词和一个二元谓词符号的语言 $\mathcal{L} = \{R\}$

- 令 $\tau_1 = \forall x R x x$, $\tau_2 = \forall x \forall y \forall z (R x y \rightarrow R y z \rightarrow R x z)$, Mod $\{\tau_1, \tau_2\}$ 是什么?
- 给出定义偏序类、全序类的闭语句(集)
- 给出定义等价关系的闭语句(集)

例

考虑含有等词和一个二元谓词符号的语言 $\mathcal{L} = \{R\}$

- 令 $\tau_1 = \forall x R x x, \ \tau_2 = \forall x \forall y \forall z (R x y \rightarrow R y z \rightarrow R x z),$ $Mod\{\tau_1, \tau_2\}$ 是什么?
- 给出定义偏序类、全序类的闭语句(集)
- 给出定义等价关系的闭语句(集)

例

群论语言 $\mathcal{L} = \{ \approx, \circ, ^{-1}.e \}$,则下列闭语句

$$\forall x \forall y \forall z \ (x \circ (y \circ z) \approx (x \circ y) \circ z)$$

$$\forall x \ (x \circ e \approx e \circ x \approx x)$$

$$\forall x \ (x \circ x^{-1} \approx x^{-1} \circ x \approx e)$$

定义了群 这个初等类

阿贝尔群 是不是初等类? 无扭的阿贝尔群 呢?

例

群论语言 $\mathcal{L} = \{ \approx, \circ, ^{-1}.e \}$,则下列闭语句

$$\forall x \forall y \forall z \ (x \circ (y \circ z) \approx (x \circ y) \circ z)$$

$$\forall x \ (x \circ e \approx e \circ x \approx x)$$

$$\forall x \ (x \circ x^{-1} \approx x^{-1} \circ x \approx e)$$

定义了群 这个初等类

阿贝尔群 是不是初等类? 无扭的阿贝尔群 呢?

以上,我们给出了结构中 可定义 的严格定义,意味着我们可以证明形如 "XXX 是不可定义的"的命题了。

定义 (同态)

给定语言 \mathcal{L} 。令 \mathfrak{A} 和 \mathfrak{B} 为两个 \mathcal{L} 结构。我们称函数 $h: |\mathfrak{A}| \to |\mathfrak{B}|$ 是一个从 \mathfrak{A} 到 \mathfrak{B} 的 同态 (homomorphism), 当且仅当它满足下述条件

■ 对每个 n 元 **谓词符号** P, 和每组 $a_1, \ldots, a_n \in |\mathfrak{A}|$, 有

 $(a_1,\ldots,a_n)\in P^{\mathfrak{A}}\Leftrightarrow (h(a_1),\ldots,h(a_n))\in P^{\mathfrak{A}}$

定义 (同态)

给定语言 \mathcal{L} 。 令 \mathfrak{A} 和 \mathfrak{B} 为两个 \mathcal{L} 结构。我们称函数 $h: |\mathfrak{A}| \to |\mathfrak{B}|$ 是一个从 \mathfrak{A} 到 \mathfrak{B} 的 同态 (homomorphism), 当且仅当它满足下述条件

■ 对每个 n 元 <mark>谓词符号 P</mark>, 和每组 $a_1, \ldots, a_n \in |\mathfrak{A}|$, 有

$$(a_1,\ldots,a_n)\in P^{\mathfrak{A}}\Leftrightarrow (h(a_1),\ldots,h(a_n))\in P^{\mathfrak{B}}$$

定义 (同态)

给定语言 \mathcal{L} 。 令 \mathfrak{A} 和 \mathfrak{B} 为两个 \mathcal{L} 结构。我们称函数 $h: |\mathfrak{A}| \to |\mathfrak{B}|$ 是一个从 \mathfrak{A} 到 \mathfrak{B} 的 同态 (homomorphism), 当且仅当它满足下述条件

■ 对每个 n 元 函数符号 f, 和每组 $a_1, \ldots, a_n \in |\mathfrak{A}|$, 有

$$h(f^{\mathfrak{A}}(a_1,\ldots,a_n))=f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n))$$

定义 (同态)

给定语言 \mathcal{L} 。 令 \mathfrak{A} 和 \mathfrak{B} 为两个 \mathcal{L} 结构。我们称函数 $h: |\mathfrak{A}| \to |\mathfrak{B}|$ 是一个从 \mathfrak{A} 到 \mathfrak{B} 的 同态 (homomorphism), 当且仅当它满足下述条件

■ 对每个 常数符号 c, 有

$$h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$$

例

考虑有理数有序域 $\mathfrak{Q}=(\mathbb{Q},0^{\mathbb{Q}},+^{\mathbb{Q}},\cdot^{\mathbb{Q}},<^{\mathbb{Q}})$ 。 定义函数 $h:\mathbb{Q}\to\mathbb{Z}\times(\mathbb{N}\setminus\{0\})$: 对任意 $q\in\mathbb{Q}$,令 $n_q=\min\{n\in\mathbb{N}\setminus\{0\}\ \big|\ q\cdot n\in\mathbb{Z}\}$,而 $i_q=q\cdot n_q$, $h(q)=(i_1,n_q)$ 。 定义 $\mathbb{Z}\times(\mathbb{N}\setminus\{0\})$ 上函数 $+^*$ 和 \cdot^* :

- $(i,n) +^* (j,m) = (im +^{\mathbb{Z}} jn, nm)$
- $(i,n) \cdot^* (j,m) = (ij,nm)$

定义 $(i,n) <^* (j,m)$, 当且仅当 $im <^{\mathbb{Z}} jn$ 。则 h 是从 $\mathfrak Q$ 到 $(\mathbb{Z} \times (\mathbb{N} \setminus \{0\}), (0,1), +^*, \cdot^*, <^*)$ 的同态

直观上,同态保持两个结构对谓词符号、函数符号和常数符号的解释。

那么,什么时候算是也保持对等词和量词的解释呢?

定义(嵌入与同构)

令 h: |XI| → |XI| 是从 XI 到 X3 的同态

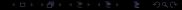
- 如果同态 h 是 单射 的, 我们称 h 是一个从 ¾ 到 ♥
 的 嵌入 (embedding);
- 如果 h 是双射 (既是单射,又是满射),我们称 h 是一个从 纽 到 妥 的 同构 (isomorphism)。此时,我们称 纽 与 妥 同构,记 纽 ≅ 妥

定理 (同态定理)

给定语言 \mathcal{L} 。假定 h 是从 \mathcal{L} 结构 \mathfrak{A} 到 \mathfrak{B} 的同态, s 是 \mathfrak{A} 赋值。则

- 对任意项 t, $h(\bar{s}(t)) = \overline{h \circ s}(t)$ (习题)
- ☑ 对任何不含量词且不含等词的公式 α,

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$

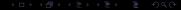


定理 (同态定理)

给定语言 \mathcal{L} 。假定 h 是从 \mathcal{L} 结构 \mathfrak{A} 到 \mathfrak{B} 的同态, s 是 \mathfrak{A} 赋值。则

- 对任意项 t, $h(\bar{s}(t)) = \overline{h \circ s}(t)$ (习题)
- ☑ 对任何不含量词且不含等词的公式 α,

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$

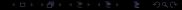


定理 (同态定理)

给定语言 \mathcal{L} 。假定 h 是从 \mathcal{L} 结构 \mathfrak{A} 到 \mathfrak{B} 的同态, s 是 \mathfrak{A} 赋值。则

- 对任意项 t, $h(\bar{s}(t)) = \overline{h \circ s}(t)$ (习题)
- ☑ 对任何不含量词且不含等词的公式 α,

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$

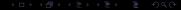


定理 (同态定理)

给定语言 \mathcal{L} 。假定 h 是从 \mathcal{L} 结构 \mathfrak{A} 到 \mathfrak{B} 的同态, s 是 \mathfrak{A} 赋值。则

- 对任意项 t, $h(\bar{s}(t)) = \overline{h \circ s}(t)$ (习题)
- ☑ 对任何不含量词且不含等词的公式 α,

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$

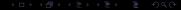


定理 (同态定理)

给定语言 \mathcal{L} 。假定 h 是从 \mathcal{L} 结构 \mathfrak{A} 到 \mathfrak{B} 的同态, s 是 \mathfrak{A} 赋值。则

- 对任意项 t, $h(\bar{s}(t)) = \overline{h \circ s}(t)$ (习题)
- ☑ 对任何不含量词且不含等词的公式 α,

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$



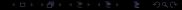
定义

如果 $h: |\mathfrak{A}| \to |\mathfrak{A}|$ 是从 \mathfrak{A} 到 \mathfrak{A} 的一个同构,那么我们称 h 是 \mathfrak{A} 上的 自同构 (automorphism)

推论

令 $h \in \mathbb{N}$ 上的一个自同构,并且 $R \subset |\mathfrak{A}|^n$ 是一个 \mathfrak{N} 中 可定义的 n 元关系,则对任意 $|\mathfrak{A}|$ 中元素 a_1, \ldots, a_n 有,

$$(a_1,\ldots,a_n)\in R \Leftrightarrow (h(a_1),\ldots,h(a_n))\in R$$



上述定理为我们提示了一种证明"不可定义"的方法。

例

还是考虑结构

$$b \leftarrow a \rightarrow c$$

证明 {b} 是不可定义的

下期预告

- 初等等价
- 一阶逻辑的可靠性定理

习题

- **5.1.2 5.1.6**
- **5.2.2 5.2.4**
- 5.3.1 (如果课上没讲), 5.3.2, 5.3.4, 5.3.5