数理逻辑

杨睿之

复旦大学哲学学院

2021 年秋季

前情提要

一阶逻辑公理系统的元定理

承自命题逻辑的元定理:

- 重言规则
- 演绎定理
- 逆否命题
- 反证法

定理 (概括定理)

如果 $\Gamma \vdash \varphi$ 并且 x 不在 Γ 的任何公式中自由出现,那么

$$\Gamma \vdash \forall x \varphi$$

定理 (常数概括定理)

假设 $\Gamma \vdash \varphi$, 且常数符号 c 不在 Γ 中出现,则存在不在 φ 中出现的变元 y,使得 $\Gamma \vdash \forall y \varphi^c$,且推演中不出现 c

引理 (循环替换引理)

如果变元 y 不在公式 φ 中出现,则变元 x 可以无冲突地替 换 φ_{v}^{x} 中的 y,并且 $(\varphi_{v}^{x})_{x}^{y} = \varphi$

推论

假设 $\Gamma \vdash \varphi_c^x$ 且 c 不在 Γ 和 φ 中出现,则 $\Gamma \vdash \forall x\varphi$,且存在一个不出现 c 的推演见证。

证明.

- 根据常数概括:存在新的 y,使得 $\Gamma \vdash \forall y(\varphi_c^x)_y^c$ 其中, $(\varphi_c^x)_y^c = \varphi_y^x$
- 根据循环替换引理和概括定理证明: $\forall y \varphi_y^x \vdash \forall x \varphi$

定理 (约束变元替换定理)

 φ 是公式, t 是项, x 是变元。我们总可以找到一个公式 φ' , 使得

- φ' 和 φ 的区别仅在约束变元的选择(可以没有区别)
- $\blacksquare \varphi \vdash \vdash \varphi'$
- t 可以无冲突地替换 φ' 中的 x

证明.

上述元定理告诉我们关于一阶逻辑的希尔伯特系统"能证什么"的事实。当我们要证明"能证明"时,往往会用到它们。

例

 $\vdash \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$

证明 $\Gamma \vdash \varphi$ 的一般策略

- 要证明 $\Gamma \vdash \psi \rightarrow \theta$,只需证 $\Sigma \cup \{\psi\} \vdash \theta$
- 要证明 $\Gamma \vdash \forall x\psi$
 - 如果 x 不在 Γ 中自由出现,只需证 $\Gamma \vdash \psi$
 - 如果 x 在 Γ 中自由出现,我们找一个"全新"的变元 y,使得 $\Gamma \vdash \psi_x^x$,从而有 $\Gamma \vdash \forall y \psi_x^x$,而 $\forall y \psi_x^x \vdash \exists \forall x \psi$

- 要证明 *Γ* + ¬α, 分情况:
 - 要证明 Γ + ¬¬ψ, 只需证 Γ + ψ
 - 要证明 $\Gamma \vdash \neg(\psi \rightarrow \theta)$, 只需证 $\Gamma \vdash \psi$ 和 $\Gamma \vdash \neg \theta$
 - 要证明 $\Gamma \vdash \neg \forall x \psi$,尝试找到项 t 并证明 $\Gamma \vdash \neg \psi_t^x$,(并非总是可能) 或尝试逆否命题换位或反证法。

例

$$\blacksquare \vdash \forall x (\varphi \to \psi) \to (\exists x \varphi \to \exists x \psi)$$

以上策略可以应付几乎所有作业,是否能应付所有情况呢?

问题出在哪儿呢?

关于等词的元定理

(Eq1)
$$\vdash \forall xx \approx x$$

(Eq2) $\vdash \forall x \forall y (x \approx y \rightarrow y \approx x)$
(Eq3) $\vdash \forall x \forall y \forall z (x \approx y \rightarrow y \approx z \rightarrow x \approx z)$
(Eq4) $\vdash \forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n (x_1 \approx y_1 \rightarrow \dots \rightarrow x_n \approx y_n \rightarrow Px_1 \dots x_n \rightarrow Py_1 \dots y_n)$
(Eq5) $\vdash \forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n (x_1 \approx y_1 \rightarrow \dots \rightarrow x_n \approx y_n \rightarrow fx_1 \dots x_n \approx fy_1 \dots y_n)$

习题

- **4.2.4**, 4.2.5
- **4.3.4**
- 证明 (Eq3) (Eq5) 是一阶逻辑公理系统中可证的

下期预告

- ■前東范式
- 一阶逻辑的语义 (塔斯基真定义)