
SELECTED SOLUTIONS FOR COMPUTABILITY 2019

RUIZHI YANG

Exercise 4.2.9. (1) Show that every infinite, finitely branching tree T has a
path recursive in T ′′.

(2) Build a recursive tree containing at least one path and every path of it
computes 0′′.

Proof. (1) Given a infinite, finitely branching tree T . We define a ∆0
3(T) path P

so that P ≤T T ′′. Let

P =
{
σ ∈ N<N ∣∣ ∃f ∈ (N<N)|σ|+1

(
φ(f) ∧ f(|σ|) = σ

)}
,

Note that f ∈ (N<N)|σ|+1 means f : |σ|+ 1 → N<N, so it is a |σ|+ 1 long sequence
of finite sequence of natural numbers. Note also that ∃f ∈ (N<N)|σ|+1 is not a
bounded quantifier. We would expect φ(f) saying that f is a sequence telling us
how to inductively choose an infinite path. Explicitly, φ(f) can be written as
f(0) = 〈〉 ∧ ∀n+ 1 ∈ dom f∃k ∈ ran(ran f)

(
f(n+ 1) = f(n)⌢〈k〉 ∧ ψ(k, f, n)

)
.

where ψ(k, f, n) roughly says that k is the least choice so that the subtree above
f(n)⌢〈k〉 is still an infinite tree. More explicitly, ψ(k, f, n) is

∀l∃τ ∈ Nl(τ ∈ T ∧ τ�(n+ 2) = f(n+ 1))

∧ ∀k′ < k
(
f(n)⌢〈k′〉 ∈ T → ∃l∀τ ∈ Nl(τ ∈ T → τ�(n+ 2) 6= f(n)⌢〈k′〉)

)
.

Note that the quantifiers in red are unbounded. Therefore P can be defined by a
Σ0

3(T) formula. Since it can be proved that such a sequence f is unique, P can also
be defined as

P =
{
σ ∈ N<N ∣∣ ∀f ∈ (N<N)|σ|+1

(
φ(f) → f(|σ|) = σ

)}
.

In this case P is also Π0
3(T), hence ∆0

3(T).
This a proof of (2) given by Liu Yong.
IDEA:
We want to construct a tree containing at least one path and whose every path

P satisfying.

(4.2.9.1) P (e) =

{
the starting stage for P �e, if Φ0′

e (e) ↑,
t (>the starting stage for P �e), if Φ0′

e (e) ↓.

The starting stage for P �e is a number s ≥ e serving two purposes. First, it
indicates that eventually Φ0′

e (e) ↑; second, if for some d < e, P (d) is landing at its
own starting stage claiming that Φd will diverge, then s is informative (big) enough
to see an evidence that it is right to make that claim.

Date: July 16, 2019.
1

2 YANG

CONSTRUCTION: First, we define sσ ∈ N being the starting stage for σ ∈ N<N

inductively as follow: Assume |σ| = e, sσ is the starting stage for σ if and only if
sσ is the least ≥ e such that for every d < e, if σ(d) is the starting stage (indicating
that Φd will diverge), then there is t ∈ [e, sσ] witnessing that Φ

0′t
d,t(d) ↑. Note that{

〈σ, s〉
∣∣ s is the starting stage for σ

}
is recursive.

Now, fix σ ∈ N<N such that |σ| = e, and s ∈ N. Assume inductively that we
know σ ∈ T . We want to see if σ⌢s ∈ T .

(a) If there is d < e such that σ(d) > the starting stage for σ�d, Φ0′σ(d)

d,σ(d)(d) ↓, and
e > σ(d) is the least such that Φ

0′e
d,e(d) ↑, then σ⌢s /∈ T . Note that this decision is

made regardless of s. The idea is that we exam to the step e, as soon as we find
some previous converged Φd diverges, we stop any extension recording a < e down
stage for level d.

(b) σ⌢s ∈ T only if s is either the starting stage for σ or a down stage > the
starting stage. Note that if there is some d < e such that σ(d) is the starting stage
while we cannot find a witness of diverge in [e, sσ], then σ⌢s /∈ T .

This completes the construction of T .
VERIFICATION:
(i) T is a recursive tree by construction.
(ii) Let P be such that

P (e) =


the starting stage for P �e, if Φ0′

e (e) ↑,

t, if t > the starting stage for P �e,
Φ0′

e,t(e) ↓ and 0′t�(useΦ0′

e,t(e)) ≺ 0′.

Then P will be a path on T . Note first that such a path won’t be killed by (a).
The starting stages are all well defined, namely cannot be infinite. Finally, show
that it won’t be killed because of (b) in any cases.

(iii) Any path P on T must satisfies (4.2.9.1). By (b), P (e) can only be the
starting stage for P �e, or a down stage.

Assume to a contradiction that Φ0′

e (e) ↓ while P (e) is the starting stage for P �e.
Then for some t > e, Φ0′t

e,t(e) will stay at converge afterwards, and for any d ≥ t,
we can find no witness for the claiming of divergence, no starting stage for P �d (or
the starting stage being ∞), and so no extension of P �d in T .

Now, assume P (e) = t is a down stage, namely Φ
0′t
e,t(e) ↓. If eventually Φ0′

e (e) ↑,
then it will be killed by (a) at some stage.

(iv) 0′′ ≤T P . To see if e ∈ 0′′, check if P (e) is the starting stage for P �e.
This another proof of (2) given by Wang Sa.
IDEA:
Recall that we can construct a finitely branching recursive tree T 0 containing a

unique path P ≡T 0′. By relativization, we can construct a finitely branching tree
TA ≤T A containing a unique path P ≡T A′. For a string σ ≺ A, we can compute
a finite subtree Tσ of an initial segment of TA by making sure the use of A not
exceeding |σ|.

We construct a infinite branching recursive tree T ∗ so that its even levels record-
ing the construction of T 0, while the odd levels using a node σ of T 0 to compute
an finite subtree of an initial segment of Tσ and a cofinal path of Tσ.

SELECTED SOLUTIONS FOR COMPUTABILITY 2019 3

In the end, the even part of a path of T ∗ would be the path P of T 0 and
P ≡T 0′; the odd part of T ∗ recording the construction of a path of TP , which
computes P ′ ≡T 0′′.

CONSTRUCTION:
By induction, we assume ρ ∈ T ∗ and try to decide if a successor of ρ is in T ∗.
If |ρ| is even. We put ρ⌢{σ} into T ∗, only if σ ∈ T 0 and for any even i < |ρ|,

ρ(i) ≺ σ.
If |ρ| = 2e + 1 is odd. We use σ = ρ(e) as oracle. We put ρ⌢{〈t, p〉} into T ∗,

only if it satisfies
(a) t is a finite subtree of an initial segment of Tσ (or TA for any A � σ) whose

height is e,
(b) p is a “path” on t of length e,
(c) for any odd i < |ρ|, if ρ(i) = 〈ti, pi〉, then ti (t and pi (p.

VERIFICATION:
(a) T ∗ is recursive by construction.
(b) We show that there exists a path on T ∗. Let P0 be the unique path of T 0,

and P1 be the unique path of TP0 . We can define a path P on T ∗ as follow. Given
σ ≺ P defined, assume that |σ| = 2e. We define P (2e) = the shortest σ ≺ P0 such
that σ computes a finite subtree t ⊂ TP0 containing P1�e as a cofinal “path”. Then
we let P (2e+ 1) = 〈t, P1�e〉, while t is the smallest such finite subtree.

(b) If P is a path on T ∗, then the even part of P is the unique path P0 of T 0.
For the odd part, by monotonicity,

⋃
i is odd ti is an infinite tree and

⋃
i is odd pi is

an infinite path on that tree. Assume to contradiction that
⋃

i ti * TP0 , then some
ti * TP0� i−1

2 . For long enough σ, we can assume TP0� i−1
2 = Tσ� i−1

2 . Therefore
no subtree of Tσ� i−1

2 extends ti, and so 〈ti, pi〉 won’t be on an infinite path. A
contradiction. Now,

⋃
i ti is an infinite subtree of TP0 and

⋃
i pi is a path on it.

Since P1 is the unique path of TP0 ,
⋃

i pi = P1 as desired.
(c) To compute 0′′ from a path P of T ∗. Since P1 =

⋃
i pi computes 0′′, we just

look for a large enough 〈t, p〉 on P and compute with oracle p.
�

THIS IS A WRONG PROOF of 4.2.9 (2)! We build a recursive but possibly
infinitely branching tree such that it contains exactly one path, which computes
0′′. We hope the path P would satisfies

(4.2.9.2) P (e) = t,

where t is the last ”change point”, namely, t is the least such that either for all
s ≥ t, Φ0′s

e,s(e) ↓ and so Φ0′

e (e) ↓, or for all s ≥ t, Φ0′s
e,s(e) ↑ and so Φ0′

e (e) ↑.
Note that such a P encodes redundant information just to compute 0′′. To see

if e ∈ 0′′, just compute up to Φ
0′P (e)

e,P (e)(e), and see if it converges.
IDEA:
When we are trying to compute every Φ

0′s
e,s(e), we only allow the tree to grow

only upon those recent ”change points”.
CONSTRUCTION:
Given a σ ∈ N<N. Let s = max({|σ|} ∪ ranσ) be the step we would like to check

up to. We define σ ∈ T if and only if for all e < |σ|, σ(e) = t, where t is the least
such that either for all t ≤ s′ ≤ s, Φ0′

s′
e,s′(e) ↓, or for all t ≤ s′ ≤ s, Φ0′

s′
e,s′(e) ↑.

4 YANG

VERIFICATION:
(a) T is a tree. Given τ ∈ T and σ ⊂ τ . For τ , we need to check every point up

to, say sτ steps; for σ, say sσ steps. Clearly, sσ ≤ sτ , but still no smaller than every
σ(e). Therefore, every σ(e) remains to be the last change point before sσ ≤ sτ , so
σ ∈ T .

(b) T is recursive by definition.
(c) The path P defined in (4.2.9.2) is a path on T . For any n, we have to check

for every e < n if P (e) is the last change point up to some step sn ≥ P (e), but it
must be, since there will no change point every . NO! If finally Φ0′

e (e) ↑, it might
be the case that Φ0′s

e,s(e) converge, diverge,... for infinitely many times. Then there
will be no path!

Here is another WRONG approaching! If we just want to make

P (e) =

{
0, if Φ0′

e (e) ↑,
t+ 1, if Φ0′

e.t ↓.

Then the construction will fail: either the tree is not recursive (or not a tree at
all), or there will be a wrong path. WHY we need to set the starting stage in the
right proof?

Exercise 4.3.17. Show that
(1) there is a set A such that A ≤T 0′ but A �wtt 0

′;
(2) there are sets A,B such that A ≤wtt B but A �tt B.

Proof. For (1).
We build a set A such that A ≤T 0′, but A �wtt 0

′. For each n = 〈e, i〉, let

As(n) =

{
1, if Φ0′s

e,s(n) ↓= 0 and φi,s(n) ↓> useΦ
0′s
e,s(n)

0, otherwise.
VERIFICATION:
(a) Clearly, 〈As〉s∈N is recursive.
(b) Fix any n = 〈e, i〉. If Φ0′

e (n) ↓, then both Φ
0′s
e,s(n) and useΦ

0′s
e,s(n) converges

with respect to s→ ∞, and so lims→∞As(n) ↓. Else if Φ0′

e (n) ↑. If it is the case that
Φ

0′s
e,s(n) converge at the statue ↑ (with respect to s→ ∞), then lims→∞As(n) ↓= 0.

It is also possible that Φ0′s
e,s(n) ↓ for infinitely many times but still Φ0′

e (n) ↑. In this
case, we must have the negation of φi,s(n) ↓> useΦ

0′s
e,s(n) for cofinite many s, and

so lims→∞As(n) ↓= 0. Therefore, lims→∞As(n) always converges, and so A ≤T 0′.
(c) Note that the only case when lims→∞As(n) ↓= 1 is both Φ0′

e (n) ↓= 0 and
φi(n) ↓> useΦ0′

e (n). Therefore, A diagonalized every possibility of A ≤wtt 0
′.

�

Proof. For (2).
This proof uses finite injury priority method.
IDEA: Recall that A ≤tt B if and only if there is a total functional Φe (i.e. ΦX

e

is total for any X) such that A = ΦB
e . We build A and B together to satisfy the

requirements
Re : If ΦX

e is total for all X, then A 6= ΦB
e .

We also need to code enough information in B so that A ≤wtt B.
CONSTRUCTION:

SELECTED SOLUTIONS FOR COMPUTABILITY 2019 5

Step 0: Let A0 = B0 = ∅, all requirements Re are unsatisfied, the boundaries for
protecting what we have done for requirements of indices ≤ e is set to be be,0 = 0
for every e.

Step s+1: Assume As and Bs are defined. Search for the first 〈e, σ, t〉 such that
Re is currently marked as unsatisfied, σ is a finite 01-string such that

(Bs�be,s)⌢{1}e+1 ≺ σ ≺ (Bs�be,s)⌢{1}e+1⌢{0}N,
and

Φσ
e,t(be,s + e) ↓ .

x = be,s + e is where we want to diagonalize for Re.
Note that since there are infinitely many unsatisfied total functional Φe, we can

always find such 〈e, σ, t〉. Now, assume e and σ are what we find.
Let bi,s+1 = bi,s for i < e (we keep the boundaries untouched, since we would

not injury efforts for these requirements), and
bj,s+1 = max{useΦσ

e (x), be,s + e+ 2}
for all j ≥ e (we set the boundary for satisfied Re. All Rj for j > e become
unsatisfied, so no additional protection needed).

We set As+1, Bs+1 ∈ 2be,s+1 as follow. Let Bs+1 � σ. Namely, we attach e + 1
many 1’ after Bs�be,s and some (at least one) 0’s enough to be used as oracle in
the computation Φσ

e (x). Let As+1(x) = 1− Φσ
e (x), and As+1(y) = 0 for y 6= x and

y ≥ be,s.
We mark Re as satisfied, and Rj unsatisfied for all j > e.
We define A and B such that A(x) = lims→∞As(x) and B(x) = lims→∞Bs(x).
VERIFICATION:
By the construction, efforts for requirement Re can only be injured when we act

for requirements Ri (i < e).1 Therefore, for each e the efforts for Re can only be
injured finitely many times. Now, fix an e such that Φe is a total functional. There
is a time, say s, when there will be no more acts for any Ri for i < e. The intended
diagonalization point be,s + e is now fixed. Since Φe is a total functional, we are
guaranteed to find the right σ. Therefore, Re will eventually be satisfied. Hence,
A �tt B.

To see that A ≤wtt B witness by the function x 7→ x+2. For each x, to compute
A(x), we first look at B(x) and B(x+1). If they are not 10, then A(x) = 0. If they
are, we count the number of continuous 1’s starting from B(x) backward, say it is
e+ 1. Then we try to compute Φσ

e (x) for some σ extending B�(x+ 1) only by 0’s.
Such a σ will be found. By our construction ΦB

e (x) ↓ and the computation uses an
initial segment of B of the form of such σ. Then A(x) = 1 − Φσ

e (x) = 1 − ΦB
e (x).

Note that we have only used information from B�(x+ 2). �

Exercise 4.5.6. REC =
{
e ∈ N

∣∣We is recursive } is 1-complete for Σ3 class.

Proof. REC is Σ3 because We is recursive if and only if
∃d∀n

[
(∀sΦe,s(n) ↑→ ∃tΦd,t(n) ↓= 0) ∧ (∃uΦe,u(n) ↓→ ∃vΦd,v(n) ↓= 1)

]
,

which is equivalent to
∃d∀n∀u∃s∃t∃v

[
(Φe,s(n) ↑→ Φd,t(n) ↓= 0) ∧ (Φe,u(n) ↓→ Φd,v(n) ↓= 1)

]
.

1We always have bi,s ≤ bj,s for any i < j and any s. At the end of each successor step, both
As+1�be,s = As�be,s and Bs+1�be,s = Bs�be,s, so our act does not injure the efforts for Ri (i < e).

6 YANG

The latter one is Σ3

Now, given any Σ3 set X. We can assume X =
{
x
∣∣ ∃yR(x, y)} where R is a Π2

relation. Since inFIN = {e|We is infinite } is 1-complete for Π2 class, there is a 1-1
recursive function g such that R(x, y) if and only if Wg(x,y) is infinite.

We define a 1-1 recursive function f : N → N so that for each x ∈ N, Wf(x) is an
r.e. set generated as follow.

We will try to diagonalize to make Wf(x) not r.e. That is we hope it will meet
the requirements:

Ry : Wf(x) 6=Wy.

At step 0, we let Wf(x),0 = N and so Wf(x),0 = ∅, the movable marker Γy is
located at byx,0 = y for every y.

At step s+1. Assume Wf(x),s = {b0x,s < · · · < byx,s < · · · }, namely the movable
marker Γy is located at byx,s for each y.

For s is even, as before, for each y ≤ s, if we find Wg(x,y),s 6= Wg(x,y),s+1, we
enumerate byx,s from Wf(x),s into Wf(x),s+1. By doing this, we move the maker
Γi (for i ≥ y) from bix,s to bi+1

x,s . Note that we only have to act for finitely many
y ≤ s. We can assume we act at most once at each step, say for y, in which case
the movable marker Γi will not move (namely bix,s+1 = bix,s) if i < y, or move to
bix,s+1 = bi+1

x,s if i ≥ y. This is how Wf(x),s+1 is defined. If no such y, we do nothing.
For s is odd, we look for y ≤ s such that there is (we can assume a unique)

n ∈ Wy,s+1 − Wy,s, n ≥ byx,s and Ry has never been act for. If we found, we
enumerate all numbers in [byx,s, n] into Wf(x),s+1, namely, we move the makers Γi

(i ≥ y) (finitely rightward) to the location bix,s+1 = bi+k
x,s where k is the least such

that by+k
x,s > n. If no such y, we do nothing.

Verification.
If x ∈ X, then there exists y such that Wg(x,y) is infinite, so lims→∞ bix,s ↑ for

all i ≥ y, so Wf(x) =
{
lims→∞ bix,s

∣∣ i ∈ N
}

is finite and Wf(x) is cofinite, and so
both recursive, and so f(x) ∈ REC.

If x /∈ X, i.e. ∀y Wg(x,y) is finite and so the marker Γy would only be moved
rightward finitely many times at odd steps. Since every requirement Ry is act for
at most once and a marker Γi is only moved rightward at even step when we act
for requirements Ry for y ≤ i. In other word, each Γi is moved rightward no more
than i times at even steps. Therefore lims→∞ byx,s ↓ for every y, so Wf(x) is infinite.
Moreover, for every y such that Wy is infinite, Ry must be act for at sometime
(since every byx,s converges), so that there is n ∈Wy but n /∈Wf(x) witnessing that
Wf(x) 6=Wy. Therefore Wf(x) is not r.e. and f(x) /∈ REC as desired. �

This is another proof given by Wang Sa.

Proof. As we have shown that COF= {e ∈ N
∣∣We is cofinite } is 1-complete for Σ3

class, it suffices to show REC ≤1 COF.
By s-m-nTheorem, there is a 1-1 function f such that for each e, f(e) is the

index of the following r.e. set:

Wf(e) =
{
〈i, j〉

∣∣ (i ≤ j) ∧ (i ∈ 0′ ∨ j ∈We)
}

We show that Wf(e) is recursive if and only if We is cofinite.

SELECTED SOLUTIONS FOR COMPUTABILITY 2019 7

Assume We is not cofinite. We show Wf(e) computes 0′, and so is not recursive.
Let x be any number such that x /∈ 0′, or we can just assume 0 /∈ 0′. Note that x is
a fixed number, which can be built into a program. To see if i ∈ 0′. We wait until
finding some j ∈We such that j ≥ i and j ≥ x, and moreover 〈x, j〉 /∈Wf(e). Such
j can always be find, since otherwise either We or 0′ is cofinite. Now, i ∈ 0′ if and
only if 〈i, j〉 ∈Wf(e).

Now, assume We is cofinite. Then there are only finitely many 〈i, j〉 such that
i ≤ j and 〈i, j〉 /∈ Wf(e). Build this information in the program. To decide if
〈i, j〉 ∈ Wf(e). First, check if i ≤ j. If not, return ”no”; if so ask the ”build in
oracle”. �

Exercise 5.1.29. Every uppersemilattice (usl) L is locally countable, namely, for
any finite F ⊂ L, the subusl F of L generated by F is finite. Moreover, there is a
uniform recursive bound on |F| that depends only on |F|.

Proof. Given u.s.l. L and a finite set F ⊂ L. For each A ⊂ F , let A ∈ L be the
least upper bound of A in L. Then

{
A

∣∣ A ∈ P (F)
}

is the sub u.s.l. of L generated
from F , and its cardinality is less or equal to 2|F |. �

Exercise 5.1.30. Given finite uppersemilattices F ⊂ L and an usl extension F̂ of
F generated over F by one new element (with F̂ ∩ L = F). Prove that F̂ is finite,
and there is a finite usl extension L̂ of L containing F̂ .

Proof. Given finite u.s.l. F ⊂ L. Let F̂ ⊃ F be any finite extension. We need to
find a procedure to produce an common extension L̂ of F̂ and L from F̂ and L
effectively.

First, we define the relation ≤0 on F̂ ∪L as follow: for a ∈ F̂ −L, and b ∈ L−F ,
a ≤0 b if and only if there is c ∈ F such that a ≤F̂ c and c ≤L b; while b ≤0 a if
and only if there is c ∈ F such that b ≤L c and c ≤F̂ a. To check ≤0 is transitive,
assume u ≤0 v and v ≤0 w, we should look at all cases of u, v, w being in F̂ − L or
L.

Second, we add a greatest element to (F̂ ∪ L,≤0) if there is yet none, and the
order relation accordingly.

Clearly, the procedure is effective, and the final structure is a finite u.s.l. ex-
tending both F̂ and L.

An alternative solution proposed by Liu, Mingjun:
Given L and F̂ . First, define the partial order ≤0 on L∪F̂ as usual. Then define

P = P (L ∪ F̂), and define the relation as follow.
X ≤P Y if and only if X ⊃ Y.

For a ∈ L∪ F̂ , let Xa =
{
b ∈ L∪ F̂

∣∣ a ≤0 b
}

. Claim: (i) (P,≤P) is a u.s.l.; (ii)
a 7→ Xa is an embedding of L ∪ F̂ into P. �

Exercise 5.1.31. Prove that there is a recursive usl L such that every countable
usl can be embedded in it as an usl.

Proof. We construct a universal countable u.s.l. L =
⋃

s Ls as follow. We always
keep the domain of Ls a finite initial segment of N.

Let L0 = ∅.
Given a finite u.s.l. Ls defined, we should define Ls+1. Let {Fi}i<k lists all the

one element extension of a sub u.s.l. of Ls modula isomorphism. By one element

8 YANG

extension, we mean a u.s.l. F̂ generated from F ∪ {a} where F is a sub u.s.l. of
Ls and a /∈ F . Since Ls is finite, we can effectively compute the finite list {Fi}i≤k.
Let Ls,0 = Ls. Given Ls,i defined, let Ls,i+1 be the common extension of Ls,i and
Fi as computed in (2). Finally, let Ls+1 = Ls,k. Note that, we always add the
smallest number which is not in Ls,i if we have to.

It can be verified every (Ls,≤Ls
) is uniformly computable and so the structure

(L,≤L) is computable.
To see L is universal. Fix a countable u.s.l. A = {ai}i∈N. We define partial

embedding fj of a sub u.s.l. of A into L inductively as follow. Let f0 = ∅. Given
fj defined. Let i be the least such that ai /∈ dom fj , let s be the least such that
ran fj ⊂ Ls. By (1), there is a finite sub u.s.l. F of A generated from dom fj∪{ai}.
Now by our construction, F is embedded into Ls+1. Let fj+1 be the embedding. �
Exercise 5.1.32. Every countable usl L can be embedded in D and even in D(≤ 0′)
preserving ∨ as well as ≤ (and 0 if L has a least element).
Proof. Let (N,≤L,∨L) be the computable universal countable u.s.l. we build in the
last proof. And {Ci}i∈N is a sequence of very independence sets uniformly ≤T 0′

as we build in Exercise 5.1.26.
For each i ∈ N, we define Ai =

{
〈j, x〉

∣∣ i �L j and x ∈ Cj

}
. 2

Each Ai ≤T 0′ because ≤L is a computable relation on N× N and
{
〈j, x〉

∣∣ x ∈
Cj

}
≤T 0′.

Now we show i 7→ [Ai] is really an embedding.
Assume i0 ≤L i1. Then i0 �L j implies i1 �L j. To see if 〈j, x〉 ∈ Ai0 : First,

check if i0 �L j. If so, then 〈j, x〉 /∈ Ai0 ; if not, 〈j, x〉 ∈ Ai0 if and only if 〈j, x〉 ∈ Ai1 .
Hence, Ai0 ≤T Ai1 .

Assume i0 �L i1. Then Ai0 [i1] = Ci1 . But Ai1 [i1] = ∅. Note that Ai1 ≤T{
〈j, x〉

∣∣ j 6= i1 and x ∈ Cj

}
[again, because ≤L is computable]. So if Ci1 ≤T Ai1 ,

then Ci1 ≤T

{
〈j, x〉

∣∣ j 6= i1 and x ∈ Cj

}
, violates {Ci}i∈N being very independent.

Therefore, Ci1 �T Ai1 . Again, since Ci1 ≤T Ai0 , we have Ai0 �T Ai1 . This also
shows that i 7→ [Ai] is one-to-one.

Fix i0, i1, we show Ai0∨Li1 ≡T Ai0 ⊕Ai1 . Note that Ai0∨Li1 =
{
〈j, x〉

∣∣ (i0 �L j

or i1 �L j) and x ∈ Cj

}
. Clearly, Ai0∨Li1 ≤T Ai0 ⊕ Ai1 . To see if 〈j, x〉 ∈ Ai0 :

Again, we first decide if i0 �L j. if so, we ask Ai0∨Li1 ; if not, return ”no”. �
Exercise 5.2.5. For every countable set of nonrecursive degrees there is a degree
incomparable with each of them.
Proof. Fix C = {Ci}i∈N. We want to build A satisfying the following requirement.

Pi,e Ci 6= ΦA
e ,

Qi,e A 6= ΦCi
e .

We build A =
⋃

s αs as follow.
Let A0 = ∅. At stage s+ 1:
When we act for Pi,e, we ask if ∃x∃α ⊃ αsΦ

α
e (x) ↓6= Ci(x). If so, let αs+1 be

the least such α; otherwise, let αs+1 = αs.
When we act for Qi,e, we ask if ΦCi

e (|αs|) ↑. If so, let αs+1 = αs; otherwise, let
αs+1 = α⌢

s {1− ΦCi
e (|αs|)}.

The verification is routine. �
2We need a specific definition of Ai than merely say Ai = ⊕

{
Cj

∣∣ i �L j
}
.

SELECTED SOLUTIONS FOR COMPUTABILITY 2019 9

Exercise 5.2.6. Every maximal antichain in D other than {0} is uncountable.

Proof. By Exercise 5.2.5, every countable antichain that is not {0} is not maximal.
�

Exercise 5.2.7. Every maximal independent set of degrees other than {0} is un-
countable

Proof. Similar with Exercise 5.2.6. �

Exercise 5.2.12. For every A >T 0 and A �T 0′, there is B such that A|TB and
B′ ≤T A⊕ 0′.

This is a proof I heard from Ted Slaman. It is also the standard method to split
0′. See also (Slaman and Steel, 1989) for a construction of a minimal pair B0 and
B1 such that 0′ ≡T B0 ⊕B1.

Proof. We build B0 and B1 both ≤T A⊕ 0′ and they are agree only at the slots we
reserve to code 0′. Then comparing B0 and B1 together will reveal the slots and
so 0′. We also build Bi (i = 0, 1) to meet the following requirements.

Pe,i : ΦBi
e = A⇒ A is computable.

First, we let β0,0 = β1,0 = ∅.
At stage s+ 1 where s = 〈e, i〉, given β0,s and β1,s constructed, we act for Pe,i.

We ask 0′ if there is an e-split ahead of βi,s, namely if

∃x, τ0, τ1 Φβi,s
⌢τ0

e (x) ↓6= Φβi,s
⌢τ1

e (x) ↓ .

If exists, choose the least set of e-split 〈x, τ0, τ1〉, by consulting A, we choose τ = τj

such that Φ
βi,s

⌢τj
e (x) 6= A(x). Let τ̃ be the complement of τ , namely |τ̃ | = |τ | and

τ̃(x) = 1− τ(x) for all x ∈ |τ |.If there is no e-split ahead, we let τ = τ̃ = ∅. Finally,
we let βi,s+1 = βi,s

⌢τ⌢{0′(s)} and β1−i,s+1 = β1−i,s
⌢τ̃⌢{0′(s)}. This completes

the construction
Verification.
Note that the whole construction is in A⊕ 0′.
(1) To see A �T Bi for each i = 0, 1. Assume to contradiction that A = ΦBi

e .
Then there will be no e-split ahead of βi,s for s = 〈e, i〉. By enumerating σ ⊃ βi,s,
we will eventually compute A(x) = Φσ

e,|σ|(x) for all x.
(2) Apparently, B0⊕B1 ≥T 0′. Therefore, A cannot compute both of them, i.e.,

there is i = 0, 1 such that Bi �T A. Together with (1), there is Bi such that Bi|TA.
(3) To see B′

i ≤ A⊕ 0′ for each i = 0, 1. Fix e, to see if e ∈ B′
i, by s-m-n lemma,

we find f(e) (f recursive) such that ΦX
f(e)(x) ' ΦX

e (e) for all x ∈ N and X ⊂ N.
Construct in A ⊕ 0′, we will get βi,s where s = 〈f(e), i〉. We ask 0′ if there is an
f(e)-split ahead. If so, then ΦBi

e (e) ↓ as ΦBi

f(e)(x) ↓ for some x; If no, we ask 0′ if
Φ

βi,s

f(e)(0) ↓.
�

Exercise 5.3.2. Prove that all pairs of relations between A and B (<T ,≤T ,≡T , |T)
on the one hand and A′ and B′ on the other hand not prohibited by the known facts
that A <T A′ and A ≤T B ⇒ A′ ≤T B′ are possible.

10 YANG

Proof. We show A|TB and A′ <T B′ is possible.
Fix a set A >T 0 being in a low degree, i.e. A′ ≡ 0′. This can be given by the

Kleene and Post Theorem. We would like to build a high B, namely B′ ≡T 0′′,
such that A �T B. Note that we will also have B �T A, which follows from
B′ ≡T 0′′ �T 0′ ≡T A′.

We define B =
⋃

s βs, let β0 = ∅.
At stage 2s+ 1, we ask if ∃β ⊃ β2sΦ

β
s (s) ↓. If so, we choose the least such β; if

no, let β = β2s. In either case, we let β2s+1 = β⌢{0′′(s)}.
At stage 2s+ 2. We ask if ∃x∃β ⊃ β2s+1Φ

β
s (x) ↓6= A(x). If so, let β2s+2 be the

least such β. If not, let β2s+2 = β2s+1.
Verification.
Note that 〈βs〉s ≤ A′ ⊕ 0′′. Since A′ ≡T 0′, we have 〈βs〉s ≤ 0′′.
(1) To see B′ ≤T 0′′. Given s, in 0′′, we can compute β2s. Also in 0′′ (actually

in 0′), we can answer if ∃β ⊃ β2sΦ
β
s (s) ↓.

(2) To see 0′′ ≤T B′. We show actually 0′′ ≤T B ⊕ 0′. We need to show that
t 7→ |βt| is recursive in B ⊕ 0′. Clearly, |β0| = 0. Given |β2s| and B, we know
β2s and we ask a 0′ question to get |β2s+1|. In the next step, we ask a A′(≡T 0′)
question to get |β2s+2|. Now, 0′′(s) = B(|β2s+1| − 1).

(3) To see A �T B. Assume A = ΦB
e . At stage 2e + 2, we would have ∀x∀β ⊃

β2e+1(Φ
β
e (x) ↓= A(x) ∨ Φβ

e (x) ↑). Now we show A is recursive. To compute A(x),
we just search for a β ⊃ β2e+1 and s ∈ N such that Φβ

e,s(x) ↓. We will find such β

because B ⊃ β2e+1 and ΦB
e (x) ↓. Now A(x) = Φβ

e,s(x). �

Exercise 5.3.3 (Jump inversion preserving partial order). Prove that given any
finite set S of Turing degrees ≥T 0′, there is a set T of degrees such that (T ,≤T)
and (S,≤T) are isomorphic as partial orders and the isomorphism is given by the
Turing jump operator.

The original proof can be found in (Sacks, 1961).

Proof. Let S = {Sk}k<n. For each k < n, let Ik =
{
j < n

∣∣ Sj ≤T Sk

}
. We define

a sequence of sets {Ak}k<n and let Bk =
⊕

j∈Ik
Aj . We want

B′
k ≡T Sk

for every k < n. Clearly, if Si ≤T Sj , then Bi ≤T Bj ; and if Si �T Sj , then
Bi �T Bj .

We approximate Ak =
⋃

s αk,s. Meanwhile, we also build A∗
k =

⋃
s α

∗
k,s leaving

the slots for coding Sk blank. The intention is we would like to have 〈α∗
k,s〉k,s ≤ 0′.

Note that we always keep |αk,s| = |α∗
k,s|. We enumerate following requirements.

Px code Sk(x) into Ak for every k < n,

Re,k make sure ΦBk
e (e) ↓ if possible.

Let αk,0 = α∗
k,0 = ∅ for all k < n.

At stage s+ 1. Assume αk,s and α∗
k,s are defined for all k < n.

If it is the stage we should act for Px, we let αk,s+1 = αk,s
⌢{Sk(x)}, and we let

α∗
k,s+1 = α∗

k,s
⌢{0}.

If it is the stage we should act for Re,k. Assume we have already acted for Px

for every x < m− 1. Then there are |Ik| · 2m many ways to fill the slots in α∗
j,s for

j ∈ Ik. Let {αp
j,s}p<|Ik|·2m lists all the possibilities. By induction on p < |Ik| · 2m,

SELECTED SOLUTIONS FOR COMPUTABILITY 2019 11

we define µp
j for j ∈ Ik. Let µ−1

j = ∅ for every j ∈ Ik. Assume we have µp−1
j defined

for every j ∈ Ik. We ask 0′ if

∃〈νpj 〉j∈IkΦ

⊕
j∈Ik

(αp
j,s

⌢µp−1
j

⌢νp
j)

e (e) ↓ .

If the answer is positive, take the least such 〈νpj 〉j∈Ik and let µp
j = µp−1

j
⌢νpj for

j ∈ Ik; if the answer is negative, let µp
j = µp−1

j (j ∈ Ik). Finally, let αj,s+1 =

αj,s
⌢µ

|Ik|·2m−1
j and α∗

j,s+1 = α∗
j,s

⌢µ
|Ik|·2m−1
j for all j ∈ Ik.

Verification.
Note, the construction of 〈α∗

k,s〉k,s is completely in 0′.
(1) B′

k ≤T Sk. To see if e ∈ B′
k. In 0′, we compute 〈α∗

j,s+1〉j∈Ik where s is the
stage we acted for Re,k. Now Sk (which computes every Sj for j ∈ Ik) can give us
〈αj,s+1〉j∈Ik . Again, 0′ will tell us if Φ

⊕
j∈Ik

αj,s+1

e (e) ↓, which is also the answer for
e ∈ B′

k. Therefore, B′
k ≤T 0′ ⊕ Sk ≤T Sk.

(2) Sk ≤T B′
k. To compute Sk(x), we use 0′ to compute α∗

k,s where s+ 1 is the
stage we acted for Px. Then we ask Bk the value of Ak(|α∗

k,s|) = Sk(x). Therefore,
Sk ≤T 0′ ⊕Bk ≤T B′

k. �
Exercise 5.4.3. There is an independent set of degrees of size continuum.

Proof. As in the proof of Theorem 5.4.1, we build a perfect tree T such that for any
n and any distinct A1, . . . An, B ∈ [T], B �T ⊕{A1, . . . , An}. So the requirements
would be

Re : ∀(A1, . . . An, B) ∈ [T]<ω(B 6= A1, . . . An → Φ⊕{A1,...,An}
e 6= B)

We approximate T =
⋃

s Ts. For each s, Ts is a finite tree whose every nonmaxi-
mal node has two incomparable extensions in Ts. Let T0 = {∅}. At the stage s+1,
we have Ts defined and we act for requirement Rs.

Let σ0, . . . , σn−1 list all the maximal nodes in Ts. And we list all the pairs 〈̄i, j〉
such that ī ∈ n<n, j < n and j is not in ī as

{
〈̄ik, jk〉

∣∣ k < l
}

. For each i < n,
let σi,0 = σi. For k < l, assume σi,k is defined for all i < n, we deal with the
pair〈σ̄īk,k, σjk,k〉. We ask if there is σ̄ such that each string in it extending the
corresponding one in σ̄īk,k respectively and Φ⊕σ̄

s (|σjk,k|) ↓. If no such extensions,
let σi,k+1 = σi,k for all i < n. Otherwise, let σjk,k+1 = σ⌢

jk,k
{1 − Φ⊕σ̄

s (|σjk,k|)},
let k + 1 extensions of strings in σ̄īk,k be those correspondings in σ̄ and keep other
strings unchanged. Finally, we will have every σi,l (i < n) defined. Let Ts+1 consists
all σ⌢

i,l{0}, σ⌢
i,l{1} for i < n and their initial segments.

Verbification. T =
⋃

s Ts is clearly a perfect tree by construction. To see Re is
satisfied. Fix distinct Āī and B in [T]. By padding lemma, there is always an s such
that Re and Rs are equivalent and the initial segments of Āī and B has already
been incomparable in Ts as 〈σ̄īk,k, σjk,k〉. It is routine to check that Φ⊕Āī

s 6= B. �

(R. Yang) School of Philosophy, Fudan University, 220 Handan Road, Shanghai,
200433 China

Email address: yangruizhi@fudan.edu.cn

