
The Turing Degrees: Global and Local Structure 1

Richard A. Shore c

May 20, 2015

1THIS IS A ROUGH DRAFT. CORRECTIONS, COMMENTS AND SUGGGESTIONS
ARE WELCOME. PLEASE SEND TO SHORE@MATH.CORNELL.EDU. PLEASE IN-
CLUDE THE DATE OF THE DRAFT. THANKS.

ii

Contents

Introduction ix
0.1 Notation . ix
0.2 Pairing and ordered sequences . ix

1 An Overview 1
1.1 History, intuition, undecidability, formalization, 1
1.2 Formal de�nitions, models of computation 1
1.3 Relative computability: Turing machines with oracles 1
1.4 Degrees, types of questions . 2

2 The Basics 3
2.1 Coding Turing machines with oracles . 3

3 The Turing Degrees 7

4 R.E. Sets and the Turing Jump 11
4.1 The Jump Operator . 11
4.2 Trees and König�s Lemma . 12
4.3 Recursively Enumerable Sets . 16
4.4 Arithmetic Hierarchy . 21
4.5 The Hierarchy Theorem . 24

4.5.1 Index sets . 25
4.6 Jump Hierarchies . 25

5 Embeddings into the Turing Degrees 27
5.1 Embedding Partial Orders in D . 27
5.2 Extensions of embeddings . 37
5.3 The range of the jump . 43

5.3.1 The Friedberg Jump Inversion Theorem 44
5.3.2 The Shoen�eld Jump Inversion theorem 45

5.4 Trees and sets of size the continuum . 46

iii

iv CONTENTS

6 Forcing in Arithmetic and Recursion Theory 49
6.1 Notions of Forcing and Genericity . 49
6.2 The Forcing Language and Deciding Classes of Sentences 55
6.3 Embedding Lattices . 63
6.4 E¤ective Successor Structures . 72

7 The Theories of D and D(� 00) 77
7.1 Interpreting Arithmetic . 77
7.2 Slaman-Woodin Forcing and Th(D) . 79
7.3 Th(D � 00) . 84

8 Domination Properties 91
8.1 Introduction . 91
8.2 R.E. and �0

2 degrees . 92
8.3 High and GL2 degrees . 96
8.4 De�nability and Biinterpretability in D(� 00) 105
8.5 Array Nonrecursive Degrees . 112

9 Minimal Degrees and Their Jumps 117
9.1 Introduction . 117
9.2 Perfect forcing and Spector minimal degrees 117
9.3 Partial trees and Sacks minimal degrees 124
9.4 Minimal degrees below degrees in H1 and GH1 126
9.5 Jumps of minimal degrees . 127

9.5.1 Narrow trees and GL1 minimal degrees 127
9.5.2 Cooper�s jump inversion theorem 128

9.6 The minimal degrees generate D . 131

10 Lattice Initial Segments of D 137
10.1 Lattice Tables, trees and the notion of forcing 137
10.2 Initial segment conditions . 142
10.3 Constructing lattice tables . 147
10.4 Decidability of two quanti�er theory . 151
10.5 Undecidability of three quanti�er theory. 151

11 �01 Classes 153
11.1 Binary trees . 153
11.2 Finitely branching trees . 160

12 Pseudo-Jump Operators: De�ning A 163
12.1 Completeness Theorems for REA operators 164
12.2 RE Operators and Minimal Covers . 171
12.3 The Join Theorem for !-r.e. Operators 173

CONTENTS v

12.4 The De�nability of A and the Failure of Homogeneity 175
12.5 The Join Theorem for REA operators . 176

13 Global Results 177

14 De�ning the Turing Jump 179

15 Appendices 181
15.1 Trees, Cantor and Baire space; topology; perfect sets 181
15.2 Structures, Orders and Lattices . 181
15.3 Interpreting Structures and Theories . 182

16 Bibliography 183

vi CONTENTS

Prefacepreface

....Thank previous students and especially Mia Minnes who took notes in TeX for the
entire course in 2007 along with the other students that term who all took turns preparing
lecture notes.....

vii

viii PREFACE

Introductionintro

The introduction
Reference Style to Chapters Chapter n Sections §n.m??

0.1 Notationnotation

N a; b; c; d; e; i; j; k; l;m; n; r; s; t; u; v; w; x; y; z
N! N f; g; h
N!2 sets A;B;C; U; V;W;X; Y; Z
f ambiguous
partial functions �; '; :::
Functionals �;	; ::: (continuous)

0.2 Pairing and ordered sequences

Choice. Uniformity.
speci�c pairing polynomial 1

2
(x2+2xy+y2+3x+y) then n-tuples by recursion. then

picture for listing the elements of a countable family of countable sets.
Pairing functions: desiderata for hx; yi.
2x3y; 1

2
(x2 + 2xy + y2 + 3x+ y)

hx; y; zi = hx; hy; zii etc.
hx1; : : : xni = hn; hx1; hx2 : : :iii
Uniformity over length n.Q
pxi+1i � 1 for hx1; : : : xni

pairing for functions f � g; �ifi
�Ai �fi �fAij:::i:::g

strings �; �; ; �; �; �; �
String notation functional form if � = hx1; : : : xni then �(i) = xi+1 (perhaps prefer

hx0; : : : xn�1i); dom(�) = n = j�j length of �; order by initial segments � � � ; restriction
for m � j�j, � � m � � and j� � mj = m. Apply to functions on all of N as well: � � f ;
f � m. so strings as �nite sequences

ix

x INTRODUCTION

Notation: set of all �nite sequences of elements of S denoted by S<! set of sequences
of length n by Sn

binary strings f0; 1gn f0; 1g<!
Identify f0; 1g with 2 and more generally f0; 1; : : : ; n � 1g with n and so write 2n,

2<! 2N ...
Also pairing for strings...

Chapter 1

An Overviewoverview

1.1 History, intuition, undecidability, formalization,
...hist

1.2 Formal de�nitions, models of computationformal

Turing machines (multitape with input, output and others)
n-ary functions formally view as given by input an n-tuple x1; : : : ; xn coded on same

input tape e.g. as B1x1B1x2 : : : B1xnB : : :
??or in some nice way e.g. machine he; ni ... or just realize can mimic such functions

...and use notation of n-ary inputs as shorthand.?
Also allow multiple oracles f1; : : : fn ...

Other notions: prim recursive + � (search); register machines; equation calcu-
lus?..

1.3 Relative computability: Turing machines with
oraclesrelcomp

de�ne Turing machines, input (note how to deal with n-tuples as input coded on same
on tape) above, output, computation also for oracles (functions) , Turing reducibility �T
de�ne formally
do for explicitly for unary functions
can do n-ary in same way or by coding n-tuples as numbers
also oracles - could have tuple of oracles or view as code by function pairing
ref speci�c coding procedures in .
Church-Turing Thesis
equality for partial functions � = 	 for if either are de�ned at x then both are de�ned

and their values are equal.

1

2 CHAPTER 1. AN OVERVIEW

use here example

Proposition 1.3.1 Turing reducibility is re�exive and transitive.

Recursive. (continuous) Functionals; oracles as inputs

1.4 Degrees, types of questionsdegrees

We have seen that Turing reducibility, �T , is a re�exive and transitive relation and so
we can consider the equivalence classes for this relation, i.e. the classes of the form
fgjg �T f & f �T gg for any function f . These classes are called the Turing degrees,
or simply the degrees. As, by Exercise

degset
1.4.1, every Turing degree contains a set (i.e. a

characteristic function) and so we may, without any loss consider just the degrees of sets
or the classes fBjB �T A & A �T Bg. We denote the collection of all degrees by D. We
typically denote the degree containing f or A by f or a. The class D is a partial order
under the induced relation � de�ned by f � g,f �T g. (See Exercise

welldef
1.4.2.)

.

degset Exercise 1.4.1 For every function f 2 NN there is a set A 2 2N of the same Turing
degree, i.e. f �T A and A �T f .

welldef Exercise 1.4.2 The relation � de�ned above is well de�ned, re�exive and transitive on
the degrees and so makes them into a partial order.

Notation 1.4.3 For functions f; g 2 NN, we write f jTg to denote that f and g are
Turing incomparable, i.e. f �T g and g �T f . Similarly, we write f jg when f � g and
g � f .

outline book
algebraic, local...
second order, global: de�nability, automorphisms, theory
mention appendices

Chapter 2

The Basicsbasics

2.1 Coding Turing machines with oraclescodeTM

To aid in our analysis of Turing machines with oracles and relative computability as
described in

relcomp
1.3, we introduce a master (universal) recursive function in two forms. First

we have
'(f; e; x; s) = y.

Here the variables are f a function, e a number (index), x a number (input), s a number
(steps) and the expression means that the Turing machine with index e and oracle j
given input x and run for s many steps converges and outputs y. Secondly we have an
approximation version

'(�; e; x; s) = y

where the variables are � a string (so an initial segment of a function), e a number
(index), x a number (input), s a number (steps, use); and the expression means that the
Turing machine with index e and oracle restricted to � given input x and run for s many
steps converges and outputs y. We say that '(f; e; x; s) or '(�; e; x; s) converges, if there
is such a y. The standard notation for this is '(f; e; x; s) # or '(�; e; x; s) #.
??(In later chapters it will at times be convenient to allow � to be more generally

a �nite partial function from N to N rather than restricting its domain to be an initial
segment of N. This makes essentially no di¤erence in our discussions here.)??
The speci�c formal de�nition of ' is not important. We now make explicit some

properties that we want it to have. The properties should be obvious natural ones based
on our descriptions of the action of Turing machines with oracles.
??redo following as de�nitions etc.??

Properties of '(�; e; x; s):
(i) Use: If � � � and '(�; e; x; s) #= y then '(� ; e; x; s) = y

(ii) Permanence: If s < t and '(�; e; x; s) #= y then '(�; e; x; t) #= y

3

4 CHAPTER 2. THE BASICS

(iv) Computable Domain: The domain of ' is computable, in other words there
is a procedure to decide whether ' converges on any given tuple (�; e; x; s). This
procedure simply runs the machine with index e on input x and oracle �. If the
machine arrives at an output by step s, then answer yes (and otherwise, answer
no).

We next adopt some conventions.
Conventions: We convert these partial functions into total ones by adopting the
convention that, if, during the run of the machine with index e and oracle f or � on
input x, the computation does not halt in s steps we output � (some designated reserved
symbol). In the case of a �nite oracle �, we also output � if we ask a question of the
oracle for a number outside the domain of �. For later convenience we also adopt the
conventions that the output is � if the input x or the expected output y is greater than
s.
These conventions can be thought of as saying that, in s many steps, we cannot

compute anything about any x > s (so roughly we have to read the input �rst) and that
we cannot ask any oracle questions about z > s either (so roughly new must be able to
write the number z down before asking about the value of f(z)) and cannot compute an
output y > s (so roughly we have write the output on the tape).
Finally,
We next note that ' is universal in the sense that it allows us to uniformly capture

all the partial Turing functions with oracles.

Proposition 2.1.1 For any function f and natural number e, �fe (x) = y if and only if
9� � f9s

�
'(�; e; x; s) #= y

�
. Thus f �T g if and only if 9e(�ge = f).

De�nition 2.1.2 We de�ne the use of the computation of �fe (x) = y as the least n
such that '(f � n + 1; e; x; s) = y. We also say that � = f � n is the axiom (about the
oracle f) that gives this computation. Note that if f is changed at or below the use then
this axiom no longer applies to the changed function and while there may be a convergent
computation from the new function, it is not the same computation giving the output y.
??have to de�ne the computation ...??

De�nition 2.1.3 �fe;s(x) = y means that if we run �Xe on x for s steps we get y as our
result in the sense that x and '(f � s; e; x; s) = y. Similarly, we use ��e (x) = y to mean
that x < j�j and '(�; e; x; j�j) = y. So that the additional convention here is that when
the oracle is a �nite string � we run the machine for j�j many steps. Thus we use ��e (x)
to denote what we might also write as ��e;j�j(x). With this convention in mind we write
'(�; e; x) for '(�; e; x; j�j).

We collect our various notations in the following remark.

2.1. CODING TURING MACHINES WITH ORACLES 5

Remark 2.1.4 �fe (x) = y , 9s'(f; e; x; s) = y , (9� � f)(9s)(��e;s(x) = y),
(9� � f)('(�; e; x; s) = y), (9� � f)(��e (x) = y),
(9� � f)('(�; e; x) = y).
�fe (x) #, 9s'(f; e; x; s) #, (9� � f)(9s)(��e;s(x) #),
(9� � f)('(�; e; x; s) #), (9� � f)(��e (x) #),
(9� � f)('(�; e; x) #)
f �T g , 9e(�ge = f).

De�nition 2.1.5 We use �e to denote �;e the eth Turning machine with oracle the empty
set (constant function 0). This is equivalent (explain) to the list of Turing machines
without oracles and we often simply identify these two versions.

Remark 2.1.6 (Multivariable Functions) Just as we extended unary functions given
by basic Turing machines (with or without oracles) to multivariable functions in

mvtm
??, we

can extend the universal partial recursive functions and predicates to their analogs for
multiple inputs. Thus we have 'n(f; e; �x; s) = y, 'n(�; e; �x; s) = y, 'n(f; e; �x; s) # and
'n(�; e; �x; s) # which are as above except that the input is now an n-tuple �x in place of a
unary x.

Remark 2.1.7 (Relativization) As usual we can add extra function parameters �h by
relativization and so de�ne 'n(f; �h; e; �x; s) = y, 'n(�; �h; e; �x; s) = y, 'n(f; �h; e; �x; s) # and
'n(�;

�h; e; �x; s)# which are as above except that the functions and predicates are recursive
in f � �h, �h, f � �h and �h, respectively.

transtred Theorem 2.1.8 Turing reducibility is transitive, i.e. if f �T g and g �T h then f �T h.

Proof. ??
We now state some classical theorems about basic manipulations of Turing machines

and their indices. They were originally presented with formal proofs based on various
formal de�nitions of computable functions. Now we tend to view them as �obvious�
based on our approach that assumes the Church-Turing thesis.

smn Theorem 2.1.9 (s-m-n Theorem) For each m;n 2 N, there is a one-one recursive
function smn of such that

8f8�y
�
�fe (x1; : : : ; xm; y1; : : : ; yn) = �

f
smn (e;�x)

(�y)
�
:

In fact, can view m and n as variables as well and so have a single recursive function s
such that .??Decide on approach to n-ary functions in previous Chapter??

Informal Proof.
Notion of uniformity here or before
typically formally given by s-m-n theorem

6 CHAPTER 2. THE BASICS

ujoin Example 2.1.10 (Uniformity of Join) There is a recursive function p such that,for
every f , e and i, �fe � �

f
i = �

f
p(e;i).

utrans Example 2.1.11 (Uniformity of Transitivity) There is a recursive function t such

that,for every f , e and i, ��
f
i

e = �ft(e;i).

padding Theorem 2.1.12 Padding Lemma: 8e91i8f(�fe = �
f
i).

Proof. Exercise: Informal argument and formal one using s-m-n Theorem.
Idea that s-m-n gives more: uniformity.

enumthm Theorem 2.1.13 Enumeration Theorem: List of partial recursive (in f) functions: �fe .

recthm Theorem 2.1.14 (Recursion Theorem aka Fixed Point Theorem) If f is a re-
cursive function then there is an e such that for all g, �ge = �

g
f(e).

Proof.

This is Kleene�s essentially one-line seemingly magical proof of the Recursion The-
orem. A di¤erent perhaps more reasonably seen as discoverable is given below as an
application of Theorem

dnrnotrec
3.0.19.

Intuitively the recursion theorem implies that we can call a function h within the
de�nition of h itself. This may seem counterintuitive or simply false. But think of the
procedure that we envision de�ning h except that it has calls to h. Replace the calls to f
by calls to �e. this gives us a computation procedure whose index (as a Turing machine)
is clearly recursive in e. Let f be the function computing the index of this procedure. By
the recursion theorem f has a �xed point e. Now argue that �e is a function (at least a
partial function) as desired for h.
The Recursion Theorem is also used when we talk about approximation procedures.
Generalizations, relativizations?
Relativization in general and speci�cally here e.g. for universal ' and conventions

(need for forcing language)
Issue of multiple inputs and oracles. formally via pairing informally write out as

sequence?

Chapter 3

The Turing DegreesTD

We have de�ned the basic notion of relative complexity of computation on functions,
f �T g in ??. We saw that it is a transitive relation and so we de�ned the equivalence
classes as the Turing degrees, f = fgjf �T g & g �T fg. We then have the partial order
� on D, the set of Turing degrees, induced by �T . We now want to present some simple
but important facts about the structure of D that can be deduced from what we know
already.
Facts about the Turing Degrees:facts

1. D is a partial order under �T .

2. D has a least element, 0, which is the degree containing all computable sets.

3. D is an uppersemilattice, i.e. there is a join operation _ on degrees such that, for
every pair of degrees f ;g, f _ g is their least upper bound. It is the degree of f � g:

4. There are elements of D other than 0. There are two types of proofs of this
fact. One is a counting argument: There are 2@0 sets (subsets of N). By Cantor�s
theorem 2@0 > @0 i.e. there are uncountably many sets. Moreover, since there are
only countably many Turing machines, each degree is at most countable as a set.
(In fact, as f �T f + c any constant function c, each degree contains) and has at
most countably many predecessors. So, not only are there degrees other than 0,
there are 2@0 many degrees. Other speci�c ones given later (e.g. DNR functions
and the Halting Problem to start refs??.)

� There is no largest degree because for each degree x, can �nd a DNR relative to x
and it is not below it. Relativization

� D is an upper semi-lattice.
We can de�ne a join operator _ on D: On sets/functions it is de�ned by

f � g(2n) = f(n) f � g(2n+ 1) = g(n);

7

8 CHAPTER 3. THE TURING DEGREES

or (f � g)(hn; 0i) = :::

this is inherited by the degrees f _ g = degree of(f � g). Note that we can use the
join operator to produce a degree strictly above each degree because can take join
of a member of the degree with some DNR relative to it. Also by counting: take
any g not recursive in f (only countably many) and consider f � g.

Note that we denote degrees in boldface, a or f and sets or functions in lightface, A
or f .
We summarize these facts as follows.

Theorem 3.0.15 D is an uppersemilattice with 0 of size 2@0 with the countable prede-
cessor property.

In (??) we see that every countable partial order and even uppersemilattice can be
embedded in D. This also holds for ones of size @1 (??). Indeed each is isomorphic to an
initial segment (downward closed subset) of D. For these results @1 is as far as we can
go. There are models of ZFC in which 2@0 > @1 with uppersemilattices (partial orders)
of size @2 that cannot be embedded in (as initial segments of) D. ??

Exercise 3.0.16 There is a co�nal sequence of degrees if and only if CH (continuum
hypothesis) holds in which case the sequence can be chosen to have order type @1.

graph Exercise 3.0.17 Every degree contains a set (i.e. characteristic function). (Graph(f))

So can use sets or functions indiscriminately as oracles when de�ning degrees...sometimes
technical advantages to working with one or the other...
??Note that we identify sets with their characteristic functions so when we talk about

functions f , g ... we include the possibility that they are sets. ??
Some more questions about D: how tall is it? how wide is it? is it a lattice? ...

Answers coming up.....
How do we �build� a nonrecursive function. We can �implement� the idea of the

proof of Cantor�s theorem that there are more functions on N than elements of N, i.e.
2@0 > @0. This idea is a really a procedure called a diagonal argument.
We extract the crucial property in our setting in the following de�nition.

De�nition 3.0.18 (DNR) A function h is DNR (diagonally non-recursive) if 8n(h(n) 6=
�n(n)).

dnrnotrec Proposition 3.0.19 If h is DNR then h is not recursive.

Proof. By the diagonal argument...
Relativize de�nition and proposition
We can now prove the recursion theorem.

9

Proof of Recursion theorem. Suppose not, i.e. 8e(�e 6= �f(e)). [Such an f is called
�x point free (FPF).] We try to build a recursive DNR h for the desired contradiction.
Since �e(e) 6= �f(e) for every e, we only need to make �h(e) = �f(�e(e)) to get h(e) 6=

�e(e). �Obviously�(by the s�m�n theorem), there is such a recursive h: given e �nd the
index of the machine which �rst computes �e(e) and if it converges then computes f of
the value and begins mimicking the machine with that index. This gives the description
a machine that computes �f(�e(e)) and so an index, h(e) for it. Going from e to h(e) is an
intuitively computable procure. Formally, the s-m-n theorem shows that it is a recursive
function. On the other hand, our assumption (that f is FPF) implies (as above) that h
is DNR for the desired contradiction.
Now to recover the standard constructive version of the theorem that actually com-

putes the �xed point (with the usual uniformity), note that the index k for h can be found
recursively in that of f (again by the s�m�n theorem). Now �h(e) = ��k(e) = �f(�e(e))
and so if we let e = k then h(k) = �k(k) is the desired �xed point: �h(k) = ��k(k) =
�f(�k(k)).

10 CHAPTER 3. THE TURING DEGREES

Chapter 4

R.E. Sets and the Turing Jumpre

4.1 The Jump Operator

defjump De�nition 4.1.1 On functions, de�ne the jump as f 0 = fe : �fe (e) #g.

Proposition 4.1.2 f �T g implies that f 0 �T g0 and so the jump operator is well-
de�ned on the degrees.

Proof. Since f �T g, there is i such that f = �gi . So

e 2 f 0 , �fe (e) #, �
�gi
e (e) #

The s-m-n theorem gives a recursive one-one function k such that �gk(e;i) = �
�gi
e . In

particular,
e 2 f 0 , �gk(e;i) #, k(e; i) 2 g0

and so f 0 �T g0. Thus if f �T g then f 0 �T g0 and the jump operator is well de�ned
on D.

Proposition 4.1.3 f �T f 0

Proof. We need to compute f(n) using f 0?
If f is the characteristic function of a set A then we can decide whether n 2 A

using A0 by recursively �nding an e such that �Ae (e) #, n 2 A. Formally, we can
appeal to the s-m-n theorem to get a recursive one-one function k such that for each n,
�Ak(n)(k(n)) #, n 2 A. This gives the desired reduction.
We can now appeal to Exercise

graph
3.0.17 for the theorem for all functions f: Or we can

prove it directly.

Exercise 4.1.4 Give a direct proof that f �T f 0 for all functions. Solution: Instead of
�nding index of machine which asks whether n 2 A, �nd a machine such that

�fk(n;m)(z) #, f(n) = m:

11

12 CHAPTER 4. R.E. SETS AND THE TURING JUMP

Then successively ask k(n; 0) 2 f 0?, k(n; 1) 2 f 0?, etc. until �nd k(n;m) 2 f 0 in which
case output f(n) = m. This procedure halts because of the assumption that f is a function,
hence total.

Proposition 4.1.5 f <T f
0

Proof. It clearly su¢ ces to �nd an h �T f 0 which is DNRf , i.e.

8n
�
h(n) 6= �fn(n)

�
We compute h from f 0 as follows: Given n, ask if �fn(n) # (in other words, if n 2 f 0). If
so, let y = �fn(n) and put h(n) = y + 1. If not, set h(n) = 0.
Conclusion: The jump is a strictly increasing, order preserving operator on the de-

grees.
The jump of the empty set is, of course, ;0. By our identi�cation of the Turing

machines without oracles with those with oracle ;, it is identi�ed with the usual halting
problem K = fej�e(e) #g, the set of indices e of Turing machines which halt on input
e. One often wants to consider alternate versions such as K0 = fhx; yi j�x(y) #g. We
can consider this as an alternative version of K or of the jump in general because the
produce sets of the same degree.

Exercise 4.1.6 For every f , f 0 �T fhx; yi j�fx(y) #g.

In fact, more is true as we shall see in ?? (1-1 equivalence) and ?? (recursive isomor-
phism).

4.2 Trees and König�s Lemma

So we have two ways of �getting� nonrecursive sets - diagonalization and the halting
problem. Have seen that the second computes an example of the �rst. What about
the other way? Does every DNR function compute K? If not, what can we say about
the needed complexity (if there is any)? We take a side trip to an example of reverse
mathematics and a comparison of the �strength�of versions of a well known combinatorial
principle: König�s Lemma.
While there are many mathematical de�nitions of a tree (and others are used later),

for now we take a simple representation. Remembering that we are in the world of the
natural numbers, it makes sense to use (for now at least) the following de�nitions.

tree De�nition 4.2.1 A tree T is a subset of N<N, the set of �nite strings of natural numbers,
that is closed downward under the natural partial order � � � : � is an initial segment of
� . (Or in the functional notation �(n) = �(n) for every n < j�j. (We use j�j to denote
the length of the sequence � or in the functional notation its domain with the ordering on
N given by 2 on the usual set theoretic representations of the natural numbers.) The root

4.2. TREES AND KÖNIG�S LEMMA 13

of any of our trees is then the empty string (or set) ;. A binary tree is a tree of binary
sequences, i.e. a downward closed subset of 2<N. A �nitely branching tree is a tree T
such that for every � 2 T there are only �nitely many � 2 T with � � � and j� j = j�j+1.
If T is a tree we say that a subset P of T is a path on T if P is in�nite, linearly ordered
and downward closed (with respect to �). The set of paths on T is denoted by [T]. The
elements of a tree are often called nodes and ones with no successors in the tree, leaves

Exercise 4.2.2 If you know some general abstract de�nition of a (binary, �nitely branch-
ing) tree, do all of ours satisfy the de�nition you know?

Exercise 4.2.3 (Thought Problem) Think about what a �converse�might mean. We
are restricted to countable sets (trees) but can we think of any countable tree as (�iso-
morphic to�) one of ours? In general, what does it mean to code mathematical structures
in N?

KL Lemma 4.2.4 (König�s Lemma) If T is an in�nite, �nitely branching tree then T has
an in�nite path.

Proof. We �construct�a path P in T by recursion. At each step t we have a node �t
in T of length t with in�nitely many successors on T . We begin, of course, with the root
; = �0 relying on the fact that T is in�nite to satisfy our condition. If we have �t we
consider its immediate successors in T . By assumption there are only �nitely many and
so one of them say �t^x has itself in�nitely many successors on T . We let z be the least
such x and let �t+1 = �t^z. It is clear that P = f�tjt 2 Ng is a path in T .

WKL Lemma 4.2.5 (Weak König�s Lemma) If T is an in�nite binary tree then T has an
in�nite path.

Is this proof (of König�s Lemma) constructive or e¤ective? If not could there be one
that is? Is it �easier� to prove Weak König�s Lemma than the full one? Is it easier
to construct a path in an in�nite, binary tree than an arbitrary �nitely branching one?
What might these questions mean? Not every in�nite tree has a path at all but what
about arbitrary trees with paths? How hard is to construct one?
We begin with the �rst question. One way of making the question precise is to ask

if every in�nite �nitely branching (or binary) recursive tree T has an in�nite recursive
path. Or more generally if every in�nite �nitely branching (or binary tree) T has an
in�nite path recursive in T . If so, we might also want there to be a uniformly e¤ective
procedure that produces such a path, i.e. an e such that �e(T) is an in�nite path in T
for every �nitely branching or perhaps every binary tree. The answer is no for all the
versions and the proof is intimately connected to the notion of DNR functions. On the
other hand, we claim that König�s Lemma is more complicated than the weak version,
i.e. it really is weaker. The analysis here is intimately connected to the jump operator.

Theorem 4.2.6 There is an in�nite recursive binary tree with no in�nite recursive path.

14 CHAPTER 4. R.E. SETS AND THE TURING JUMP

Proof. We want an in�nite binary tree T such that for every f 2 [T], f 2 DNR. If we
did not have to make T recursive, we could simply take all the binary strings � that satisfy
the de�nition of a DNR function on their domains: f� 2 2<Nj(8n < j�j)(�(n) 6= �n(n))g.
However, this set is not recursive (Exercise

norectree
??). We can however, eventually recognize

when a binary string � fails to be in this set by seeing at some stage s that �n;s(n) #= �(n)
for some n < j�j. The picture for building the desired (or any) recursive tree is that we
are e¤ectively going along deciding which strings are in T . Say at stage s of our recursive
construction we must decide for every binary string of length s if it is in T or not. (This
makes T recursive.) We eliminate unwanted paths when we recognize that some � has
failed our test for being DNR. More precisely if at stage s we see that �n;s(n) #= �(n)
for some n < j�j then no strings � � � are ever put into T at any stage t � s. Formally,
T = f� 2 2<Nj(8n < j�j)[:(�n;j�j(n) #= �(n)]g. By our basic facts about our master
function ', T is clearly recursive. Consider now any f 2 [T]. If f =2 DNR then there is
some n and s such that �n;s(n) #= f(n). By de�nition no � � f with j�j � n; s can be
on T and so,of course, f =2 [T] for the desired contradiction.

nonrectree Exercise 4.2.7 The tree S = f� 2 2<Nj(8n < j�j)(�(n) 6= �n(n))g is not recursive.

Theorem 4.2.8 There is an in�nite recursive �nitely branching tree T such that every
path in T computes 00.

Proof. We want to code 00 into every in�nite path f on a recursive tree T . Now T is
a subset of N<N the set of all �nite strings. In analogy with the previous construction,
we might think of ourselves as beginning with the nonrecursive tree consisting of the
single path f such that f(n) = 0 if �n(n) " and f(n) = s if s is the �rst stage t such
that �n;t(n) #. We now want to turn this into a recursive, �nitely branching tree T such
that f is its only path. We follow the plan of keeping �bad�strings from extending to
paths of the last construction and set T = f� 2 N<Nj(8n < j�j)(�n;j�j(n) ") �(n) =
0 & �n;j�j(n) #) �(n) = s where �n;s(n) # but �n;s�1(n) ")g. Now T is easily seen to
be recursive from our basic facts about '. Moreover by de�nition for each n there are at
most two numbers r such that �(n) = r for any � 2 T (0 and the �rst stage t such that
�n;t(n) #). Thus T is �nitely branching.

T is also in�nite as, by induction, for every � 2 T either �^0 2 T or �^s 2 T for s the
�rst stage t such that �n;t(n) # (and perhaps both). We now claim that the f de�ned
above is the only path on T . Suppose g 2 [T] and consider g(n) for any n. If �n(n) "
then for every � 2 T with j� j > n, we must have �(n) = 0 by the de�nition of T . On the
other hand, if �n(n) # then let s be the �rst stage t such that �n;t(n) #. Again by the
de�nition of T , if � 2 T and j� j > n; s then �(n) = s. As g � n + s 2 T , we must have
g(n) = s as required.
So solving the problem of �nding a path in any in�nite recursive �nitely branching

tree provides a calculation of 00. Note that one might say that T is 2-branching but it is
not a binary tree under our current de�nitions. This is perhaps somewhat mysterious but

4.2. TREES AND KÖNIG�S LEMMA 15

an important distinction as well shall see. There are at most two immediate successors
of each � but we cannot recursively bound what they might be.
By relativization if we can �nd a path in every �nitely branching tree, we can compute

the jump operator. What about binary trees? It is by no means obvious, and indeed
requires several ideas, to provide a proof but this is not the case for �nding paths in in�nite
binary trees. How can we make this precise. We can capture the idea that it is �possible�
to always be able to solve one problem (such as �nding paths in in�nite binary trees)
without being able to solve another (�nding paths in in�nite �nitely branching trees) by
using the notion of a model. We understand �being able�to include the idea that if we
have some f then we have any g �T f and similarly if we have both f and g then we have
f � g. We make this precise by saying that there is a class C of functions closed under
�T (and �) such that such that for every T 2 C that is (the characteristic function of)
an in�nite binary tree then there is an h 2 C which is a path in T . So in C we can solve
the �rst problem. On the other hand, there is an in�nite �nitely branching tree T 2 C
for which there is no path in C. Thus we have a �model�in which every in�nite binary
tree has a path but not every in�nite �nitely branching tree has one. The proof of these
assertions are in ??.
In the other direction, as every binary tree is �nitely branching, it is immediate that

if every in�nite �nitely branching tree in C has a path then so does every in�nite binary
tree. Thus we can conclude that solving the problem of �nding paths for in�nite �nitely
branching trees is strictly harder than the analogous problem for binary trees. This result
is intimately related to a similar claim about how hard it is to prove Lemmas

KL
4.2.4 and

WKL
4.2.5 in the sense of what axioms are needed for the proof. This is the subject of reverse
mathematics. We will return to such issues at a few points in this book. Survey or
introductory articles include...????. The basic text is Simpson ??
Relations with �nding a DNR function: DNR2 � FPF, DNRk but DNR weaker? An

example of reverse mathematics. Arbitrary trees much harder.
some exercises
Finding solutions for König�s Lemma, even for recursive trees, requires more than 00.

This is an example where closure under solving two problems is equivalent but one can
not get by with a reduction that (e¤ectively) transforms a problem of one type into one
of the so that any solution of the second computes one of the �rst.
Medvedev and Muchnik degrees. ...For later after do INF� 000"

Exercise 4.2.9 Show that every in�nite, �nitely branching tree T has a path recursive
in T 00. Build a recursive tree such that any path computes 000.

Exercise 4.2.10 Show that not every in�nite tree has a path.

Exercise 4.2.11 Relation to compactness, topological and logical.

16 CHAPTER 4. R.E. SETS AND THE TURING JUMP

4.3 Recursively Enumerable Sets

We began with the notion of what it means for a set or function to be computable
(recursive). We now want to consider a weaker notion. The idea is that, for a set A,
while we might not be able to decide if n 2 A, we might nonetheless be able to list its
elements. That is we might have a recursive function whose values are the elements of
A (assuming A 6= ;). For such sets we have a recursive way of enumerating its elements:
f(0); f(1); : : : ; f(n); : : :. So if x 2 A we eventually �nd out by enumerating that fact
when we get to f(n) = x for some n. If x =2 A we may never discover that fact. (If we
could, A would be recursive by ??
Some discussion that recursive enumerability is really about sets and not arbitrary

functions e.g. if try to enumerate a function f by enumerating its graph then actually f
is recursive not so for sets... So typically talk about sets A;B::: when discussing notions
of recursive enumerability.

De�nition 4.3.1 The following equivalent conditions de�ne the statement �A � N is
recursively enumerable (r.e.) in B�:

� A is the domain of a partial recursive in B function. Notation: WB
e = dom�

B
e and

approximations WB
e;s ??

� A is the range of a partial recursive in B function.

� A is either the range of a total recursive in B function or is empty.

� A is either the range of a 1-1 recursive in B function or is �nite.

Proof. Argue that all equivalent. explain dovetailing.

Theorem 4.3.2 A is recursive in B if and only if both A and �A = N� A are r.e. in B.

Theorem 4.3.3 If A is r.e. in B and B �T C then A is r.e. in C.

Recall that A0 = fe : �Ae (e) #g. So, A0 is r.e. in A because it is the domain of the
function that on input e runs the eth machine with oracle A with input e. We want to
show that A0 is the most complicated set r.e. in A in various precise ways.
We say that a set A is reducible to one B if there is some procedure that allows us to

decide membership in A using membership in B: We have already met the most impor-
tant and fundamental such reducibility that of Turing: A �T B. We can compute the
membership of A by asking questions about the membership of elements in B during the
computation. It may adaptively determine which questions it asks based upon answers
to previous questions. We now de�ne some other notions of reduction which are stronger
than that of Turing in the sense that they imply but are not, in general, implied by
Turing reducibility. These reductions are also primarily intended to apply to sets.
De�nition.

4.3. RECURSIVELY ENUMERABLE SETS 17

1. 1-1 reducibility(�1): A �1 B if there exists a one-one recursive function f such
that 8x x 2 A if and only if f(x) 2 B.

2. m or many-one reducibility (�m): Same as one-one reducibility except f is an
arbitrary (so possibly man-one) recursive function.

3. truth-table reducibility (�tt): A �tt B if there exists a recursive function f such
that f(x) is a propositional formula � in variables p1; :::; pk such that for all x x 2 A
if and only if B satis�es �. EXPLAIN B � � , TB � � where TB the assignment
of truth values to propositional variables determined by setting assignment to vn
to be B(n).

4. weak truth-table reducibility (�wtt): A �wtt B if there exists a recursive function
f and a Turing machine �e such that �Be = A and the use of computation in �Be (x)
is at most f(x) for all x. This is sometimes called bounded Turing reducibility
(�bT). EXPLAIN

5. bounded number of queries (so also for functions)

Note that we have the following:

A �1 B ! A �m B ! A �TT B ! A �wtt B ! A �tt B ! A �T B:

Intuitively, we can think of the truth table reduction as giving a Boolean function which
when given the answer to the oracle queries, produce the �nal answer of the reduction.
Note that all time bounded complexity classes are tt reductions
The �rst three reducibilities are total procedures in the sense that applied to any set

they always produce a set as output. The �nal one is not. It is like a tt reduction but
may be partial on some sets. In fact tt reducibility is characterized by its being total on
all set inputs.

Theorem 4.3.4 (Nerode�s Theorem) A �tt B if and only if there is e such that
A = �Be and �

X
e is a total (characteristic) function for every X.

Proof. Since tt is total by de�nition, one direction is immediate. For the other direction,
say �Xe is total for all X and �Be = A. What happens when we run �Xe (n) for some
unknown X? We can build a computation tree (explain ??) which branches (in two)
whenever the program asks a question m 2 X with the branches corresponding to the
possible answers 0 or 1 to this question. We terminate the tree when the Turing machine
halts (when it gets the answers supplied along the route followed so far). Since the
computation halts for every oracle X, all possible paths are are terminated so (using even
Weak König�s Lemma) the tree is �nite. We can build a truth table that corresponds to
this reduction (propositional variables encode branch points and return outputs at end
of every path). This is e¤ective and gives a truth table reduction from A to B.

18 CHAPTER 4. R.E. SETS AND THE TURING JUMP

Diagram

This theorem depends essentially on the fact that we restricted our attention to sets
rather than all functions. One way of looking at this is that 2N is a compact space (Cantor
space) but NN (Baire space) is not. (The paths through a binary tree form a closed (and
so compact) set in Cantor space. Each node at which we terminate the tree determine
an open set (all paths extending it). If they cover the space (no paths in the tree) then
by compactness some �nite subset of these open sets cover the space and so the tree is
�nite (all nodes are initial segments of one of the �nitely many nodes determining the
open sets that form the cover of the whole space. Another (equivalent) one related to our
discussion in the last ?? section is that if we are dealing with binary trees (we branched
to 0 or 1 depending on whether some number is in our set) then if every path terminates,
the whole tree is �nite. (The compactness of 2N is equivalent to WKL. (EXPLAIN). The
theorem is not true?? for arbitrary functions in the oracle. They would allow for in�nite
branching in our computation tree and König�s Lemma fails for arbitrary trees (NN is
not compact).
We now want to show that ;0 is the most complicated r.e. set. We could show that

A �T ;0 for every r.e. set A but in view of these new reducibilities we have just de�ned
we can hope for more.

De�nition 4.3.5 A set A is called an r-complete set for class C if A is in C and for
every B 2 C, B �r A.

Proposition 4.3.6 A0 is 1-complete for the class of sets r.e. in A.

Proof. We already know that A0 is R.E. in A. So we only need to prove for all e,
WA
e �1 A0. By de�nition, x 2 WA

e i¤ �
A
e (x) #. So, the s-m-n theorem gives a recursive

one-one k such that �Ae (x) = �
A
k(e;x)(k(e; x)). Hence, we have x 2 WA

e i¤ k(e; x) 2 A0.

Proposition 4.3.7 If B �m A0 then B is r.e. in A so for all A;B, B �m(1) A0 if and
only if B is r.e. in A.

Proof. By de�nition of �m, there is recursive f such that x 2 B implies f(x) 2 A0

implies �Af(x)(f(x)) #. So, we can use the s-m-n theorem to get that x 2 B i¤ �Ai (x) #
for some i, hence B = WA

i . The rest of the assertion then follows from the previous
Proposition.
Myhill isomorphism theorem and why this strongest equivalence from viewpoint of

recursion theory.
We have seen that A �T B implies A0 �T B0. Now we present a similar result that

links Turing-reduction with m(1)-reduction.

Proposition 4.3.8 A �T B , A0 �m B0 and A �T B , A0 �1 B0.

4.3. RECURSIVELY ENUMERABLE SETS 19

Proof. We �rst prove that A �T B) A0 �1 B0. So, we want to determine whether
�Ax (x) # by asking a membership question in B0. We claim that �Ax (x) # i¤�Bf(x)(f(x)) #
for some recursive 1-1 function f . Why? because for each x, we can produce a machine
with oracle B which ignores its input and computes �Ax (x) by simulating the machine �

A
x

and whenever it asks a question about A, compute A from B as given by assumption.
This gives a recursive method for producing index f(x), which can be made 1-1 by the
Padding Lemma. (or use s-m-n)
Now we prove A0 �m B0) A �T B. In contrast, it is not the case that A0 �T B0)

A �T B. (see ??) mention and reference future results from Chapter 5??
Recall that A �1 A0 (hence A �m A0) because A is r.e. in A (it is the domain

of procedure with oracle A which returns yes if x 2 A and loops forever otherwise).
Likewise, �A �1 A0, hence �A �m A0, because �A is r.e. in A.
By earlier converse, A �m A0 �m B0 implies A is r.e. in B and �A �m A0 �m B0

implies �A is r.e. in B. Since A is recursive in B i¤A; �A are both r.e. in B (Theorem ??),
A is recursive in B.

limitlemma Theorem 4.3.9 (Shoen�eld Limit Lemma) A �T B0 , 9f �T B such that 8x
�
A(x) =

lims!1 f(x; s)
�
. Note that asserting that lims!1 f(x; s) exists means that f(x; s) is even-

tually constant for �xed x.

??Slogan: E¤ective in the jump just in case have eventually correct recursive approx-
imation.
Proof. Say A �T B0, in other words A = �B

0
e equating the set with the function means

that the characteristic function of A is �B
0

e . We want f �T B such that lims!1 f(x; s) =
A(x). Certainly, A(x) = lims!1�

B0
e;s(x). This is recursive in B

0, but not in B. In order
to make it recursive in B, we want to approximate the oracle B�recursively in B. Since
B0 = fe : �Be (e) #g, B0

s = fe : �Be;s(e) #g is an approximation for B0 recursive in B. In
fact, B0 = lims!1B

0
s because approximation changes at most once for each e.

We can approximate any WB
e similarly by WB

e;s = fn : �Be;s(n) #g and lims!1W
B
e;s =

WB
e . ??Extract notation??
So, de�ne f by As(x) = �

B0s
e;s(x) = f(x; s) (with the convention that if � has not

answered by time s, return � no�). Then f �T B. It remains to verify that A(x) =
lims!1 f(x; s). Since A = �B

0
e (x), there is s such that A(x) = �

B0
e;s(x) = �

B0
e;t(x) for all

t � s. The computation of A only uses �nite information about B, say � � B. Moreover
there is s1 such that B0

t(n) = B0(n) for all n < j�j (aka B0
t � j�j = B0 � j�j) for all t � s1,

because of permanence and the properties of limits.
Conversely, suppose there is f �T B and A = lims!1 f(x; s). We want to show

that A �T B0. To �nd A(x), we could start computing f(x; 0); f(x; 1); f(x; 2) : : : and we
know that eventually we get the right answer. But how do we know when to stop? By
de�nition

9s8t > s
�
f(x; t) = f(x; s)

�
and for this s, A(x) = f(x; s). De�ne the following program recursive in B: �Bk(s)(s) # i¤
(9t > s)

�
f(x; s) 6= f(x; t)

�
. Note that fs : �Bk(s)(s) #g �T B0. We can apply the program

20 CHAPTER 4. R.E. SETS AND THE TURING JUMP

iteratively: does f change after stage 0? If so, can �nd s0 where it changes. Does it
change after s0? etc. This procedure halts because f is eventually constant (since it is a
limit).
In applications of the Limit Lemma, without loss of generality we adopt the convention

that we consider only functions f for which 8x(f(x; 0) = 0).

Theorem 4.3.10 A is r.e. in B i¤ there is f �T B such that for all x, A(x) =
lims!1 f(x; s) and f(x; s) changes at most once (jfs : f(x; s) 6= f(x; s + 1)gj � 1).??
Standardize by starting with f(x; 0) = 0 ??

Proof. If there is such an f , let �Be (x) be the program which searches for an s such that
f(x; s) = 1, and halts if it �nds one. Then A = dom�Be so A is r.e. in B. Conversely, if
A is r.e. in B, then A = dom�Be for some e. Let f be the function

f(x; s) =

(
1 if �Be;s(x) #
0 otherwise:

Then f �T B, lims!1 f(x; s) = A(x) and jfs : f(x; s) 6= f(x; s+ 1)gj � 1.
A is di¤erence of sets r.e. inB if 9f8xf(x; s) changes at most twice. ThenA = C0�C1

both r.e. in B.
Continuing in this fashion, get the di¤erence hierarchy (Putnam-Gold hierarchy).

De�nition 4.3.11 A is an n-r.e. set if there is a recursive function f such that for all
x, A(x) = lims!1 f(x; s) = A(x) and jfs : f(x; s) 6= f(x; s + 1)gj � n. ?? Standardize
by starting with f(x; 0) = 0 ??

We can connect this de�nition with di¤erence of r.e. sets: A is n-r.e. i¤

A =

(
(((We1 �We2) [We3) � � �)�Wen if n is even

(((We1 �We2) [We3) � � �) [Wen if n is odd;

where We1 ; : : : ;Wen are r.e. sets.

omegare De�nition 4.3.12 A is !-r.e. if there are recursive functions f; g such that A(x) =
lims!1 f(x; s) and f(x; s) changes at most g(x) many times.

idre Exercise 4.3.13 Show that if A is !-r.e. then there is a B �T A which is !-r.e. with
at most x many changes at x for each x.

Exercise 4.3.14 Show that, for each � � !, there are �-r.e. sets which are not �-r.e.
for any � < �. Hint: list all n-r.e.(for �xed n or the for all n uniformly) sets and
diagonalize making only n+ 1 (�nitely) many changes .

wtt0� Exercise 4.3.15 Show X is !-r.e. i¤ X �tt 00 i¤ X �wtt 00.

4.4. ARITHMETIC HIERARCHY 21

Note that in general, tt reducibility does not coincide with wtt reducibility. What do
we know so far about the reducibilities?

Proposition 4.3.16 �T 6=�m, �T 6=�1

Proof. If X �m A and X �m �A and A is r.e. then X is recursive. Why? X �m A and
A r.e. implies that X is re; X �m �A, �X �m A so �X r.e. as well. However, 00; 00 �T 00,
and 00 r.e. but not recursive. So �T 6=�m and �T 6=�1.

Exercise 4.3.17 Show that 1 � 1;m; tt; wtt; T are all distinct reducibilities. Hint: for
wtt and T make list of the reductions (applied to some �nite oracle). How hard is it to
do this? Try for something recursive in 00 and then diagonalize. wtt but not tt is too
hard. again list total tt-functions but now build both A and B in stages. In A put in
only 0 except when might diagonalize. In B put in sequence of 1�s of length the next e
to diagonalize ending at a place where we diagonalize in A and then at least one 0. (Fill
in A with 0�s until this point.) Then �ll in B with 0�s until force convergence so decide
what to put into A. So for x to be in A must have x 2 B and x+1 =2 B then check B � x
to see how many 1�s in the list ending at x, say it is e, then compute how many 0�s need
to put into B to make �e(x) # and �nd answer. A(x) is the opposite.??ref or move to or
repeat after �nite extension method.

The Ershov hierarchy extends the di¤erence hierarchy into the trans�nite. If we
exhaust the recursive ordinals produce precisely all the sets recursive in 00.
Recursively inseparable sets. Gödel�s incompleteness theorem.
One-one equivalence same as recursive isomorphism. Explain, prove.
Index sets. Rice�s Theorem.
Closure operations for r.e. sets. Reduction and Separation on complementary class.

Uniformity issues. Point out easy ones. Argue somewhere for some not possible. Recur-
sion theorem applications. ref completeness results later.
De�ne r.e. degrees, REA use later

4.4 Arithmetic Hierarchyarithh

Notion of language for �rst order arithmetic. Then for arithmetic. Tension between
expressiveness and simplicity. For our purposes want language to be recursive (and so all
typical syntactic properties are recursive) and each function and relation to be (uniformly)
recursive (and so all quanti�er free relations are recursive). On the other hand want to
as much as possible to be expressible as �simply�as possible.
What at a minimum. Want say 0 then perhaps successor s(x) and/or addition x+ y.

In what sense is addition de�nable from successor (by recursion; implicitly; second order)?
We want to restrict de�nability to �rst order formulas. Note that multiplication, x � y, is
not de�nable from addition.

22 CHAPTER 4. R.E. SETS AND THE TURING JUMP

Presburger addition is decidable.
Peano arithmetic or even Robinson arithmetic is not. Gödel�s incompleteness theorem.

(forward reference to proof). Idea of representation of recursive functions so decidability
would solve the Halting problem. So we need at least multiplication. Typically put in <
and 1 as well although they are de�nable from addition.

Exercise 4.4.1 De�ne < and 1 from +; 0 in arithmetic.

May want to put in more to make all recursive functions easily de�nable. Want
quanti�er free formulas to be uniformly recursive, however:

Exercise 4.4.2 With a recursive language (and interpretation as uniformly recursive
functions and predicates) it is not possible to de�ne all recursive functions by quanti�er
free formulas.

So we need to go to formulas with at least one quanti�er. We can make life simple
by adding in one master recursive predicate for '(�; e; x; s) = y (so capturing the partial
function). It is then immediate that every recursive predicate and function is de�nable
by an existential formula, i.e. one of the form 9x19x2 : : : 9xn� where � is quanti�er
free. Or we can cite the theorem of Matijasevich (Davis, Putnam and Robinson) solving
Hilbert�s 10th problem negatively by showing that every r.e. set W is the solution set
for a polynomial (with many variables), i.e. there is a polynomial p(x; �y) such that
W = fxj9�y(p(x; �y) = 0g.
The language of arithmetic has symbols +;�; <; 0; 1; '(�; e; x; s). The �n;�n formu-

las of arithmetic are de�ned as follows:

� �0 = �0 are quanti�er free formulas

� �n+1: 9�x(F (�x)) for F 2 �n

� �n+1: 8�x(F (�x)) for F 2 �n

An intermediate route puts bounded quanti�ers into the language (9x < s, 8x < s) as
well as a few select predicates or functions � for coding �nite sequences (of variable length)
and the corresponding projection functions. (Explanation and/or thought exercise.) If
we do so, �0 = �0 have only bounded quanti�ers. Note that the predicates de�ned by
such formulas remain recursive.
Prenex normal form. Collapse like quanti�ers. Move bounded quanti�ers past un-

bounded ones.
A relation is �n or �n if it is de�ned by a �n or �n formula. A relation is in �n if it

is de�ned by both a �n and a �n formula. Note that the notion of �n is semantic rather
than syntactic.

totp2 Example 4.4.3 �fe is total is a �
f
2 property of e (uniformly in f)

4.4. ARITHMETIC HIERARCHY 23

lets3 Example 4.4.4 �fe �T �i is a �
f
3 relation of e and i (uniformly in f) as is �

f
e =T �i.

Example 4.4.5 �fe ^ �
f
i �T �

f
j is a �4 relation of e, i and j (uniformly in f) but

�fe _ �
f
i �T �

f
j is a �3 relation of e, i and j (uniformly in f). For the former simply

write out the relation. For the latter seems to be essentially the same situation. However,
atypically, here we can do better than the natural �rst attempt. Using the recursive
function p de�ned in Example

ujoin
2.1.10, we see that it is equivalent to �fp(e;i) �T �

f
j and so,

by the previous Example, �f3 .

Properties of �n;�n;�n Relations:

� If A;B 2 �n then A [B 2 �n, A \B 2 �n, �A 2 �n.

� If A 2 �n then �A 2 �n.

� �n is closed under projection. That is, if A(x; y) 2 �n then fy : 9xA(x; y)g 2 �n.

� Both �n and �n are closed under bounded quanti�cation. For F 2 �n,

9x < sF � 9x
�
F (x) ^ x < s

�
;

and
8x < s9y1F � 9y

�
y is an s-tuple ^ 8x < sF (x; �x(y))

�
:

Note that this is su¢ cient because both checking tuple-hood and the projection
functions are recursive so can use master function ' to represent them in our
language.

� Uniformity.

We can relativize �An ;�
A
n ;�

A
n by adding a syntactic predicate A(x) to the language

and interpreting it in the semantics as the particular oracle set A. or multiple function pa-
rameters �h see what need for de�ning forcing carry through for manipulations/normal
forms. also hierarchy theorem could have A; �h

Proposition 4.4.6 When we add in extra unary predicates or function symbols, the
truth of �0 formulas (even with bounded quanti�ers) depends only on the values of the
predicates (functions) below some value which can be computed recursively in the formula.

We now see that we can de�ne the recursive predicates as simply as possible.

Proposition 4.4.7 B 2 �A1 , B is r.e. in A.

Move proof here.
So the recursive predicates (sets) in A are precisely the ones that are �A

1 .
Note that need bounded quanti�ers for case with extra set or function symbols. Ask

Frank Stephan for statement and proof. So do not have analog of Matijasevich et al. in
relativized case.

24 CHAPTER 4. R.E. SETS AND THE TURING JUMP

4.5 The Hierarchy Theorem

hierarchy Theorem 4.5.1 (Hiearchy Theorem) 1. B 2 �An+1 , B is RE in some �An set.

2. A(n) is �An m-complete for n > 0.

3. B 2 �An+1 , B is RE in A(n).

4. B 2 �A
n+1 , B �T A(n).

Proof. We need to use induction. Let us start with base case for (3), i.e. B 2 �A1 , B
is RE in A. Suppose x 2 B , 9yF (x; y; A) where F has only bounded quanti�ers.
Note that a formula which only contains bounded quanti�ers is recursive in A. Let
�Ae (x) #, 9yF (x; y; A) be the function which checks each value of y in turn and return
� yes�answer if it �nds one. So, B = WA

e and is RE in A. Conversely, suppose B is RE
in A. Then B = WA

e . This means that x 2 B , 9�9y9s
�
'(�; e; x; s) ^ � � A

�
. ??Note

that � � A is a bounded quanti�er formula so we have a �A1 de�nition of B.??
To prove (1): The base case is B 2 �A1 , B is RE in some �A0 set. Above we showed

that if B 2 �A1 then B is RE in A, which is �A0 . Conversely, if B is RE in some other �A0
set, C, then since C is recursive in A, B is also RE in A so also use (3) to get B 2 �A1 .
For the induction, suppose B 2 �An+1. So x 2 B , 9yF (x; y) where F (x; y) 2 �An .

In particular, B is �F (x;y)1 so is RE in F (x; y) by the base case. Hence, B is RE in the
�An set F (x; y). Conversely, if B is RE in Z 2 �An , by the base case, B is �W1 . So,
x 2 B , 9�; y; s

�
'(�; e; x; s) = y ^ � � Z

�
which is a �An de�nition.

To prove (2): We�ve previously shown that A0 is them-complete RE set. It remains to
do the induction step. A(n+1) =

�
A(n)

�0
, which by the n = 1 case is the m-complete �A

n

1

set. By induction, An 2 �An so using (1) and that fact that being RE in X is the same
as being RE in �X, we have that A(n+1) 2 �An+1. For completeness, suppose B 2 �An+1.
Then by (1), B is RE in some �An set C. So, B is RE in �C 2 �An . By the induction
hypothesis, A(n) is �An m-complete, so B is also RE in A(n). But X 0 is the 1-complete
RE set, so B �m

�
A(n)

�0
= A(n+1).

To prove the induction step of (3): B 2 �An+1 if and only if B is RE in some �An set,
C (by 1). This happens if and only if B is RE in �C 2 �An , which (by 2) happens if and
only if B is RE in A(n).
For (4): B 2 �A

n+1 , B 2 �An+1 \ �An+1 , B is RE in A(n) and �B is RE in A(n) ,
B �T A(n).
The hierarchy theorem tells us that one quanti�er corresponds to one iteration of jump

operator. For example, we have that if F is a predicate recursive in A, then 9xF �T A0
and 9x8yF �T A00.
Moreover, the hierarchy theorem also shows that the jump hierarchy is real: there are

new sets at each levels. In particular, A <T A
0 implies that we have a strict hierarchy

and An 2 �n n �n. So we have �n 6= �n and

�0 = �0 = �0 (�1 (�1 � � �

4.6. JUMP HIERARCHIES 25

Diagram

Sets X de�nable in arithmetic: X �T 0(n) some n
Relativize get arithmetic reducibility X �a Y and degrees corresponding to X de�n-

able from Y

4.5.1 Index sets

De�ne and samples

Exercise 4.5.2 Prove that fejWA
e = ;g is 1-complete for �A1 .

Exercise 4.5.3 Prove that fejWe is in�niteg is 1-complete for �A2 .

Tot Exercise 4.5.4 Prove that fej�e is totalg is 1-complete for �A2 .

Exercise 4.5.5 Prove that fejWe is co�niteg is 1-complete for �A3 .

Exercise 4.5.6 Prove that fejWe is recursiveg is 1-complete for �A3 . Hint: movable
marker argument to �x location for diagonalization if not co�nite.

4.6 Jump Hierarchiesjumphier

We would like a sense of what it means for a set to be computationally simple, or near
0 in degree.

De�nition 4.6.1 X is low if and only if X 0 = 00.

This is as close as you can get to measuring smallness using the jump. It says that the
jump of X is as small (low) as possible. In many ways, such low sets look like recursive
sets.
If we consider sets below 00, it is easy to see what it means for its jump to be as big

as possible.

De�nition 4.6.2 For X < 00: X is high if and only if X 0 = 000.

Again, many constructions which can be done below 00 can be done (more carefully)
below any high set. Can we extend these notions of smallness and largeness beyond the
degrees �rst jump?

De�nition 4.6.3 X 2 L2 if and only if X 00 = 000; for X < 00, X 2 H2 if and only if
X 00 = 0000.
X 2 Ln if and only if X(n) = 0(n); for X < 00, X 2 Hn if and only if X(n) = 0(n+1).

26 CHAPTER 4. R.E. SETS AND THE TURING JUMP

Now we generalize to degrees not necessarily below 00 again trying to capture the idea
that the jump of a set is a small (low) or as large (high) as possible.

De�nition 4.6.4 X 2 GL1 if and only if X 0 = X _ 00; X 2 GH2 if and only if X 0 =
(X _ 00)0.
X 2 GLn if and only if X(n+1) = (X _ 00)(n); X 2 GHn if and only if X(n) = (X _ 00)(n).

??mention future uses and connections as for domination, rates of growth as well as
structural issues??

Chapter 5

Embeddings into the Turing Degreesembeddings

5.1 Embedding Partial Orders in D
So far, all we know about the structure of D, the partial order of Turing degrees, is that
it is an uppersemilattice with least element and the countable predecessor property. It
also has an operator, the Turing jump, which is strictly increasing and closely related to
the quanti�er complexity of the de�nitions of sets and functions in arithmetic. The only
speci�c degrees we know are 0 and the iterations of the jump beginning with 00.
We now embark on our basic project of analyzing this structure beginning with the

simplest algebraic or �rst order questions. Are there degrees other than 0 and the iterates
of the jump operator? If so, where do they lie with respect to the ones we already know?
Is D a linear order? If not, how �wide�is it? How far away from being a linear order?
We start answering these questions by considering what is perhaps the simplest question
and showing that D is not a linear order by constructing two Turing incomparable sets
A0jTA1 (and so degrees a0ja1).

KP Theorem 5.1.1 (Kleene and Post) 9A0; A1(A0jTA1).

How can we approach such a result. We recast the desired properties of the sets we
want to construct (Turing incomparability) as a list of simpler ones Re called require-
ments. Then we choose an approximation procedure so that we can build a sequence of
(pairs of) approximations �j;s �converging�to Aj (for j = 0; 1) such that the information
in one such approximation pair can be su¢ cient to guarantee that we satisfy one of the
requirements in the sense that Re is true of any pair of sets Aj with Aj � �j;s.
This basic approach, due to Kleene and Post, will be used for most of our constructions

of degrees. It is a forerunner of the general method of forcing that we introduce in Chapter
forcing
6
Our plan is to de�ne A0 and A1 by constructing a sequence of approximations �j;s

which are �nite binary strings (and so initial segments of characteristic functions). The
intention is to make sure that �j;s � �j;s+1 for every s and, in the end, let Aj = [s�j;s.

27

28 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

(Thus our notion of convergence is here quite simple: Aj(x) = k , 9s(�j;s(x) = k) ,
9s8t > s(�j;t(x) = k).)
The requirements necessary to guarantee that the sets so de�ned satisfy the theorem

are:
Re;j : �

Aj
e 6= A1�j

for all e 2 N, j 2 f0; 1g. It is clear that if the sets we construct satisfy each requirement
then the Aj are Turing incomparable and so satisfy the demands of the theorem.
What actions can we take to satisfy such a requirement? Given �j;s (j = 0; 1), we

want �j;s+1 � �j;s to guarantee that we satisfy Re;j. For de�niteness, let j = 0. We want
�0 � �0;s, �1 � �1;s such that for any A0 � �0, A1 � �1, �A0e 6= A1. In other words,

9x:
�
�A0e (x) = A1(x)

�
.

Now any x will do here but for the sake of de�niteness and simplicity of the construction,
we choose x as the �rst place at which �1;s is not de�ned (formally x = dom(�1;s) =
j�1;sj). We next try to satisfy the requirement with this x as the witness for the desired
disagreement. We ask if 9�0 � �0;s

�
��0e (x) #

�
. If so, we can choose any such �0 as �0;s+1

and set �1;s+1 = �1;s^(1 � ��0e (x)) to diagonalize. Again for de�niteness and simplicity
we choose the �least� such �0. To which ordering does �least� refer here? We use
our master list of all (convergent) computations '(�; e; x; t) from §

codeTM
2.1, i.e. fh�; e; x; ti :

'(�; e; x; t) #g. So �least �0� refers to the � in the least quadruple h�; e; x; si in this
recursive set. From now on we, usually without comment, use �least� in this sense
of being the �rst object enumerated by some given search procedure (that we know
terminates).
By the standard properties of Turing machines given in §

codeTM
2.1, if A0 � �0 = �0;s+1 and

A1 � �1;s+1 then
�A0e (x) = �

�0
e (x) 6= 1� ��0e (x) = A1(x)

as desired.
What if no such �0 exists? We do nothing, i.e. we set �i;s+1 = �i;s and hope for the

best.
Indeed, a general principle of our constructions is we do the best we can, and if we

cannot do anything useful, then we do nothing and hope for the best (i.e. that what
we can do is enough). In this case, it is enough as we will see in the veri�cation of the
construction below. We now give the formal proof of Theorem

KP
5.1.1 by describing the

construction and the veri�cation that it succeeds.
Proof. We begin with the construction.
Construction: We start with �j;0 = ; for j = 0; 1 and proceed to inductively de�ne

�j;s at stages s of the construction. So suppose we have de�ned �j;s. To de�ne �j;s+1
consider he; ii = s and act to satisfy requirement Re;i as follows. Let x = j�i;sj. If there
is an � � �i;s such that ��e (x) # let �i;s+1 be the least such � (as described above) and

5.1. EMBEDDING PARTIAL ORDERS IN D 29

extend �1�i;s to �1�i;s+1 by setting �1�i;s+1(x) = 1���i;s+1e (x). If there is no such �, we
let �j;s+1 = �j for j = 0; 1.
Veri�cation: For any requirement Re;j consider stage s = he; ji of the construction.

If �1�j;s+1 6= �1�i;s, �
�j;s+1
e (x) #6= �1�j;s+1(x) with x = j�1�j;sj. As �j;s+1 � Aj for j = 0; 1

by de�nition, the use property of computations (§
codeTM
2.1) guarantees that �Aje (x) #6= A1�j(x)

and so we have satis�ed Re;j. If not, we claim that �Aje (x) " and so �Aje is certainly not
A1�j and we again satisfy Re;j. The point here is that if �

Aj
e (x) # then, again by the

basic properties of Turing computations, there is some �nite initial segment �̂ of Aj such
that ��̂e (x) #. As �j;s � Aj, �̂ and �j;s are compatible, their union � would satisfy the
conditions forcing us to act to extend �1�j;s at stage s of the construction contradicting
our case assumption. Thus �Aie (x) " and so we have satis�ed Re;j.
We next consider some questions about the construction and, in particular, about the

its complexity and that of the sets it constructs.

nonterm Question 5.1.2 (Nontermination) How do we know that this construction keeps go-
ing, i.e. that there is no point after which we always �do nothing�.

If the construction terminated in this way, then both A0; A1 would be �nite, so cer-
tainly not Turing incomparable. So in�nitely often we must extend the �j;s. We could
include another set of requirements to guarantee this: Qj;e : j�j;sj � e. These would,
of course, be easy to satisfy and would make it both obvious and part of the formal
veri�cation that we extend the Ai in�nitely often. However, we can see directly that this
happens automatically: By the Padding Lemma (

padding
2.1.12) there are in�nitely many indices

e such that �Ae (x) = 0 for every A and x and indeed one such that �e(x) does not query
its oracle at all for any x. At the stage at which we deal with the requirement Re;j for
such an e, we automatically extend the approximation �1�j;s. Hence, both strings are
extended in�nitely often.
It is a common phenomenon that constructions in degree theory do more than one

expects. We now see some other examples.

Question 5.1.3 (Complexity of the Construction) The construction can be seen as
simply the (production of the) double sequence �j;s. Of course, the sets Aj are recursive
in the construction: By nontermination, there is, for any x, an s such that �j;s(x) is
de�ned for j = 0; 1. Thus, given the construction we can recursively �nd an s and kj
such that �j;s(x) = kj. Then Aj(x) = �j;s(x) = kj.
As the sets Aj are Turing incomparable they are not recursive and neither then is

the construction. How complicated is the construction and the sets A0 and A1? More
precisely, can we �nd a bound such as 0(n) on their degrees? Such a bound would also
give de�nability properties such as Aj being �n+1 by the Hierarchy Theorem

hierarchy
4.5.1.

We answer this question by showing that we may take n = 1. Let us look back at the
construction. By recursion, we have �j;s with s = he; ii. To calculate �j;s+1, we asked
one question:

9� � �i;s
�
��e (x) #

�
?

30 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

This is a �1 question so 00 can answer it and tell us which case to implement. In the
second case of the construction, we recursively set �j;s+1 = �j;s. In the �rst case of the
construction, we can enumerate the master list fh�; e; x; ti : '(�; e; x; t) #g and check
recursively for an element with � � �i;s. So, once 00 has told us which case we are in,
everything else is recursive. Hence, the whole construction is recursive in 00 as are A0
and A1.

lowness Question 5.1.4 (Complexity of the Aj) Where do A0; A1 lie in the jump hierarchy?
Can we say more than just that they are recursive in 00. For example, are they low (or
can we add something to the construction to make sure that they are low)? (Recall: A is
low i¤ A0 �T 00.)

One approach to an answer to this question is to add new requirements:

Ne;j : Make �Aje (e) # if possible.

We make a new list Ps of requirements including the old Re;j and the new Ne;j. At stages
devoted to an Re;j, i.e. Ps = Re;j, we act as before. Suppose that at stage s + 1 we are
acting for Ne;j, i.e. Ps = Ne;j. We have �j;s and ask if

9� � �j;s
�
��e (e) #

�
?

If the answer is yes, let �j;s+1 be the least such � and let �1;s+1 = �1;s. On the other
hand, if the answer is no, then do nothing and so let �j;s+1 = �j;s This is called deciding
(or forcing) the jump (of Aj at x).
Claim 1: The construction is still recursive in 00: Our actions for requirements Re;j are
the same as before. For Ne;j, 00 can decide if 9� � �j;s

�
��e (e) #

�
. If there is such an �,

we can �nd the least one recursively and compute �j;s+1. If not, there is nothing to do
and �j;s = �j;s+1.
Claim 2: We can compute A0j from 00. Since the whole construction is recursive in 00,
00 can go along the construction until it gets to the stage s at which we act for Ne;j. If
�
�j;s+1
e (e) #, then clearly �Aje (e) #, i.e. e 2 A0j. If not then no extension of � of �j;s makes
��e (e) # and so (as in the veri�cation), �

Aj
e (e) ", i.e. e =2 A0j.

As was the case for Question
nonterm
5.1.2, more happens in our original construction than is

evident. It is possible to prove that the Aj constructed by the original construction (for
Theorem

KP
5.1.1) are already low (Exercise

autolow
5.1.8).

Question 5.1.5 (Relativization) What about incomparable degrees above any given x?

This is just an exercise in relativization. ??Ref to earlier By relativizing, we mean
that at each part of the construction where we have as an oracle �j, we instead useX��j
as the oracle . At the end, we build X � Aj.??

relKP Exercise 5.1.6 Prove that for every set X there are Aj, j = 0; 1, such that X�A0jTX�
A1 and (X � Aj)

0 �T X 0 for j = 0; 1.

5.1. EMBEDDING PARTIAL ORDERS IN D 31

Question 5.1.7 (A Generalization) Can we build more than two incomparables?

We can easily change the list of requirements to

Pe;j;k : If j 6= k, �Aje 6= Ak.

for e; j; k 2 N and handle them as we did the Re;j with j = 0; 1. Thus, we can produce
countably many low pairwise incomparables between 0 and 00, indeed all with jumps
uniformly recursive in 00 (Exercise

lowincomp
5.1.12).

autolow Exercise 5.1.8 Show that the sets Ai of the original construction (for Theorem
KP
5.1.1)

are already low.

Exercise 5.1.9 Add requirements to the construction of Theorem
KP
5.1.1 to make the join

of the sets constructed low, i.e. (A0 � A1) �T 00.

We can strengthen the notion of lowness and prove a bit more:

slow De�nition 5.1.10 A is superlow if A0 �tt 00.

Exercise 5.1.11 Prove that the sets constructed in Theorem
KP
5.1.1 are superlow.

lowincomp Exercise 5.1.12 Prove that there are sets Ai �T 00; for i 2 N, such that AijAj for i 6= j.
Moreover all these sets can made be low as well.

colnot Notation 5.1.13 ??(earlier) Given any sequence hAiji 2 Ii of sets we let �fAiji 2 Ig =
fhi; xi ji 2 I & x 2 Aig. Conversely, given any set A we let A[i] denote the set fxj hi; xi 2
Ag. We let A[̂{] = �fAjji 6= jg = fhj; xi ji 6= j & x 2 Ajg. We use the same notation for
binary strings �: �[i](x) = �(hi; xi) and � [̂{](hj; xi) = �(hj; xi) for j 6= i and � [̂{](hi; xi) = 0
for hi; xi 2 dom�.?? Warning: changed de�nition of A[i] so that �A[i] = A. Also made
�[i] and � [̂{] into binary strings??

As a signi�cant generalization of Theorem
KP
5.1.1 and even of Exercise

lowincomp
5.1.12, we can

try to embed arbitrary countable partial orders P in D or in D(� 00) or in the low
degrees.
Consider any countable partial order P with domain fp0; p1; : : :g and partial order�P .

We want to construct Ai such that Ai �T Aj if and only if pi �P pj. To do so, we build
auxiliary sets Ci and, in an attempt to mimic the order�P , we let Aj = �fCi : pi �P pjg.
The �rst question is does this succeed to the extent that pi �P pj implies that

Ai �T Aj? Well, hk; xi 2 Ai , x 2 Ck^pk �P pi by de�nition but, as pi �P pj (and the
ordering is transitive), this is the same (again by de�nition) as pk �P pi ^ hk; xi 2 Aj.
So if �P is recursive, i �P j implies that Ai �T Aj. We can use this fact to embed
recursive partial orders in the low degrees by using the constructions above to guarantee

32 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

incomparability when needed and this simple argument for recursive P to guarantee
comparability when needed. If a partial order is not recursive, it is at least recursive in
some oracle so relativizing the proof for recursive partial orders gives an embedding into
D. Perhaps this is the best we can do �it is not intuitively obvious or even, perhaps
even plausible that D(� 00) is a universal countable partial order, i.e. every countable
partial order can be embedded in it. (See Appendix ??.)
We begin our proof that it is by constructing a recursive universal partial order. The

construction is an example of the method of �nite approximations being used to build
sets with properties not necessarily expressed in terms of Turing degrees. The idea is
related to the proof that Q is a countable universal linear order (Appendix ??). We then
embed it into D(�00) using the methods of Theorem

KP
5.1.1. We start with a Lemma that

will provide the basic steps of our construction.

1ext Lemma 5.1.14 Given a partial order P, a suborder R and an extension of R to a partial
order R̂ containing exactly one new element z (not in P), there is an extension P̂ of P
containing z as its only new element that also extends R̂.

Proof. We let P̂ = P [fzg. To de�ne the desired ordering �P̂ on P̂ , we must specify
when p �P̂ z and when z �P̂ p for p 2 P � R̂ and verify that we have de�ned a
partial order. We set p �P̂ z , (9r 2 R)(p �P r & r �R̂ z). Similarly, we set
z �P̂ p, (9r 2 R)(r �P p & z �R̂ r). All other instances of order relations are as in P
and R̂.
Clearly �P̂ is re�exive and extends both P and R̂. We must check that it is transitive.

Consider any u �P̂ v and v �P̂ w. We must show that u �P̂ w. Certainly if none of u, v
or w is z (so all are in P) there is nothing to prove as �P is transitive. If two of them are
z, the desired conclusion is again immediate. If only w = z then, by de�nition, there is an
r 2 R such that v �P r �R̂ z. As, in this case, u �P v �P r and �P is transitive, u �P̂ z
by de�nition. Similarly, if only u = z then, by de�nition, there is an r 2 R such that
z �R̂ r �P v. As, v �P w (and �P is transitive), z �P̂ w by de�nition. Finally, if only
v = z then there are r1 and r2 in R such that u �P r1 �R̂ z and z �R̂ r2 �P w. As �R̂ is
transitive, r1 �R̂ r2 but as both are in R which is a suborder of P, u �P r1 �P r2 �P w
and so u �P w and u �P̂ w as required.

univpo Theorem 5.1.15 There is a recursive universal countable partial order Q, i.e. a re-
cursive partial order Q such that every countable partial order P can be embedded in
Q.

Proof. We build Q by �nite approximations, Q = [Qs. At stage s + 1 we have a
�nite partial order Qs and extend it to Qs+1 such that for every suborder M of Qs,
every one element partial order extension M̂ ofM is realized in Qs+1. That is, for every
subsetM � Qs, and extension M̂ of M with M̂ = M [fzg for some z =2 Qs there is
an embedding of M̂ into Qs+1 which is the identity on M. To do this we list all the
subordersMj ofQs and all of their one element extensionsMj;k and apply Lemma

1ext
5.1.14

5.1. EMBEDDING PARTIAL ORDERS IN D 33

successively to each hj; ki to produce a sequence of partial orders Qs;hj;ki each extending
the previous one and an embedding of Mj;k into Qs;hj;ki which is the identity on Mj.
Clearly, this is a recursive procedure and the �nal partial order so produced is the desired
Qs+1.
To see that Q = [Qs is universal, consider any countable partial order P with P =

fp0; p1; : : :g. We de�ne the embedding f :P ! Q by recursion. Start with f(p0) = q0.
Given an embedding fn of P � fpiji < ng into Q, choose s such that the range of this
�nite embedding is contained in Qs. This range is then a suborderM of Qs. Consider
the one element extension M̂ of M that is isomorphic to P � fpiji < n + 1g. By our
construction of Qs+1 there is an extension of fn to an embedding of P � fpiji < n + 1g
into Qs+1 which agrees with fn on fpiji < ng. This map is the desired fn+1 and f = [fn
is the desired embedding of P into Q.

embrecpo Proposition 5.1.16 Every recursive partial order P = (P;�P) can be embedded in D.

Proof. Let P = fpiji 2 Ng. We build sets Ci and let Ai = �jfCj : pj �P pig. As
argued above, if pk �P pj then Ak �T Aj since �P is recursive. We now turn to the
requirements needed to guarantee that if pk �P pj then Ak �T Aj:

Rk;j;e : If pk �P pj then �Aje 6= Ak.

As for our approximations, at every stage s of our construction we will have de�ned
a �nite set �s of �nite binary strings j;s. At the end, we set Cj = [j;s. Given any
�nite set � of �nite binary strings j (such as the �s), the corresponding approximation
for the Ai is given by

Ai[�] = �j2�fj : pj �P pig
i.e. for pj �P pi, Ai[�] is de�ned at hj; xi if and only if j 2 � and j(x) is de�ned in
which case Ai[�](hj; xi) = j(x). If pj �P pi, we let Ai[�](hj; xi) = 0. We write Ai;s for
Ai[�s] and so Ai = [Ai;s.
Construction: We begin with �0 = ;. At stage s+1 with s = hk; j; ei, we have Aj;s

and Ak;s the partial characteristic functions determined by the i;s so far de�ned (�s) and

we wish to act for Rk;j;e. To guarantee that in the end �
Aj
e 6= Ak, we could try to take (as

in Theorem
KP
5.1.1) x = jk;sj and ask if there is extension � of �s such that �

Aj [�]
e (x) # to

diagonalize. The problem is that an extension of �s which guarantees convergence might
also determine the value Ak(x), so we might not be able to diagonalize.
To make sure x does not interfere with the computation from Aj[�], we want an

x = hn; yi such that pn �P pj. Also, to be able to de�ne Ak at x however we want so
as to be able to diagonalize, we need pn � pk (otherwise the relevant column is always
empty). We also need hn; yi � jk;sj. So we want pn � pj and pn �P pk. By assumption,
pk �P pj, so we choose n = k and let x = hk; jk;sji.
Now, ask if there is an extension � of �s such that �

Aj [�]
e (x) # . If so, it is clear from

the de�nition of Aj[�] that this computation only depends on i 2 � for pi �P pj and

34 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

so (as pk �T pj) we may assume that if k 2 � then it is unde�ned at x. If such an
extension exists choose the least one �̂ and let �s+1 extend �̂ so that k;s+1 2 �s+1 and
k;s+1(x) = 1� �

Aj [�]
e (x) = 1� �Aj ;s+1e (x). If there is no such extension, set �s+1 = �s.

Veri�cation: To see that the construction satis�es each requirement Rk;j;e we may
assume that pk �P pj and consider the stage s = hk; j; ei and the corresponding x. If
�
Aj ;s+1
e (x) # then it equals �Aje (x) and is di¤erent from Ak(x) as required. If �

Aj ;s+1
e (x) "

then no extension � of �s makes �
Aj [�]
e (x) #. On the other hand, if �Aje (x) # then the

�nite amount of information about Aj needed to produce this convergence provides a �
such that �Aj [�]e (x) # and Aj[�] � Aj. By the de�nition of Aj this � extends �s for the
desired contradiction.

Exercise 5.1.17 Do we need to worry that the [j;s in the construction for Propositionembrecpo
5.1.16 might not be a total function? What changes in the construction would make this
obvious? Why are none needed?

embpo Corollary 5.1.18 Every countable partial order P can be embedded in D.
Proof. Let Q be the recursive universal countable partial order constructed in Theorem
univpo
5.1.15 and f its embedding into D as given by Proposition

embrecpo
5.1.16.As Q is universal there

is an embedding g:P ! Q and then g � f is the desired embedding of P into D.
1qtth Corollary 5.1.19 The one-quanti�er theory of (D;�T) is decidable.

Proof. A one-quanti�er existential sentence ' begins with a string 9x09x1 � � � 9xn of
existential quanti�ers and is followed by a quanti�er free matrix built from atomic for-
mulas of the form xi � xj or xi = xj for i; j � n. Note that if we can decide whether an
existential sentence is true or false in D then we can �ip the answers to decide if universal
sentences are true or false. We claim that D � ' if and only if there is a partial order of
size n+ 1 which satis�es ' and that this question can be answered recursively.
First note that for any partial order P, P � ' if and only if some subpartial order

Q of P of size at most n + 1 satis�es '. The point here is that the truth of atomic
statements about elements of Q are the same in P and Q. So satisfaction in Q implies
satisfaction (via the same witnesses) in P. In the other direction, if ' is true in P, then
the suborder Q consisting of the witness in P needed to verify ' form a subpartial order
Q of size at most n + 1. As we know from Proposition

embrecpo
5.1.16 that every �nite partial

order is isomorphic to a subpartial order of D, D � ' if and only if some �nite partial
order Q of size at most n+1 satis�es '. We can decide this last condition recursively by
listing all the (�nitely many) partial orders Qk of size at most n + 1 and then checking
for each Qk if it satis�es ' by checking all the (�nitely many) possible instantiations of
the xi for i � n as elements of Qk.

Exercise 5.1.20 If the recursive partial order P of Proposition
embrecpo
5.1.16 has a least element

0, then embedding f into D can be chosen such that f(0) = 0. Corollary
embpo
5.1.18 can then

be extended to partial orders with least element and Corollary
1qtth
5.1.19 to the language with

a constant for its least element 0.

5.1. EMBEDDING PARTIAL ORDERS IN D 35

We ask the following questions about the proof Proposition
embrecpo
5.1.16:

Question 5.1.21 How complicated are the images of the partial order under the embed-
ding?

We claim that Ai �T 00 uniformly. Indeed the whole construction and so the Ci are
(uniformly) recursive in 00. To compute Ai(x) where x = hj; ni we �rst ask if pj � pi
(the partial ordering is recursive). If not, Ai(x) = 0. If so, we can follow the construction
recursively in 00 until it is decided if x 2 Cj.

Question 5.1.22 Can we ensure that all the Ai are low?

We can add requirements

Ne : Make ��Aie (e) # if we can.

To act for Ne still takes just a 00 question.

emb<0� Corollary 5.1.23 Every countable partial older can be embedded in D(� 00) and so its
one quanti�er theory is decidable.

Exercise 5.1.24 Make the constructions suggested here precise, verify the associated
assertions and prove Corollary

emb<0�
5.1.23.

An alternative approach to these results begins with strengthened versions of incom-
parability.

De�nition 5.1.25 The set fAi : i 2 Ng is independent if no Ai is computable from
the join of �nitely many of the other Aj. The set fAi : i 2 Ng is very independent if
Ai �T �j 6=iAj for all i.

Very independent implies independent because Ai1�� � ��Ain �T �j 6=iAj if no ik = i:
x 2 Ai , hi; xi 2 �j 6=iAj. However, while independence is a degree theoretic notion,
very independence is not. This is proved in the following exercises.

Exercise 5.1.26 Prove that there is a countable set fAi : i 2 Ng which is very indepen-
dent. Indeed, one can make �Ai low.

Exercise 5.1.27 Construct fAi : i 2 Ng; fBi : i 2 Ng such that fAi : i 2 Ng is very
independent, fAi : i 2 Ng is not, but Ai �T Bi.

De�nition 5.1.28 An uppersemilattice (usl) is a partially ordered set P such that every
pair of elements x; y in P, has a least upper bound, x _ y.??

??Some of these to Appendix and just cite here??

36 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

Exercise 5.1.29 Every usl L is locally countable, ??i.e. for any �nite F � L the subusl
F of L generated by F (i.e. the smallest one containing F) is �nite??. Moreover, there
is a uniform recursive bound on jFj that depends only on jF j.

Exercise 5.1.30 Given �nite usls Q � P and an usl extension Q̂ of Q generated over
Q by one new element (with Q̂ \ P = Q), prove that there is an usl extension P̂ of P
containing Q̂.

Exercise 5.1.31 Prove that there is a recursive usl L such that every countable usl can
be embedded in it (as an usl).

Exercise 5.1.32 Every countable usl L can be embedded in D and even in D(� 00) (pre-
serving _ as well as � and 0 if L has a least element). Hint: Use a very independent
set Ci. If L = flig send li to �fCjjlj � lig.

Exercise 5.1.33 The one quanti�er theory of D as an upper semilattice is decidable.

Refs to Appendix??

Notes: The �nite extension method for constructing degrees was developed in Kleene
and Post [1954]. This paper was the seminal paper on the structure of the Turing degrees.
Kleene and Post proved, among others, Theorem

KP
5.1.1, the existence of countable inde-

pendent sets, and Proposition
embrecpo
5.1.16 for �nite partial orders and that all these theorems

are true in the degrees below 00. Sacks [1961] and [1963] contain Corollary
embpo
5.1.18 and

much more. Corollary
1qtth
5.1.19 is pointed out in Lerman [1972].

We will see in Theorem
latemb
6.3.1 that every countable lattice can be embedded in D but

not by the methods used here in the sense that there is no countable lattice L which
is countably universal, let alone a recursive one. Indeed local �niteness fails and there
are 2@0 many lattices generated by four elements ??ref??. We provide such with seven
generators in §

ESS
6.4. ??Appendix??

What about uncountable partial orders, usls and lattices? Of course, to be embed-
dable in D they must have the countable predecessor property, i.e. fyjy � xg is countable
for every x. Sacks [1961] shows that all partial orders of size @1 with the countable pre-
decessor property can be embedded into D. For uppersemilattices this follows from
Abraham and Shore [1986] where the embedding is made onto an initial segment of D.
(Initial segments of D are considered in Chapters

MinDegs
?? and

initialseg
10.) Some simple examples

of suborderings of D of size 2@0are provided in §
Treec
5.4. Sacks [1961] shows that all those

with the countable successor property can be embedded. However, it is consistent that
2@0 = @2 and there is an usl of size @2 with the countable predecessor property which can-
not be embedded in D (Groszek and Slaman [1983]. It is a long standing open question if
every partial order of size 2@0 with the countable predecessor property can be embedded
in D (Sacks [1963]).

5.2. EXTENSIONS OF EMBEDDINGS 37

5.2 Extensions of embeddings

The next step after embedding results are what are called extension of embedding results.
For example, we consider an arbitrary degree x and we ask if there is always a y such
that y <T x or y >T x or yjTx. To make this question nontrivial we want to require
that x > 0. While we could add a constant for 0 to our language, this is not necessary
as long as we move to the general case of extension of embeddings questions. Here we
consider an arbitrary sequence �x = hx0;x1; : : : ;xni of degrees with some speci�ed order
structure P and we ask if there is always another sequence �y such that h�x; �yi satis�es
some given extension Q of P. Thus the general questions of this type are of the form
8�x(�(�x) ! 9�y�(�x; �y)) where � and � are quanti�er free. With this generality, we
can rephrase, for example, the question of whether for every x > 0 there is a yjx as
whether (8x0;x1)(x1 < x0 ! (9y0)(y0jx0)). Indeed, for any such sentence about D with
a constant symbol for 0, we can �nd an equivalent sentence of the same form in the
language with just � (Exercise

elim0
5.2.1). Another basic example is the question of whether

D is dense, i.e. if for every x0 < x1 there is a y such that x0 < y < x1. Here the answer
is �no� but more complicated techniques are needed to prove it. Indeed by Theorem
spmindeg
9.2.21, there are minimal degrees x, i.e. 0 < x but with no y such that 0 < y < x.) Such
questions are special cases of the decision problem for all two quanti�er sentences in D.
We will eventually see that the answers to these extension of embedding questions are
enough to decide the full 2-quanti�er theory of D (

2qtth
10.4).

elim0 Exercise 5.2.1 Consider the theory of partial orders with least element in the language
(�; 0) where we add on the axiom 8z(0 � z) to guarantee that the constant 0 always
is interpreted as the least element of the partial order. Show that for any 2-quanti�er
sentence 8�x9�y	(�x;�y) in this language there is an equivalent 2-quanti�er sentence without
the constant symbol. Also show that if the original sentence is of the form 8�x(�(�x) !
9�y�(�x; �y)) then the equivalent sentence without 0 can also be taken to be of this form.
Hint: Extend the lists of variables �x and �y each by one new one v and w, respectively.
Then consider the sentence (8�x; v)(9�y; w)(w � v _ �̂(�x;�y)) where �̂ is gotten from � by
replacing 0 by v.

We begin with a simple but basic example mentioned above.

coneavoid Theorem 5.2.2 (Avoiding cones) For every A > 0 there is B such that AjTB. In-
deed, there is such a B �T A0.

Proof. Given a set A, we build B such that A �T B, B �T A. There are two kinds of
requirements:

Pe : �
A
e 6= B Qe : �

B
e 6= A:

The construction uses �nite binary string approximations �s to B. At the end, we let
B = [s�s. We order these requirements in an arbitrary way as Rs.

38 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

Construction: We begin with �0 = ;. At stage s+1 we have �s and work to satisfy
Rs by constructing an appropriate �s+1. If Rs = Pe, we ask if �Ae (j�sj) ". If so, then Pe
is satis�ed so do nothing, i.e. �s+1 = �s. Otherwise, we let �s+1 = �s^(1��Ae (j�sj)). So,
B(j�sj) = �s+1(j�sj) 6= �Ae (j�sj) and again the requirement is satis�ed. Observe that at
this stage we ask a question that A0 can answer and then carry out a procedure recursive
in A.
If Rs = Qe, we ask if there is an x and an extension � of �s such that �

�
e (x) #6= A(x).

If no such extension exists, do nothing. If there is such an extension, let �s+1 be the
least such extension. Observe that we here asked a �A1 question followed by a recursive
procedure based on the answer, so this step is also recursive in A0.
Veri�cation: We have already noted that all the Pe are satis�ed and that the

construction, h�si, and so B is recursive in A0. Suppose we fail to satisfy Qe. Then at
the stage s with Rs = Qe there was no x and � � �s such that �

�
e (x) #6= A(x). If �Be (x) "

for any x then Qe is satis�ed. Otherwise, we claim that A is recursive: To compute A(x),
look for any � � �s such that �

�
e (x) #. There is one since �Be (x) # and B � �s. By

our case assumption, the value computed with oracle � must be A(x). Thus we have
recursively computed A for a contradiction and so Qe is satis�ed.

coneavoid� Exercise 5.2.3 Modify the construction of Theorem
coneavoid
5.2.2 to make B0 �T A0. Alterna-

tively show that the construction already guarantees that B0 �T A0.

unctblch Exercise 5.2.4 Every maximal chain (i.e. linearly ordered subset) in D is uncountable.

countconeavoid Exercise 5.2.5 For every countable set of nonrecursive degrees there is a degree incom-
parable with each of them.

unctmaxantichain Exercise 5.2.6 Every maximal antichain (i.e. set of pairwise incomparables) in D other
than f0g is uncountable.

unctindep Exercise 5.2.7 Every maximal independent set of degrees is uncountable.

We now turn to a weaker result than the existence of minimal degrees that can
be proved with techniques not much di¤erent than the Kleene-Post ones we have seen
already. An important generalization (Theorem

exactpair
5.2.14) will have many applications. We

�rst introduce a notationally convenient way of dealing with pairs of indices computing
from two di¤erent sets.
Proof.

posner Remark 5.2.8 (Posner�s trick) We are often in a situation where we want to list re-
quirements that involve all pairs of Turing reductions �i and �j with two di¤erent sets A
and B as oracles. We can save one set of indices by noticing that we can get by in such
a listing using just one index e. The point is that we know that A and B are di¤erent
(say by construction). For de�niteness, suppose that A(x) = 0 while B(x) = 1 for some
x: Given any indices i and j, we can �nd an e such that for any oracle Z, �Zi = �Ze

5.2. EXTENSIONS OF EMBEDDINGS 39

if Z(x) = 0 and �Ze = �Zj if Z(x) = 1. Using �e for computing from both A and B
then gives the same results as using i and j to compute from A and B, respectively. This
notational device is known as Posner�s trick and we will use it frequently. After the �rst
use in Theorem

minpair
5.2.9, we will do so usually, without comment or speci�c reference to the

fact that the sets being constructed are distinct).

minpair Theorem 5.2.9 (Minimal Pair) There are A;B > 0 such that a ^ b = 0, i.e. for all
C, if C �T A;B then C �T 0. Note we will often abuse notation and write A ^ B �T 0
in place of a ^ b = 0 and similarly A ^B �T C for a ^ b = c.

Proof. We build A;B by �nite approximations �s; �s with union A and B, respectively.
There are three kinds of requirements:

Pe : �e 6= A, Qe : �e 6= B and Ne : �
A
e = �

B
e = C) C is recursive.

Again we order the requirements arbitrarily in a list Rs. Note that we are using Posner�s
trick to replace the natural requirements Ni;j : �Ai = �

B
j = C) C is recursive by the

Ne above.
Construction: We begin with �0 = h0i and �0 = h1i (to make A and B obviously

distinct) and, given �s and �s we act at stage s+ 1 to satisfy Rs.
If Rs = Pe, ask if �e(j�sj) ". If so, the requirement is already satis�ed and we do

nothing, i.e. we let �s+1 = �s and �s+1 = �s. Otherwise, let �s+1 be de�ned by setting
(j�sj) = 1 � �e(j�sj) and let �s+1 = �s. Again the requirement is satis�ed. If Rs = Qe,
the procedure is the same except that we interchange � and �.
If Rs = Ne, ask if (9� � �s)(9� � �s)(9x)(��e (x) #6= ��e (x) #). If such extensions

exist, pick the �rst pair h�; �i which satis�es the condition and put �s+1 = � and
�s+1 = �. If no such extensions exist, do nothing.
Veri�cation: We have already observed that all the Pe and Qe are satis�ed so

A;B > 0. For Ne, we may assume that �Ae = �
B
e = C as otherwise the requirement is

automatically satis�ed. We want to show that C is recursive. Consider �s; �s for the
stage s such that Ne = Rs. To compute C(x), �nd any �nite extension � � �s such that
��e (x). (There is one since A � �s and �Ae (x) #.) We claim that ��e (x) = C(x). If not,
there is a � � �s with � � B such that ��e (x) = �

B
e (x) = C(x) and so we would have

acted at s with � and � (if not another pair of extensions) contrary to our assumption.

We frequently use this idea of searching for extensions that give di¤erent outputs when
used as oracles for a �xed �e and, if we �nd them, doing some kind of diagonalization. If
there are none, we generally argue that �Ae is recursive (or recursive in the relevant notion
of extension as in Theorem

exactpair
5.2.14). We extract the appropriate notion and provide some

terminology.

40 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

esplit De�nition 5.2.10 We say that two strings � and � e-split (or form an e-splitting) if
9x(��e (x) #6= ��e(x) #). We denote this relation by �je� and say that � and � e-split at x.
Note that by our conventions in ??De�nition

useconv
??, ��e (x) = �

�
e;j�j(x) is a recursive relation

as is 9x(��e (x) #6= ��e(x) #); i.e. �je� .

Exercise 5.2.11 We may make the A and B of Theorem
minpair
5.2.9 low or note that as

constructed they are already low. We can also relativize the result: 8c9a;b(a ^ b �
C & a0 = b0 = c0).

Exercise 5.2.12 Improve Exercise
coneavoid�
5.2.3 by showing that we can make B0 �T A� 00.

We now want a notion similar to minimal pairs but with an arbitrary countable ideal
of degrees playing the role of 0.

ideal De�nition 5.2.13 C � D is an ideal in the uppersemilattice D if it is closed under joins
and is closed downwards (i.e. if y 2 C and x � y then x 2 C). An ideal C is principal if
there is a degree c such that C =fx : x �T cg.

exactpair Theorem 5.2.14 (Exact Pair) If C is any countable ideal in D, there are a;b such
that C = fx : x �T a;bg = fx : x �T ag \ fx : x �T bg.

This theorem gives a very strong characterization of the countable ideals C of D.
It says that, if not principal, C is at least the intersection of two principal ideals. An
alternative statement of the theorem that will be used in its proof is the following:

exactpair2 Theorem 5.2.15 If C1 �T C2 �T � � � is an ascending sequence, then there are A;B
such that fX : X �T A;Bg = fX : 9n(X �T Cn)g.

Proposition 5.2.16 Theorem
exactpair2
5.2.15 implies Theorem

exactpair
5.2.14.

Proof. We list all the sets Dj with degrees in a given countable ideal C and then consider
the ascending sequence Ci = �j<iDj. If A and B satisfy Theorem

exactpair2
5.2.15 for this sequence

then we claim that their degrees a and b satisfy Theorem
exactpair
5.2.14. To see this suppose

d 2C then some Dj 2 d and so Dj �T Cj+1 and so by the conditions of Theorem
exactpair2
5.2.15,

d �T a;b as required. For the other direction, suppose that X �T A;B. The conditions
of Theorem

exactpair2
5.2.15 imply that X �T Ci = �j<iDj for some i. As C is closed under �nite

joins and downwards, x 2C as required.

Exercise 5.2.17 Theorem
exactpair
5.2.14 implies Theorem

exactpair2
5.2.15 so the two formulations are

actually equivalent.

We now prove the second formulation of the theorem and so the �rst as well.
Proof of Theorem

exactpair2
5.2.15. Given hCni ascending in Turing degree, we build A;B

such that

5.2. EXTENSIONS OF EMBEDDINGS 41

� for all n, Cn �T A;B and

� for every C �T A;B, C �T Cn for some n.

To prove the theorem is clearly su¢ cient to constructing sets A and B that satisfy
the following requirements:

Pn : Cn �T A;B Ne : �
A
e = �

B
e = C) 9n(C �T Cn).

As usual we list the requirements as Rs. We build A;B by approximations �s; �s. Instead
of these being �nite strings, however, they are more like matrices. For each approximation
 there are �nitely many i (columns of the matrix) such that the value of (hi; xi) is
determined for every x. In addition, there are �nitely many other numbers hj; yi such
that is de�ned at hj; yi.
Construction: As usual we begin with �s = �s = ;, A = [�s and B = [�s. We

describe the construction at stage s+ 1 given �s and �s. Suppose Rs = Pn. Choose the
least i such that both �s and �s are unde�ned at every hi; xi. Let �s+1 (�s+1) be the
result of coding Cn into that column of �s (�s) and leaving the rest of the approximation
unchanged, i.e. �s+1(hi; xi) = Cn(x) = �s+1(hi; xi) for every x and otherwise there are
no di¤erences between �s(�s) and �s+1(�s+1). This action clearly satis�es Pn
Otherwise, suppose Rs = Ne. We ask if 9x(9� � �s) (9� � �s)(�

�
e (x) #= ��e (x) #)

with the domains of � and � being only �nitely larger than those of �s and �s, respec-
tively. If such extensions exist, let (�s+1; �s+1) be the least such pair of extensions (in
terms of the �nite amount of information added to �s and �s). If no such extensions
exist, do nothing, i.e. �s+1 = �s and �s+1 = �s.
Veri�cations: We have already noted that A and B satisfy the Pn requirements

and so Cn �T A;B for all n. Consider then the requirements Ne;i. We may assume that
�Ae = �

B
e = C for some C as otherwise the requirement is automatically satis�ed. We

want to prove that C �T Cn for some n. Consider stage s + 1 of the construction for s
with Rs = Ne;i and let n be the largest m such that we have coded Cm into A and B
by stage s (by making some column of �s and �s equal to Cm as in the construction at
stages devoted to Pm). Now, to compute C(x), �nd any �nite extension � of �s such that
��e (x) #. (There is one since A � �s and �Ae (x) #.) We claim that ��e (x) = C(x). If not,
there is a �nite extension � of �s with � � B such that ��e (x) = �

B
e (x) = C(x) and so we

would have acted at s with � and � contrary to our assumption. The crucial point now
is that checking whether � � �s is recursive in Cn. As the �nitely many columns of �s
which are de�ned at all elements are each equal to some Cm for m < n and as �s is only
de�ned at �nitely many numbers not in these �nitely many columns, this check is clearly
recursive in �i<nCi (using the extra �nite information about which column is which Ci
and what other information is in �s) and so in Cn as the sequence Ci is ascending in
Turing degree.
Now for the �rst of the important applications of this Theorem.

notlattice Corollary 5.2.18 D is not a lattice.

42 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

Proof. Let Ci be strictly ascending in Turing degree. (Such exist, for example, by
Proposition

embrecpo
5.1.16 or simply take Ci = 0(i).) Now let A and B be as in Theorem

exactpair2
5.2.15.

If there were a C whose degree is the meet of those of A and B then C �T A;B and so
C �T Cn for some n. In this case, C <T Cn+1 �T A;B for a contradiction.

Exercise 5.2.19 A set S of degrees has a least upper bound if and only if the join of
some �nite subset of S is its least upper bound.

Exercise 5.2.20 What is a bound on the complexity (degrees) of the A and B of Theorem
exactpair2
5.2.15 in terms of the Cn? Does (�Cn)0 work? How about a better bound? Consider also
the special case that Cn = 0(n).

<0�notlat Exercise 5.2.21 Use the results of the previous exercise and Corollary
emb<0�
5.1.23 to show

that D(� 00) is not a lattice.

We now prove a generalization of Theorem
coneavoid
5.2.2 that will be the main ingredient from

this Chapter in the decision procedure for the 2-quanti�er theory of D in
2qtth
10.4.

extemb Proposition 5.2.22 (Extensions of Embeddings) Given �nite partial orders P � Q
with no x 2 Q � P below any y 2 P such that, for any q 2 Q and p0; p1 � q 2 Q � P ,
there is a p 2 P with p0; p1 � p � q and an embedding f : P ! D, there is an extension
g of f embedding Q into D.

Proof. Let P = fpiji � mg, Q � P = fqjjj � ng, Xi 2 xi = f(pi) for i � m and
X = �fXiji � mg. By our assumptions on the pi �Q qj, there is, for each j � n, an
ij � m such that pij is the largest pi such that pi �Q qj. We construct Yj for j � n
and set Zj = �fYkjqk � qjg � Xij . Our plan is to let g(qj) = deg(Zj). It is clear that
pi � qj ! Xi �T Zj (as Xi �T Xij) and qj � qk ! Zj �T Zl (as pij � pik and so
Xij �T Xik while ql � qj ! ql � qk and so �fYljql � qjg �T �fYljql � qkg). (Remember
all these sums are �nite.)
To guarantee the required Turing inequalities it clearly su¢ ces to satisfy the following

requirements for Y = �fYjjj � ng, i; k � m, j � n and e 2 N:

Se;i;k : If pi � pk then Xi 6= �Y�Xje

Ne;j : Yj 6= ��fYkjk 6=j�ng�Xe

We can use the techniques from Theorems
coneavoid
5.2.2 to satisfy these requirements using

�nite binary strings �j;s as approximations to Yj = [�j;s. We list the requirements as Rs.
Construction: As usual we begin with �j;s = ; for j � n. At stage s+1 we have �j;s

and attempt to satisfy requirement Rs. If Rs = Ne;j we ask if there are �nite extensions
�k of �k;s for k 6= j such that ��f�kjk 6=j�ng�Xe (jj;sj) #. If so, we let �k form the least such

n-tuple and set �k;s+1 = �k for k 6= j and �j;s+1(j�j;sj) = 1 � ��f�kjk 6=j�ng�Xe (jj;sj). If

5.3. THE RANGE OF THE JUMP 43

there are no such �k then make no changes. If Rs = Se;i;k, we ask if there are extensions
�j of �j;s for j � n such, that for some x, Xi(x) 6= ��f�j jj�ng�Xje (x) #. If so, we choose
the least such (n+1)-tuple �j and set �j;s+1 = �j for all j � n. If not, we again make no
changes.
Veri�cation: The veri�cations are as before. For Ne;j if we act to extend �j;s at

stage s + 1 with Rs = Ne;j, we have clearly diagonalized to satisfy the requirement and
if not, then no extension of the �k for k 6= j can make ��f�kjk 6=j�ng�Xe (jj;sj) #. Thus
�
�fYkjk 6=j�ng�X
e (jj;sj) " and we also satisfy the requirement. For Rs = Se;i;k, suppose

that pi � pk but Xi = �
Y�Xj
e and consider stage s + 1. Clearly we did not produce a

diagonalization at stage s+1. We claim that Xi �T Xj for a contradiction. To compute
Xi(x) look for any extensions �j of �j;s such that �

�f�j jj�ng�Xj
e (x) #. There must be

one as �Y�Xje (x) #. If ��f�j jj�ng�Xje (x) #6= Xi(x) we would have taken such a tuple and
diagonalized. As the search for such �j is recursive inXj we have computedXi recursively
in Xj as desired.

ctblextemb Exercise 5.2.23 Extend Proposition
extemb
5.2.22 to countable partial orders P and Q satis-

fying the same conditions as in the Proposition. (This is somewhat more intricate than
the constructions we have seen so far in that more must be done to code the order on
elements of Q into the sets being constructed to extend the given embedding.)

aleph1emb Exercise 5.2.24 Use Exercise
ctblextemb
5.2.23 to prove that every partial order of size @1 with the

countable predecessor property can be embedded into D. (Of course, this is a construc-
tion of length @1. Some facts about extending partial orders to uppersemilattices from
Appendix ?? are also useful here.)

Notes: Theorems
coneavoid
5.2.2 and

minpair
5.2.9 and Corollary

notlattice
5.2.18 are due to Kleene and Post

[1954]. Exercises
countconeavoid
5.2.5 and

unctmaxantichain
5.2.6 to Shoen�eld [1960]. In fact, Exercise

contantichain
9.2.33 shows that

any maximal antichain has size 2@0. Sacks [1961] proves Exercise
unctindep
5.2.7 but Groszek and

Slaman [1983] show that it is consistent that 2@0 = @2 but there is a maximal independent
set of size @1. Theorem

exactpair
5.2.14 and Exercise

<0�notlat
5.2.21 are due to Spector [1956]. Proposition

extemb
5.2.22 and Exercises

ctblextemb
5.2.23 and

aleph1emb
5.2.24 are due to Sacks [1961].??Posner�s trick??

5.3 The range of the jump

The Friedberg Jump Inversion (or Completeness) Theorem
frcomp
5.3.1 says that the only re-

striction on the jumps of degrees is the obvious one: they must be at least 00. Thus,
the theorem characterizes the range of the jump operator as precisely the set of degrees
�T 00. The Shoen�eld Jump Inversion Theorem (

Shjumpinv
5.3.5) characterizes the range of the

jump operator on the degrees below 00. It too consists of everything not ruled out by the
trivial restrictions: a � 00 ! a0 � 00 & a0 is r.e. in 00.

44 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

5.3.1 The Friedberg Jump Inversion Theorem

frcomp Theorem 5.3.1 (Friedberg Jump Inversion Theorem)

8C � 009A(A0 �T C �T A _ 00):

Proof. Let C �T 00. We build A by �nite approximations �s. The properties that we
must insure are the following:

� C �T A0 (coding C into A0)

� A0 �T C (keeping A0 as low as possible)

� A0 �T A _ 00 (deciding the jump)

Construction: We begin with �0 = ;. At stage s + 1 we have �s. We ask if there
is an � � �s such that ��s (s) #. If so, we choose the least such extension � and let
�s+1 = �^C(s).
Veri�cation: The construction is recursive in C: As C �T 00 it can answer the

question we ask at stage s. If the answer is �yes� then it (indeed even the empty set)
can �nd the least witness and C can, of course then compute C(s)) to get �s+1. So
h�si �T C. Moreover, A0 �T C because s 2 A0 , ��s+1s (s) # by construction (if �As (s)
converges, it is forced to converge by stage s+ 1).
To show that C �T A0 and A0 �T A _ 00, it clearly now su¢ ces to prove that

C �T A _ 00. As C(s) = �s+1(j�s+1j), it is enough to show that the construction is
recursive in A _ 00: Given �s, 00 can answer the question asked at stage s and then
compute the least witness �. Now we know that �s+1 = �^C(s) and so as A = [s�s,
C(s) = �s+1(j�s+1j) = A(j�s+1j) and we can compute it and �s+1 from A. Thus, C �T
A _ 00.

Exercise 5.3.2 Prove that all pairs of relations between A and B on the one hand and
A0 and B0 on the other not prohibited by the known facts that A < A0 and A �T B)
A0 �T B0 are possible. More precisely, consider all the possible pairs of relations (<T ,
�T , �T and jT) between A and B and between A0 and B0. Determine which such pairs
of relations can be realized.

pojumpinv Exercise 5.3.3 (Jump inversion preserving partial order) Prove that given any �-
nite set S of degrees above 00 there is a set T of degrees such that (T;�) and (S;�) are
isomorphic as partial orders and the isomorphism is given by the Turing jump operator.

5.3. THE RANGE OF THE JUMP 45

5.3.2 The Shoen�eld Jump Inversion theorem

We now turn our attention to the jump operator acting on the degrees below 00 and prove
an analog of the Friedberg Jump Inversion Theorem

frcomp
5.3.1. First note that if A �T 00

then 00 �T A0 �T 000 and A0 is r.e. in 00 by ??. This imposes an apparent restriction on
the jumps of degrees below 00. We say �apparent�because as far as we know now, it
might be that all degrees between 00 and 000 are actually r.e. in 00.

Exercise 5.3.4 Prove that there is an A � 00 such that 8e (A 6�T We) and so by rela-
tivization a c between 00 and 000 which is not r.e. in 00.

Thus the apparent restriction to degrees REA. in 00 is real. It is, however, the only
restriction.

Shjumpinv Theorem 5.3.5 (Shoen�eld Jump Inversion Theorem) For every C � 00 which is
r.e. in 00, there is an A �T 00 such that A0 �T C.

Proof. We construct A recursively in 00 using an enumeration Cs of C which is recursive
in 00. Our approximations to A are �nite binary strings �s whose union is A. Our
requirements are as follows:

Pe : If e 2 C then A[e] is co�nite and if e =2 C then A[e] is �nite.

Ne : Make �Ae (e) converge if we can.

Construction: We begin with �s = ;. At stage s + 1 we have �s. We get �̂
extending �s by making �̂(he; xi) = 1 for each e < s with e 2 Cs and each x such that
j�sj � he; xi � s and �̂(he; xi) = 0 for all other x with j�sj � he; xi � s. Next, we ask if
there is an e � s such that ��se (e) " and a �nite extension � of �̂ such that ��e (e) # and
� satis�es conditions similar to those in our �rst extension: For j�̂j � he; xi and e � s,
�̂(he; xi) = 1 if e 2 Cs and �̂(he; xi) = 0 if e =2 Cs. If so, choose the least such � as �s+1.
If not, let �̂ = �s+1.
Veri�cation: First, note that as Cs is uniformly recursive in 00, given �s, 00; can

certainly compute �̂ at stage s. As the question we then ask is �1 (given �̂ and Cs), 00

can also compute its answer. It can then �nd �s+1 recursively using again only �̂ and
Cs. Thus the construction is recursive in 00 as then is A.
Next, note that (as in ??), for each e, there is a stage s by which Cs � e+1 = C � e+1

(and so Cs � e + 1 = Ct � e + 1 for every t > s). It is clear from the construction that
for t > he; xi > j�sj, �t(he; xi) = 1 if e 2 C and �t(he; xi) = 0 if e =2 C. Thus we have
satis�ed the requirement Pe and so, by the Shoen�eld Limit Lemma (

limitlemma
4.3.9), C �T A0.

Finally, we must show that A0 �T C. Recursively in C we determine if e 2 A0 and if
so a stage se by which ��se (e) #. Suppose we have determined A0(i) and the stages si for
i < e. Let s be a stage larger than all the si such that Cs � e + 1 = C � e + 1. We can

46 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

clearly �nd such a stage recursively in C as C knows the �nal value of C � e+1 and, as it
is above 00, it can also run the enumeration Cs and the construction until such a stage is
found. If ��s+1e (e) #, then, of course e 2 A0 and we can take se = s+ 1. If not, we claim
that e =2 A0 and have completed our inductive step as required. If e 2 A0 then there is
an initial segment � of A extending �s and indeed the �̂ de�ned at stage s+1 such that
��e (e) #. Given our choice of s, our argument above proving that C �T A0 shows that if
i � e, t > s, and t > hi; xi > j�sj, then �t(hi; xi) = 1 if i 2 C (or equivalently i 2 Ct)
and �t(hi; xi) = 0 if i =2 C (or equivalently i =2 Ct). Thus � must satisfy the conditions
required for us to choose it as �s+1 for the desired contradiction. (We cannot act for an
i < e at s+ 1 as s > si and by assumption ��se (e) ".)

StrShjumpinv Exercise 5.3.6 Strengthen the Shoen�eld jump inversion theorem by making A <T 0
0.

We can strengthen the notion of highness as we did that of lowness in De�nition
slow
5.1.10:

shigh De�nition 5.3.7 A �T 00 is superhigh if 000 �tt A0.

Exercise 5.3.8 If we take C in the proof of the Shoen�eld jump inversion theorem to be
000 then the set A constructed in Exercise

StrShjumpinv
5.3.6 is superhigh.

Notes: Theorem
frcomp
5.3.1 is due to Friedberg [1957]. It was only a part of his under-

graduate thesis; Exercise
pojumpinv
5.3.3 to Shore [1988] and Theorem

Shjumpinv
5.3.5 to Shoen�eld [1959].

The main result of Shore [1988] implies that the analog of Exercise
pojumpinv
5.3.3 does not hold

for the Shoen�eld jump inversion theorem. Indeed there are a0 and a1 r.e. in and above
00 with join strictly less than 000 such that if u0;u1 < 00 and u0i = ai (for i = 0; 1) then
u0 _ u1 = 00.

5.4 Trees and sets of size the continuumTreec

So far we have directly constructed only �nite or countable classes of sets or degrees.
(Some of the exercises use Zorn�s Lemma or iterations of length @1 of basically countable
constructions to construct sets of degrees of size @1.) We now want to provide some
direct constructions of uncountable sets of degrees, indeed ones of size the continuum,
with various properties such as being an antichain. Our basic approach is to construct
a perfect binary tree T such that [T], the paths of T , constitute the desired set. As in
De�nition

tree
4.2.1, binary trees T are subsets of 2N and so [T] is a class of sets. As in

De�nition
perfecttree
??, we say that a binary tree T is perfect if every node has two incomparable

successors. The crucial fact is Proposition ?? that there are continuum (2@0 and so
uncountably) many paths through every perfect binary tree.

cmanyincom Theorem 5.4.1 There is a set of pairwise incomparable degrees of size continuum, 2@0.

5.4. TREES AND SETS OF SIZE THE CONTINUUM 47

Proof. We build a perfect binary tree T such that if A;B 2 [T], A 6= B, then AjTB.
The requirements on the tree are

Re : (8A 6= B 2 [T])(8e)(�Ae 6= B):

To meet these requirements, we construct T by �nite approximations Ts which are �nite
binary trees such that every nonmaximal node has two incomparable extensions in Ts.
At the end T = [Ts.
Construction: We begin with T0 = f;g. At the beginning of stage s+ 1, we have a

�nite binary tree Ts with n many maximal nodes such that every nonmaximal node has
two incomparable extensions in Ts. Let �0; : : : �n�1 be the maximal nodes in Ts. Any
path through the �nal tree T has one of these as an initial segment. We want to de�ne
Ts+1 so as to satisfy Rs for sets A and B extending incomparable maximal nodes in Ts
and to give each �i two incomparable successors in Ts+1. We list the pairs hi; ji with
i; j < n and i 6= j as hik; jki for 0 < k � l and de�ne, by induction on k, �i;k for i < n,
0 < k � l so as to satisfy Rs for sets A and B extending �ik;k and �jk;k respectively. We
begin with all �i;0 = �i and then assume we have de�ned the �i;k (by induction). We
ask if there is a �̂ � �ik;k such that �

�̂
s (j�jk;kj) #. If so, we let �ik;;k+1 be the least such

�̂ and let �jk;k+1 extend �jk;k by setting �jk;k+1(j�jk;kj) = 1 � ��ik;;k+1s (j�jk;kj). We let
�i;k+1 = �i;k for i 6= ik or jk. If there is no such �̂, we let �i;k+1 = �i;k for all i. Finally
we add �i;l^0 and �i;l^1 (and all their initial segments) to Ts to get Ts+1.
Veri�cations: It is clear from the construction that T = [Ts is a perfect binary tree.

Moreover, it is clear that if A 2 [T] extends some maximal node �i of Ts then (with the
notation as in the construction) it extends all the �i;k for k � l constructed at stage s+1.
Suppose A and B are distinct paths in T and consider requirement Re. As A 6= B there
is clearly a t such that for every s � t the maximal nodes on Ts that are initial segments
of A and B are distinct. By the Padding Lemma

padding
2.1.12 there is an s > t such that

�s = �e. We claim that at stage s+1 of the construction we guaranteed that �Ae 6= B as
required. To see this, let �i and �j be the maximal nodes of Ts which are initial segments
of A and B, respectively and let k be such that at stage s + 1 we have hik; jji = hi; ji.
As we noted A and B extend �i;k+1 and �j;k+1 respectively. If at substage k + 1 of stage
s + 1 we properly extended �j;k to get �j;k+1 then �

�i;k+1
s (j�jk;kj) #6= �j;k+1(j�jk;kj) and

so �Ae (j�jk;kj) #= �As (j�jk;kj) #6= B(j�jk;kj) as required. If we did not so extend �j;k then
there is no extension �̂ of �i;k such that ��̂s (j�jk;kj) # and so none such that ��̂e (j�jk;kj) #.
In particular, �Ae (j�jk;kj) " and we again have satis�ed the requirement.

Exercise 5.4.2 There is a size continuum set of degrees which are pairwise minimal,
more precisely, there is a perfect binary tree T such that, for A 6= B 2 [T], A;B >T 0
and 8C(C �T A;B ! C �T 0).

Exercise 5.4.3 There is an independent set of degrees of size continuum.

These results give many more embedding theorems for uncountable partial orders..
Exercise

aleph1emb
5.2.24 shows that any size @1 partial order with the countable predecessor prop-

48 CHAPTER 5. EMBEDDINGS INTO THE TURING DEGREES

erty can be embedded into D. It is still an open question if every size continuum partial
order with the countable predecessor property can be embedded into D.
Notes: The results presented in this section follow from ones in Sacks [1961].

Chapter 6

Forcing in Arithmetic and Recursion
Theoryforcing

6.1 Notions of Forcing and Genericity

Forcing provides many generalizations of the techniques we have developed in Chapter
embeddings
5

along with a common language for them all. It captures the idea of approximation to a
desired object and how individual approximations guarantee (force) that the object we
are building satis�es some requirement. Now approximations usually come with some
sense of when one is better, or gives more information, than another. Of course, an
approximation may have improvements which are incompatible with each other, i.e. the
set of approximations is partially ordered. The intuition is that p � q means that p
re�nes, extends or has more information than q. We are generally thinking that the
conditions are approximations to some object G : N! N (typically a set) and that if
p � q then the approximation p gives more information than q and so the class of potential
objects that have p as an approximation is smaller then the one for q. In addition, we
have some notion of what, at least at a basic level, the approximation p says about G.
We formalize these ideas in the rest of this section.

forcing1 De�nition 6.1.1 A notion of forcing is a partial order P with domain a set P and
binary relation �P . We call an element of P a (forcing) condition. For convenience,
we assume that the partial order has a greatest element 1. (For further restrictions see
De�nition

forcing2
6.1.12.) We often write � for � P and confuse the underlying set P with the

partial order P when the notion of forcing being used is clear from the context.

cohenfor Example 6.1.2 If the notion of forcing is (2<!;�), then � � � � � � � . In many of our
previous constructions we used such binary strings � as approximations to a set G such
that � � G. So the longer the string, the fewer sets that �satisfy� it, i.e. have it as an
approximation (initial segment). This example is often called Cohen forcing. Common,
but essentially equivalent (See Exercise

cohensame
??), variations include (N<!;�) ((k<!;�) for

k 2 N) approximating a function from N to N (N to f0; 1; 2g)and the set of �nite partial

49

50 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

maps from N into N or from N into 2 (or k) ordered by extension approximating functions
(N! N) or sets (or from N into k), respectively . These types of forcing notions with
�nite conditions play a central role in this Chapter and the next.

Example 6.1.3 In §
Treec
5.4 we used �nite binary trees with extension while requiring that

the tree extension add only strings that are extensions (as strings) of leaves of the given
tree. The object being approximated was a binary tree T .

exactpairfor Example 6.1.4 In Theorem
exactpair2
5.2.15, we used partial characteristic functions � de�ned

on some �nite set of columns and some �nitely many additional points. Again we were
approximating a set G � �.

spectorfor Example 6.1.5 Another important notion of forcing is the set of perfect recursive binary
trees with S � T , S � T . (Here trees T are simply sets of binary strings as in
De�nition

tree
4.2.1. The tree is perfect if every node has incomparable extensions as in

De�nition
perfect
????.) We are thinking of such a tree T as approximating some path on T . So

re�nement (more information) means fewer possible paths, i.e. more information about
which path is being approximated. This notion of forcing is often called Spector forcing
(or perfect forcing or Sacks forcing). Again there are many variants. For example the
trees can be n-branching for some �xed n or �nitely branching ?? with the number of
branches ?? speci�ed recursively. These notions of forcing play a central role in our
constructions of initial segments of D in Chapters

mindegs
9 and

initialseg
10.

How, in general, can we specify what object is it exactly or what class of potential
objects is it that a condition p in a notion of forcing approximates? For Cohen forcing
a condition (string) � approximates the class of sets fGjG � �g. So the collection of
all approximations to a single set G is simply f�j� � Gg, the class of all the initial
segments of G. We want to isolate the salient features of this set of conditions or any
set G � P that might be considered as an object its members are approximating. The
general approach that we want for an arbitrary notion of forcing begins with �lters.
Perhaps the most salient feature of a subset F of P being an approximation to

something is that it not contain contradictory information so that there is, in the end,
some object for which we can view every member of the set as an approximation. We do
this by requiring that for every two elements of F there is a third that extends each of
the two given ones.

compat De�nition 6.1.6 Two conditions p; q of a notion of forcing P, are compatible if and
only if 9r(r � p ^ r � q). If p; q are incompatible we write p ? q (as opposed to p j q
which we use to denote incomparability, p � q and q � p).

filter De�nition 6.1.7 F � P is a �lter on P if and only if F is nonempty, upward closed
and, for every p; q 2 F , there is an r 2 F with r � p; q (so p and q are compatible with
a witness in F).

6.1. NOTIONS OF FORCING AND GENERICITY 51

We are thinking of �lters as connected by some procedure to the object we are ap-
proximating.

Example 6.1.8 Suppose we want to approximate a set G 2 2N and our notion of forcing
is (2<!;�) (�nite binary strings). Then the set f� : � � Gg is a �lter. In particular, the
union of this set (�lter) is the characteristic function G. It will commonly be the case
that the object we want is de�ned from a �lter by some �simple�operation such as union.
We formalize this idea in De�nition

forcing2
6.1.12. Note that for �nite strings, being comparable

is the same as being compatible.

Example 6.1.9 Suppose we want to approximate a set G 2 2N and our notion of forcing
P is some countable set of in�nite binary trees (not necessarily perfect) such as the
recursive ones. Then the subset fT : G 2 [T]g = fT : 8� � G(� 2 T)g of P is a �lter:
Suppose two trees both have G as a path. Then the tree which is the (set) intersection
of the two trees is a common re�nement. For upward closure, if G is a path on T and
T � S then G is also a path on S. In this case, the intersection of (the trees in) this
�lter is the characteristic function of G.

For a given notion of forcing P, there is often a canonical way to associate some set or
function with a �lter F on P. For example, for Cohen forcing we can naturally try [F .
For forcing with binary trees we might try \f[T]jT 2 Fg. Does this always make sense
even for Cohen or Spector forcing? For Cohen forcing it might be that [F is a �nite
string so itself a condition. For Spector forcing \f[T]jT 2 Fg could be a set of paths
through a binary tree with more than one branch which might not necessarily be recursive
or perfect. We need to add conditions on our �lter to make sure we get a total function
or a single set at the end. We might for example require for Cohen forcing that F contain
strings of every (equivalently arbitrarily long) length, i.e. (8n)(9� 2 F)(j�j � n). For
Spector forcing we could require that there are trees in F with arbitrarily long nodes �
before the �rst branching (i.e. � has two immediate successors in the tree but no � � �
does).
In general, we want to assure that we can associate a unique object to the set of

approximations (�lters) that we consider. We then want these objects to witness vari-
ous theorems asserting the existence of objects with prescribed properties. So we want
a notion of forcing with conditions approximating the objects asserted to exist in the
theorem. As in Chapter

embeddings
5, we then usually have requirements that, if met, make the

objects constructed satisfy the given theorem. Our desire for the set of approximations
to specify a unique object can then be seen as simply another (albeit very basic) goal
of the construction to be satis�ed by meeting various requirements. (See, for example,
Question

nonterm
5.1.2.) Our constructions in Chapter

embeddings
5 typically worked because at any stage

with a given approximation to our desired set we could extend the approximation so as
to satisfy any requirement. This property of approximations and requirements is a type
of density in the partial order of approximations. Thus, for each of these requirements,
we want the set of conditions guaranteeing (forcing) that we satisfy the requirement to

52 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

be dense. Meeting them all produces a �generic�object which provides a witness for the
given theorem. The requirements for the uniqueness of the object approximated at the
end is handled in the same way. We now formalize some of these ideas.

dense De�nition 6.1.10 A subset D of P is dense in P if 8p 2 P9q 2 D(q �P p). A subset
D of P is dense below r 2 P if 8p � r9q 2 D(q � p).

Cgen De�nition 6.1.11 If C is a class of dense subsets of P, we say that G � P is C-generic
if G \ D 6= ; for all D 2 C. We say that a sequence hpni of conditions is C-generic if
8i(pi+1 �P pi) and 8D 2 C9n(pn 2 D).

For the speci�c goal of constructing a uniquely speci�ed object, we add to every
notion of forcing a function V (p) representing the atomic information about our generic
object determined by the condition p and the requirement that all generic �lters meet
certain dense sets de�ned in terms of V .

forcing2 De�nition 6.1.12 From now on, we require that every notion of forcing have a valuation
function V : P ! N<! which is recursive on P and order preserving in the sense that
if p �P q then V (p) � V (q). (We say that a partial recursive function � is recursive
on a set X if X � dom(�).) Moreover, we require that the sets Vn = fpj jV (p)j � n)g
are dense. We also require that any collection of dense sets that we consider for the
construction of a generic �lter or sequence includes the Vn.

Vcomp Exercise 6.1.13 If, for two forcing conditions p and q, V (p) and V (q) are incompatible
as elements of N<!, then p ? q. The converse does not hold for every notion of forcing.

Proposition 6.1.14 With the conventions of De�nition
forcing2
6.1.12 now in place, for every

C-generic sequence hpni (or �lter G), [V (pn) (or fV (p)jp 2 Gg, is a total function.

Proof. The de�nitions of a valuation function V as order preserving and of generic
sequences (or �lters), guarantee that the V (pn) (or V (p) 2 G) are pairwise comparable
strings. (See Exercise

Vcomp
6.1.13.) The requirement that the Vn are each dense and met by

hpni (or G) make [V (pn) (or fV (p)jp 2 Gg total.
We now see how to specify the unique function associated with each generic sequence

or �lter.

assocgendef De�nition 6.1.15 We associate to each C-generic sequence hpni or �lter G the generic
function G = [V (pn) or fV (p)jp 2 Fg.

Example 6.1.16 In Example
cohenfor
6.1.2 for basic Cohen forcing, we may de�ne V (p) = p. In

Example
spectorfor
6.1.5 (Spector forcing), we may let V (p) be the largest � such that every � 2 T

is comparable with �.

Exercise 6.1.17 Show that the corresponding Vn are dense for Cohen and Spector forc-
ing.

6.1. NOTIONS OF FORCING AND GENERICITY 53

Exercise 6.1.18 What could V be for the variations of Cohen forcing of Example
cohenfor
6.1.2?

Prove that the corresponding Vn are dense.

Exercise 6.1.19 What could V be for the forcing of Example
exactpairfor
6.1.4 that constructs an

exact pair? Prove that the corresponding Vn are dense.

seqfilter Proposition 6.1.20 If hpni is a C-generic sequence then G = fpj9n(pn � pg is a C-
generic �lter containing each pn.

Proof. G is C-generic because it contains an element, pn, of Dn for all n. It is upward
closed because if p 2 G then p � pe for some e so if q > p � pe then q � pe as well.
Finally, it is pairwise compatible because given p � pe1, q � pe2 then p; q � pe where
e = maxfe1; e2g.
If our collection of dense sets is countable (as it always essentially is in our applica-

tions) then generic sequences, �lters and functions always exist.

ECgen Theorem 6.1.21 If C is countable and p 2 P, then there is a C-generic sequence hpni
with p0 = p and so, by Proposition

seqfilter
6.1.20, a C-generic �lter G containing p.

Proof. Let C = fDnjn 2 Ng. We de�ne hpni by recursion beginning with p0 = p. If we
have pn then we choose any q � pn in Dn as pn+1. One exists by the density of Dn. It
is clear that hpni is a C generic sequence and so G = fpj9n(pn � pg is C-generic �lter
containing p.

filterseq Exercise 6.1.22 If C is countable, each Dn 2 C is downward closed (as we can almost
always guarantee) and G is a C-generic �lter containing p, then there is a C-generic
sequence hpni with p0 = p such that G = fpj9n(pn � pg. (This is a partial converse to
Proposition

seqfilter
6.1.20.)

As is our general practice, we often want to know how hard it is to compute a C-
generic sequence, �lter or function. We must begin with the complexity of P and then
consider how hard it is to compute the generic sequence hpni and so the associated generic
G. We view the elements of P as being (coded by) natural numbers. For convenience we
let the natural number 1 be the greatest element of P . Finding the generic G from the
sequence, requires only knowing the set P .

assocgen Proposition 6.1.23 If G is associated with the C-generic sequence hpni (�lter G) then
G �T hpni � P (G�P).

Proof. As V is recursive on P and the sets Vn of De�nition
forcing2
6.1.12 are included in C, we

can, recursively in P , compute G(n) by searching for a p 2 Vn such that p = pk for some
k (or p 2 G) and then noting that G(n) = V (p).
To compute a generic sequence, we usually need the order relation �P as well as a

procedure for �nding extensions in the given dense sets.

54 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

densityf De�nition 6.1.24 A notion of forcing P is A-recursive (or a-recursive) if the set P and
the relation �P are recursive in A (2 a). (As usual if A = ; (a = 0) we omit it from the
notation.) If C = fDng is a collection of dense sets in P then f is a density function for
C if (8p 2 P)(8n 2 N)(f(p; n) 2 Dn).

meetdense Proposition 6.1.25 If P is an A-recursive notion of forcing and C = fDng is a uni-
formly A-recursive sequence of dense subsets of P and p 2 P then there is a C-generic
sequence hpni with p0 = p which is recursive in A. More generally, for an arbitrary notion
of forcing P, p 2 P and a class C = fDng of dense sets, if f is a density function for
C, then there is a C-generic sequence hpni �T f with p0 = p. The generic G function
associated with these �lters or sequences are also recursive in A or f � A, respectively.

Proof. If P is an A-recursive notion of forcing and C = fDng is a uniformly A-recursive
sequence of dense subsets of P, then we can de�ne a density function f �T A by letting
f(p; n) be the least (in the natural order of N) q �P p with q 2 Dn. In either case, the
desired generic sequence is now given by setting p0 = p and pn+1 = f(n; pn). That G is
recursive in A or f � A now follows from Proposition

assocgen
6.1.23.

Note that the generic �lter G de�ned from the generic sequence hpni in Propositionseqfilter
6.1.20 is �1 in hpni but not necessarily recursive in it (Exercise

filternotrec
6.1.26). In the other

direction, there is usually some generic sequence recursive in the �lter (Exercise
filterrec
6.1.28).

filternotrec Exercise 6.1.26 Give a recursive notion of forcing and a fVng-generic sequence hpii
such that G = fpj9i(pi � p)g is not recursive.

??Hint:P = fpi;jji; j 2 Ng. pi;j �P pi;k for j � k and all i and for i 6= 0, p0;n �P pi;0
if i 2 Kn and not otherwise. V (pi;j) = 1j. hpii = hp0;ii. ??

Exercise 6.1.27 Show that for a recursive notion of forcing P for which the relation
? is also recursive and any collection of dense sets C that include Dq = fpjp � q or
(8r � p)(r � q)g for every q 2 P and every C-generic sequence hpni, the generic �lter
G = fpj9n(pn � p)g is recursive in hpni.

filterrec Exercise 6.1.28 Show that in Exercise
filterseq
6.1.22, if the notion of forcing is A-recursive

then we may take the sequence hpni to be recursive in G � A.

[There are various connections between forcing, (generic) �lters and topology. Order
topology on P...dense open sets , meager comeager, generic..
In Cohen forcing the conditions correspond to (approximate) open sets in Cantor

space 2N i.e. � is an approximation to each set G � � and these form an open (even
clopen) set in 2N. Then the intersection of all the clopen sets in a �lter F is a closed
set. If the �lter is mildly generic it is the single set G which is the union of the �lter.
In Spector forcing the intersection of the [T] for T in some �lter is a closed set. It is
nonempty since the space is compact. If the �lter is mildly generic the intersection is
also a singleton.]
.

6.2. THE FORCING LANGUAGE AND DECIDING CLASSES OF SENTENCES 55

6.2 The Forcing Language and Deciding Classes of
Sentences

The ad hoc approach to constructions presented in Chapter
embeddings
5 looks at a theorem we

want to prove, decides what are the speci�c requirements we need to meet, what approx-
imations we should use and how to extend approximations to satisfy the requirements.
It then builds the desired sets accordingly. For example, this is what we did to build
two Turing incomparable sets AjTB. The requirements were �Ae 6= B (and �Be 6= A).
Our approximations were pairs h�; �i of binary strings. Given h�; �i, we could �nd
h�̂; �̂i � h�; �i which would guarantee any particular requirement. In particular, if there
is an x and a pair of extensions h�̂; �̂i of h�; �i such that 9x(��̂e (x) #6= �̂(x) #), we chose
the least one; if not, we took h�; �i itself as the next approximation. In the terminology
of forcing, we have a notion of forcing with conditions pairs h�; �i and re�nement given
by extension. Meeting the requirements �Ae 6= B corresponds to getting into the dense
sets

De = fh�; �i : 9x(��e (x) #6= �(x) #) or (8h�̂; �̂i � h�; �i)(:[9x��̂e (x) #6= �̂(x) #])g.

Likewise, we de�ned dense sets Ce, which guaranteed that �Be 6= A. Now if h�n; �ni is a
fDe; Ceg-generic sequence and G0 = [�n, G1 = [�n, then G0 jT G1.
In this manner, each of the proofs we did earlier by constructions with requirements

can be translated into a notion of forcing (consisting of the approximations with a natural
order), dense sets and generics for the dense sets De determined by the conditions that
guarantee (force) that we satisfy the eth requirement. However, a primary bene�t of
the forcing technology is the generality it allows. For example, we can tackle many of
the constructions simultaneously and so give one theorem implying many of our previous
ones that were proven individually.
To this end, we need to de�ne the forcing relation () more generally, by induction

on formulas ' that somehow say that if p ' then '(G) holds for the set or function G
determined by any su¢ ciently generic sequence hpni or �lter G. Thus we want a relation
 between conditions p 2 P and sentences �(G) (where we use G as the formal symbol that
is to be interpreted as our generic set or function G). This relation should approximate
truth in the sense just described. We could use a standard language of arithmetic as in
§
arithh
4.4 (in set theoretic forcing, one would use the language of set theory) augmented with
another parameter (G) for the set we are building. (At times we may also want other
�xed other parameters (�h) for given functions. As usual we typically leave this case to
relativization.)
The usual de�nition of forcing adopts some such standard language (in our case, for

arithmetic) and proceeds by induction on the full range of formulas with the crucial steps
(after the atomic variable free formulas) being p 9x , 9n (p '(n)); p :' ,
8q � p(q 1 ') and so p 1 8x' , 8n8q � p (q 1 :'(n)) , 8n8q � p9r � q (r '(n)).
(The de�nitions for conjunction and disjunction are given by p ' ^ , p ' and
p and p ' _ , p ' or p .)

56 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

For our purposes it is more convenient to use the master (universal) partial recursive
functions described and de�ned in §

codeTM
2.1. In particular we want to use the predicate

'1+n(f; e; �x; s) # that means that Turing machine e, with oracle f and input �x of length
n, converges when run for s many steps. We also exploit the normal form theorems
for sentences of arithmetic of §

arithh
4.4. With our restricted language we can simplify the

de�nition of forcing and so, crucially, the calculation of the complexity of the relation
p '.
We begin with an arbitrary�1 formula of arithmetic with a set parameterG: (G; �c; �x).

For later convenience we have displayed the numerical terms �c and free variables �x appear-
ing in (with j�cj = k and j�xj = l). By the m-completeness of G0 for the class of �G1 sets
(Theorem

hierarchy
4.5.1), is equivalent to 9s('1+n(G; e; e; �c; �x; s) #) (in the usual sense that for

every instantiation �n of the �x, (G; �c; �n), 9s('1+k+l(G; e; e; �c; �n; s) #)). Here e is given
as a recursive function of (the code for) the formula , say e(). (The uniformity of the
completeness result (??

sigma1comp
????) shows that e() is independent of the choice of G and that

it depends uniformly on �c.) Note that by the analysis and conventions of §
codeTM
2.1, this last

formula (and so (G; �c; �x)) is equivalent to (9� � G)('1+k+l(�; e; e; �c; �x) #). Of course,
any �1 sentence ̂ is then equivalent to ones of the form 8s:('1+k+l(G; e; e; �c; �x; s) #)
and (8� � G)(:('1+k+l(�; e; e; �c; �x) #)).
The normal form theorems of §

arithh
4.4, say that any sentence of arithmetic with set

parameter G is equivalent to one of the form �Q�x (G; �c; �x;) where �Q�x is a string of al-
ternating quanti�ers ending with 8 and (G; �c; �x) is a �1 formula or �Q�x is a string of
alternating quanti�ers ending with 9 and (G; �c; �x) is a �1 formula. So every sentence
of arithmetic with one function parameter G is equivalent to a sentence of the form
�Q�x9s('1+k+l(G; e; e; �c; �x; s) #) or �Q�x8s(:('1+k+l(G; e; e; �c; �x; s) #)). Thus we can induc-
tively de�ne the forcing relation only for such sentences and still be able to talk about
all arithmetic sentences.
We need some notational conventions.

Notation 6.2.1 By the negation :' of a formula in this form we mean the natural
equivalent gotten by driving the negation sign through the quanti�ers, i.e. change each
quanti�er in �Q�x (9 to 8 and vice versa) and 9s('1+k+l(G; e; e; �c; �x; s) #) to its negation
8s(:('1+k+l(G; e; e; �c; �x; s) #)) (and vice versa). For example,

:9x8y9s('1+j�cj+2(G; e; e; �c; x; y; s) #) = 8x9y8s(:('1+j�cj+2(G; e; e; �c; x; y; s) #)).

So, in particular, ::' = ' for every ' in our special form.

Notation 6.2.2 We use G for the generic �lter, G for [fV (p)jp 2 Gg, the function
associated with G that we are building and G for the symbol in language that stands for
that function.

We now de�ne the forcing relation p '.

6.2. THE FORCING LANGUAGE AND DECIDING CLASSES OF SENTENCES 57

deffor De�nition 6.2.3 Given a notion of forcing P, we de�ne the relation p forces ', p ',
for p 2 P and sentences ' of our speci�ed form, by induction on the number of quanti�ers
in '.

� If ' is a�1 sentence 9s('1+k(G; e; e; �c; s) #) then p ' if and only if �1+k(V (p); e; e; �c) #.

� If ' is a �1 sentence 8s(:('1+k(G; e; e; �c; s) #)) then p ' if and only if 8q �
p(:�1+k(V (q); e; e; �c) #)).

� If ' is a �n+1 formula 9x�(x) then p ' if and only if 9m(p �(m)).

� If ' is a �n+1 formula 8x (x) then p ' if and only if 8q � p8m(q 1 : (m)).

Remark 6.2.4 We have restricted our de�nition of forcing to sentences of very speci�c
forms and consider only these in formal proofs about properties of forcing. In applications,
however, we abuse our notation by writing p �(G) for any sentence � of arithmetic.
Formally, we assume some uniform procedure to replace any � by an equivalent sentence in
our special form. In view of the relation between forcing (which depends on the syntactical
form) and truth (which does not up to semantic equivalence) in Theorem

for=t
6.2.15, this will

make no di¤erence in terms of our generic sets satisfying the sentence �.

relfor Remark 6.2.5 (Relativization) Just as we often relativized results in Chapter
embeddings
5, we

often want to consider arithmetic and forcing with extra function parameters �h for �xed
functions �h depending on the circumstances. For example, in Exercise

relKP
5.1.6, we built

Ai �T X with A0jTA1 by relativizing the construction of Theorem
KP
5.1.1 to X. So too,

we now want to be able to �x some �h and talk about the properties of G in a language
that allows function parameters for these �h. We do this in the natural way. The ba-
sic language of arithmetic described in §

arithh
4.4 allowed for multiple function parameters

?? So we have formulas �(G; �h; �c; �x) of arithmetic which are equivalent to ones of the
form �Q�x9s('1+k+l(G; �h; e; e; �c; �x; s) #) or �Q�x8s(:('1+k+l(G; �h; e; e; �c; �x; s) #)) where we
similarly use the versions of the universal partial functions of §

codeTM
2.1 with multiple ora-

cles. For the de�nition of forcing we then, of course, use the recursive in �h relations
'1+k+l(�;

�h; e; e; �c; �x). As usual, we typically leave such matters of adding parameters
and relativizing to the reader.

compfor Theorem 6.2.6 If P is a notion of forcing then, for n � 1, forcing for �Pn (�
P
n) sen-

tences ' (i.e. whether p ') is a �n (�n) in P relation.

Proof. We proceed by induction on n. If ' is �1 or �1 then p ' is directly de�ned as a
�P1 or �

P
1 formula, respectively. (The point here is that the �1+k(�; e; e; �c) are uniformly

recursive, P and q � p are recursive in P and V is recursive on P .) For n � 1 the result
follows by induction and our de�nition of forcing.

Exercise 6.2.7 In fact, if ' is �1 then p ' is a recursive in P relation.

58 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

ext Exercise 6.2.8 If p ' and q � p then q '.

We now want to tackle the question of how much genericity do we need to make
forcing equal truth for generic �lters and functions in the sense that if p ', p 2 G and
G is su¢ ciently generic then '(G) holds and, in the other direction, if '(G) holds then
there is a p 2 G such that p '.

ngeneric De�nition 6.2.9 Let P be a notion of forcing and G a �lter on P. For n � 1, We say
G is n-generic for P if, for every �n in P subset S of P,

9p 2 G(p 2 S _ 8q � p(q =2 S)).

We say that G is !-generic (or simply generic) for P if it is n-generic for all n.
Similarly, the descending sequence hpni of conditions is n-generic for P if, for every

�n in P subset S of P, there is an m such that pm 2 S or 8q � pm(q =2 S). The sequence
is !- generic (or simply generic) for P if it is n-generic for P for all n.
The function G determined by an (n-)generic �lter or sequence is also said to be (n-

)generic. A degree g is (n)-generic for P if there is a G 2 g which is (n)-generic for
P.
These notions all relativize to an arbitrary h in the obvious way. We then say, for

example, that G is n-generic relative to (or over) h. (We include h as a parameter in our
languages for arithmetic and forcing as in Remark

relfor
6.2.5 and consider sets S which are

�n in P � h.)

The following equivalence is now immediate.

ngenericdense Proposition 6.2.10 Let Cn be the class of dense sets fp : p 2 Se _ 8q � p(q =2 Se)g =
Dn;e for all �n in P subsets Se of P. A �lter G (or a descending sequence hpni) is
n-generic i¤ G (hpni) is Cn-generic.

ngenmeetdense Exercise 6.2.11 If D � P is dense and �Pn then D meets every n-generic G. If D is
dense below p and �Pn then D meets every n-generic G containing p.

We now point out an important sense in which the variants on Cohen forcing men-
tioned in Example

cohenfor
6.1.2 are equivalent.

cohenvar Exercise 6.2.12 Let Pk be (k<!;�) and P! be (N<!;�). (So P2 is Cohen forcing).
Show that for every n a degree g is P! (n-)generic if and only if it is Pk (n-)generic for
every k 2 N i¤ and only if it is Pk (n-)generic for some k 2 N.
Hint: Consider, for example, the map that �rst takes any f 2 2N to h : N! N given

by writing f as 0m01m10m2 : : : where each mi is chosen maximal and we are taking 00 to
be the empty string. Then we set h(i) = mi. Prove that f is Cohen (n-)generic if and
only if h is P! (n-)generic and in all these cases f �T h.

6.2. THE FORCING LANGUAGE AND DECIDING CLASSES OF SENTENCES 59

To build an n-generic G we proceed as in the construction of a generic for an arbitrary
countable class of dense sets. We can now also calculate how hard it is to carry out this
construction.

ngeneric0n Proposition 6.2.13 For any notion of forcing P and each n � 1, there is an n-generic
sequence hpki �T P(n) and so its associated n-generic G is also recursive in P(n). There
is also a generic sequence hpki such that it and its associated G is recursive in P(!).
Moreover, for any p 2 P we may require that p0 = p and so V (p) � G.

Proof. Fix n. We build a generic sequence hpni for the Cn of Proposition
ngenericdense
6.2.10 recur-

sively in P(n). We begin with p0 the given p 2 P . If we have already de�ned ps we �nd,
recursively in P(n), a q �P ps which is in Dn;s+1. This procedure clearly constructs the
desired sequence and is recursive in P(n) by de�nition of the Dn;e. For !-genericity we
simply carry out this construction for the collection fDn;ejn; e 2 !)g recursively in P(!).
That G is recursive in P(n)(P(!)) follows from Proposition

assocgen
6.1.23.

decide De�nition 6.2.14 A condition p decides a sentence ' if p ' or p :'.

for=t Theorem 6.2.15 If G is n-generic for a notion of forcing P and '(G) 2 �k or �k,
k � n, then there is a p 2 G which decides '(G). Moreover, if there is a p 2 G such that
p '(G) then '(G) holds.

Proof. For the �rst assertion, note that the case for �k sentences ' follows from that for
�k sentences since :' is �k and ::' is '. Suppose then that ' is �k and consider the
set S' = fpjp 'g. By Theorem

compfor
6.2.6, S' is �k and so by the de�nition of n-genericity,

there is a p 2 G such that p ' or 8q � p(q 1 '). If p ' we are done so suppose
8q � p(q 1 ').
We now want to prove that p :'. If k = 1, i.e. ' is of the form 9s('1+k(G; e; e; �c; s) #

), this follows immediately from the de�nitions of forcing a �1 sentence and the �1 sen-
tence which is its negation: q 1 ' , :�1+k(V (q); e; e; �c) # and so by our assump-
tion 8q � p(:�1+k(V (q); e; e; �c) #), i.e. p 8s(:('1+k(G; e; e; �c; s) #)) while :' =
8s(:('1+k(G; e; e; �c; s) #)).
If k > 1 then ' = 9x (x) for some �k�1 sentences . By the de�nition of forcing for

�k sentences, we have that 8q � p8m(q 1 (m)). Keeping in mind that :: = , this
is precisely the de�nition of p 8x: . As 8x: = :', we have the desired result.
We now prove the second assertion of the theorem by induction on k. Suppose ' is �1

and so of the form 9s('1+k(G; e; e; �c; s) #). As p ', �1+k(V (p); e; e; �c) #. As V (p) � G,
'1+k(G; e; e; �c; jV (p)j) # and so 9s('1+k(G; e; e; �c; s) #) as required.
Next suppose that ' is �1 and so of the form 8s(:('1+k(G; e; e; �c; s) #)), p ' and,

for the sake of a contradiction, that 8s(:('1+k(G; e; e; �c; s) #)) does not hold. This means
that there is some s such that '1+k(G; e; e; �c; s) # and so �1+k(G � s; e; e; �c) #. Now there
is an r 2 Vs \ G 6=; (by De�nition

forcing2
6.1.12) and so a q � p; r in G by De�nition

filter
6.1.7. As

V (q) � V (p) (again by De�nition
forcing2
6.1.12), �1+k(V (q); e; e; �c) # (by the use property of

§
codeTM
2.1). As q � p we have contradicted the assumption that p ' as desired.

60 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

Next, we consider �k+1 and �k+1 sentences ' for k � 1. If ' = 9x (G; x) with
a �k sentence and p ', then by de�nition p (G;m) for some m. By induction,
 (G;m) holds and then so does ' = 9x (G; x) as required. Finally, suppose, for the
sake of a contradiction, that ' = 8x (G; x) with a �k sentence, p ' but 8x (G; x)
does not hold. As 8x (G; x) fails, there is some m such that : (G;m) holds. The �rst
part of our Theorem supplies an r 2 G such that r (G;m) or r : (G;m). The �rst
alternative contradicts our inductive assumption as is �k. Thus r : (G;m). Once
more by De�nition

filter
6.1.7, we have a q � p; r. As q : (G;m), we have contradicted the

de�nition of p 8x (G; x) as desired.

for=tseq Exercise 6.2.16 Prove the analog of Theorem
for=t
6.2.15 for n-generic sequences hpii: For

any �k or �k formula '(G) there is an i such that pi ' or pi :'. Moreover, if, for
any i, pi '(G) then '(G) holds.

We now analyze the degree theoretic properties of sets with various amounts of gener-
icity. We begin with some connections between genericity and lowness. The basic Propo-
sition provides two corollaries. The �rst improves Proposition

ngeneric0n
6.2.13. The second is

speci�c to notions of forcing similar to that of Cohen.

ngenericlowng Proposition 6.2.17 For any notion of forcing P and each n � 1 and n-generic �lter
or sequence Z with associated n-generic G, (P�G)(n) �T Z � P(n). Similarly, if Z is
generic then (P�G)(!) �T Z � P(!) for the associated G.

Proof. Consider the case for n-generics. As the question of whether e 2 (P�G)(n)
is uniformly �n in P�G, we can recursively �nd the �Pn formula �e(G) of our forcing
language such that �e(G) , e 2 G(n). Now as p �e(G) and p :�e(G) are recursive
in P(n) (Theorem

compfor
6.2.6) and there is a p in Z that decides �e(G) by Theorem

for=t
6.2.15 or

Exercise
for=tseq
6.2.16, we can �nd one recursively Z �P(n). Theorem

for=t
6.2.15 or Exercise

for=tseq
6.2.16

then tells us that e 2 (P �G)(n) , p �e(G). The proof for full genericity is essentially
the same using P(!).

ngenericlown Corollary 6.2.18 For any notion of forcing P and each n � 1 there is an n-generic G
such that G(n) �T P(n). There is also a generic G such that G(!) �T P(!).

Proof. By Proposition
ngeneric0n
6.2.13, there is an n-generic sequence hpii recursive in P(n) and

a generic one recursive in P(!). Now apply Proposition
ngenericlowng
6.2.17.

cohenngen Corollary 6.2.19 If G is n-generic for Cohen forcing then G(n) �T G_ 0(n). Similarly,
if G is generic for Cohen forcing, G(!) �T G _ 0(!).

Proof. For Cohen forcing the �lter G with which G is associated is just f�j� � Gg
which is clearly recursive in G. Now apply Proposition

ngenericlowng
6.2.17.

We can now generalize the Friedberg Completeness Theorem
frcomp
5.3.1 to iterations of

the jump. The proofs of Exercises
genFrcomp
6.2.20 and

genFrcomp2
6.2.21 combine the ideas in the proofs of

Proposition
genFrcomp
6.2.20 and Theorem

frcomp
5.3.1.

6.2. THE FORCING LANGUAGE AND DECIDING CLASSES OF SENTENCES 61

genFrcomp Exercise 6.2.20 For every C �T 0(n) there is a Cohen n-generic G such that C �T
0(n) �G �T G(n). The same is true if we replace n by !.

More generally, we have the following.

genFrcomp2 Exercise 6.2.21 If for every p 2 P there are q; r � p such that V (q)jV (r) then, for
every C �T P(n) we can �nd an n-generic G such that C �T P(n)�G �T (P �G)(n) �T
P(n) �G(n). The same is true if we replace n by !.

Exercise 6.2.22 Find an A-recursive notion of forcing for which the analog of Corollary
cohenngen
6.2.19 does not hold, i.e. there is an n-generic G with G(n) �T G _ A(n).??Hint??

The next proposition gives almost all of the incomparability and embeddability results
for countable sets of Chapter

embeddings
5 in one fell swoop.

genindep Proposition 6.2.23 If G is Cohen 1-generic then the columns G[i] = fxjhi; xi 2 Gg of
G form a very independent set, i.e. 8j(G[j] �T G[|̂]).

Proof. Note that we are using the column notation for sets and binary strings from
Notation

colnot
5.1.13. For each e and j we want to show that �G

[|̂]

e 6= G[j]. Consider the �1
sets Se;j = fp : p 9x(�G[|̂]e (x) #6= G[j](x))g. As G is 1-generic, there is p � G such
that p 2 Se;j or (8q � p)(q =2 Se;j). (The 1-generic �lter with which G is associated
is G = fpjp � Gg.) In the �rst case, 9x(�G[j]e (x) #6= G[|̂](x)) (by Theorem

for=t
6.2.15) and

so �G
[|̂]

e 6= G[j] as required. In the second case, we claim that �G
[|̂]

e is not total. If it
were, let hj; xi be outside the domain of p. We must then have some q � G with q � p,
q(hj; xi) # and �q[j]e (x) #. Now let q̂(hj; xi) = 1� q(hj; xi) and q̂(z) = q(z) for z 6= hj; xi.
So q̂[|̂] = q[|̂] and �q

[|̂]

e (x) #= �q̂
[|̂]

e (x) # but q̂(hj; xi) 6= q(hj; xi. Thus (by the de�nition of
forcing for �1 sentences) one of q and q̂ (both of which extend p) is in Se for the desired
contradiction.

Exercise 6.2.24 The Theorems and Propositions of this section relativize to an arbitrary
X. For example, Proposition

genindep
6.2.23 now says that if G is 1-generic over X, then the

independence results hold even relative to X, i.e. 8j(G[j] �T X �G[|̂]).

Exercise 6.2.25 If G is Cohen 1-generic over X and A;B �T X then

A �T B , A�G �T B �G:

In particular, if X >T 0, G jT X .

Exercise 6.2.26 If G is Cohen 1-generic over X >T 0, then G ^X = 0, i.e. G and X
form a minimal pair.

Exercise 6.2.27 Prove that if G is Cohen n-generic then the G[i] are very mutually
Cohen n-generic in the sense that each G[i] is Cohen n-generic over G[̂{].

62 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

Exercise 6.2.28 Translate the Exact Pair Theorem into the language of forcing. Hint:
Given hCii, de�ne a notion of forcing P with conditions h�; �; ni for �; � 2 2<! and
n 2 N. The ordering is given by h�0; �0; n0i � h�; �; ni if �0 � �, �0 � �, n0 � n and, for
i < n, if �0(hi; xi) # but �(hi; xi) " then �0(hi; xi) = Ci(x) and similarly for �

0 and �.

Exercise 6.2.29 Let f : N! f0; 1; 2g and fdng list the x such that f(x) = 2 in increas-
ing order. For any A 2 2N, we let fA(x) = A(n) if x = dn for some n and fA(x) = f(x)
otherwise. Construct an f such that fA is Cohen 1-generic for every A 2 2N. Hint: make
f 1-generic for conditions p 2 f0; 1; 2g<!.

Exercise 6.2.30 Show that the Cohen 1-generic degrees generate D. Hint: Fix an h 2
2N. Make the f of the previous construction 1-generic relative to A. Show that for any
j 6= k, (f [j]A � f

[j]
�A
) ^ (f [k]A � f

[k]
�A
) �T A.

??Probably write out this proof as Proposition not exercise.??
We close this section with a slight variation of our previous constructions that is

needed in §
def<0�
8.4.

genfortwosets Proposition 6.2.31 If P is a recursive notion of forcing and C0 and C1 are low sets,
i.e. C 00 �T 00 �T C 01 then there is a G which is 1-generic for P over C0 and over C1 so
that, in particular, both G� C0 and G� C1 are low.

Proof. Build a generic sequence meeting the dense sets fp : p 2 Se;i _ 8q � p(q =2
Se;i)g = De;i for all �n in Ci subsets Se;i of P for i 2 f0; 1_g as in the proof of Propositionngeneric0n
6.2.13. As both Ci are low, 00 can uniformly compute extensions in each De;i of any p so
the generic sequence and the associated G are recursive in 00. Moreover, when we meet
De;i we also decide which clause in the de�nition is satis�ed. To decide if j 2 (G� Ci)

0,
i.e. if �G�Cij (j) # we recursively �nd the e such that Se;i = fpjp �G�Cij (j) #g. Then, as
in the proof of Proposition

ngenericlowng
6.2.17, j 2 (G � Ci)

0 if and only if at the stage we met De;i

we met Se;i.

Notes: Forcing in arithmetic was introduced in Feferman [1965]. It has since been
used in various formulations by many people. Hinman [1969] introduced a version of
n-genericity. Two important early papers applying forcing to degree theory are Jockusch
and Posner [1978] and Jockusch [1980] in which many of the results of this section appear
for the special but typical case of Cohen forcing. A systematic development of degree
theory based on forcing was �rst presented in Lerman [1983]. Our approach attempts
to both simplify and generalize previous versions. A similar version is in Cai and Shore
[2012].
Give speci�c references for speci�c theorems and exercises??

6.3. EMBEDDING LATTICES 63

6.3 Embedding Latticeslatembsec

We have so far studied questions of embedding countable partial orders (and usl�s) in
D which is itself an usl. Now we know that D is not a lattice (Corollary

notlattice
5.2.18) but

we also know that some pairs of degrees do have greatest lower bounds in D (Theorem
minpair
5.2.9). Thus we can ask which lattices can be embedded in D preserving the full lattice
structure. We now prove that every countable lattice can be embedded in D.

latemb Theorem 6.3.1 (Lattice Embedding Theorem) Every countable lattice L is embed-
dable in D preserving the lattice structure.

For later convenience, we actually want to prove an a priori stronger statement about
partial lattices.

De�nition 6.3.2 A partial lattice L is a partial order �L on its domain L together with
partial functions ^(meet) and _ (join) which satisfy the usual de�nitions when de�ned,
i.e. if x ^ y = z then z is the greatest lower bound of x and y in �L; if x _ y = z then
z is the least upper bound of x and y in �L. We say that L is recursive (in A) if L and
�L are recursive (in A) and _ and ^ are partial recursive (in A) functions on L.

Now, actually every partial lattice can be embedded into a lattice.

extparlat Theorem 6.3.3 If L is a partial lattice with least element 0 and greatest element 1 then
there is a lattice L̂ and an embedding f : L ! L̂ which preserves 0, 1, order and all meets
and joins that are de�ned in _L.

Proof. Consider the lattice I of nonempty ideals of L, i.e. nonempty subsets I of L
closed downward and under join in L (when de�ned). The ordering on I is given by set
inclusion. Meet is set intersection and the join of I1 and I2 is the smallest ideal containing
both of them. The map that sends x 2 L to Ix = fy 2 Ljy �L xg, the principle ideal
generated by x, is easily seen to be the desired embedding into the sublattice L̂ of I
generated by the principle ideals.

fingenparlat Corollary 6.3.4 If L is �nitely generated as a partial lattice, then the L̂ of Theorem
extparlat
6.3.3 may be taken to be �nitely generated as a lattice, indeed it is generated by the
images of the generators of L under f .

Proof. Consider the L̂ provided by Theorem
extparlat
6.3.3. The sublattice L0 of L̂ generated (as

a lattice) by the image under f of the generators of L is a �nitely generated lattice into
which f also gives an embedding.
Extending partial lattices to lattices is not necessarily e¤ective.

paul Exercise 6.3.5 There is a recursive partial lattice L which cannot be recursively embed-
ded in a recursive lattice. Hint:??(Paul Shafer).??

64 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

Exercise 6.3.6 ??Put in e¤ective embeddings of p.o. and usl... all the way into Boolean
algebras where do p.o. and usl embeddings?? Move to appendix??

Thus as far as a simple embedding theorem is concerned, it may seem that there is no
reason to use partial lattices but both e¤ectiveness considerations and convenience come
into play. It is certainly often more convenient to specify a partial lattice than to decide
all the meets and joins. Thus we state our theorem for partial lattices.

parlatemb Theorem 6.3.7 (Partial Lattice Embedding) If L is a partial lattice recursive in
A with least element 0 and greatest element 1 then there is an embedding f : L ! D
which preserves order and all meets and joins that are de�ned in L. Moreover, we may
guarantee that f(0) = a �T f(1) �T a00 and that, for x 2 L, f(x) is uniformly recursive
in f(1), in the sense that we have sets Gx of degree f(x) which are uniformly recursive
in f(1).

To prove Theorem
parlatemb
6.3.7, we need some lattice theory. In particular, we use a type of

lattice representations called lattice tables.

latrep De�nition 6.3.8 A lattice table for the partial lattice L is a collection, �, of maps
� : L! N such that for every x; y 2 L and �; � 2 �

1. �(0) = 0.

2. If x �L y and �(y) = �(y) then �(x) = �(x).

3. If x �L y then there are �; � 2 � such that �(y) = �(y) but �(x) 6= �(x).

4. If x _ y = z, �(x) = �(x) and �(y) = �(y) then �(z) = �(z).

5. If x ^ y = z and �(z) = �(z) then there are 1; 2; 3 2 � such that �(x) = 1(x),
1(y) = 2(y), 2(x) = 3(x), 3(y) = �(y). Such i are called interpolants for �
and � (with respect to x, y and z).

The representation of lattices by lattice tables is closely related to the more standard
(in lattice theory) representation by equivalence relations.

eqrels De�nition 6.3.9 We de�ne equivalence relations on � for each x 2 L by � �x � if and
only if �(x) = �(x). For sequences p, q from � of length n and x 2 L, we say p �x q if
p(k) �x q(k) for every k < n. We also write, for example, p �x;y q to mean that p �x q
and p �y q. For g 2 �!, we write p �x g or p �x;y g to mean that p �x g � jpj or
p �x;y g � jpj, respectively.

ordeqrel De�nition 6.3.10 For arbitrary equivalences relation E, Ê on a set S, we say E is
larger or coarser than Ê if (8a; b 2 S)(a �Ê b) a �E b). Similarly, E is �ner or
smaller than Ê if (8a; b 2 S)(a �E b) a �Ê b).

6.3. EMBEDDING LATTICES 65

lateqrel Remark 6.3.11 With this ordering on equivalence relations (on S), the join of E and
Ê is simply their intersection. Their meet is the smallest equivalence class on S that
contains their union. This is also the transitive closure of their union under the two
relations.

The conditions of De�nition
latrep
6.3.8 can now be restated in terms of these equivalence

relations:

1. � �0 � for all � and � and so �0 is the largest congruence class, i.e. the one
identifying all elements. At the other end, �1is the smallest congruence relation,
indeed, it agrees with equality: By De�nition

latrep
6.3.8(1), �(1) uniquely determines

each � 2 �.

2. If x � y then � �y � implies � �x � for all � and � and so �x is larger than �y.

3. If x �L y then there are � and � such that � �y � but � 6�x � and so �x is not
larger than �y.

4. If x _ y = z and � �x � and � �y � then � �z � and so �z is the meet of �x and
�y.

5. If x ^ y = z then there are 1; 2; 3 2 � such that � �x 1 �y 2 �x 3 �y �.
So �z is certainly contained in the join of �x and �y. It is part of the theorem
that we can arrange it so that chains of length three su¢ ce to generate the entire
transitive closure.

Thus a lattice table � produces a representation by equivalence relations with the
dual ordering. A reason for reversing the order is that D is only an uppersemilattice. So
joins always exist and we want them to correspond to the simple operation on equivalence
relations of intersection. On the other hand, meets do not always exist and they then
correspond to join on equivalence relations which requires work to construct.
We now prove our representation theorem in terms of lattice tables.

repthm1 Theorem 6.3.12 (Representation Theorem) If L is a recursive (in A) partial lattice
with 0; 1 then there is a uniformly recursive (in A) lattice table � for L.

Proof. De�ne �x;i for x; y 2 L, i = 0; 1 by

�x;0(y) =

(
hx; 0i if y 6= 0
0 if y = 0

�x;1(y) =

(
�x;0(y) if y �L x
hx; 1i if y �L x

The set of these �x;i satisfy (1), (2), (3) and (4). We now want to sequentially close o¤
under adding interpolants as required in (5) for each relevant instance. To do so, we have
some dovetailing procedure which does the following. Consider x^y = z and � �z �. We

66 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

want to add 1; 2; 3 as required in (5) and preserve the truth of (1)-(4) in the expanded
set. If x �L y or y �L x, it is easy to do so just using � and �. If not (i.e. x �L y and
y �L x), then choose new numbers a; b; c; d not used yet and for w 2 L let

1(w) =

(
�(s) if w �L x
a if w �L x

2(w) =

8><>:
1(w) if w �L y
b if w �L x and w �L y
c otherwise

3(w) =

8><>:
�(w) if w �L y
a if w �L x and w �L y
d otherwise

This is a recursive (in A) procedure and it is an Exercise to check that it works.

Exercise 6.3.13 The construction given above provides a lattice table for L.

We now turn to the proof of our embedding theorem for partial latices.

Proof (of Theorem
parlatemb
6.3.7). We assume that A and so L are recursive to simplify the

notation. (Otherwise we just need to add on A to all our sets and procedures. We do
this explicitly once or twice as a reminder.) We begin, then, with a recursive lattice table
� for L. We de�ne a notion of forcing P with elements p 2 �<!, the natural ordering
p �P q if p � q and V (p) = p. Our generics are then maps G : N!L. De�ne, for x 2 L,
Gx : N ! N by Gx(n) = G(n)(x). The desired embedding f is given by x 7! deg(Gx)
(or, in general, x 7! deg(Gx) _ a).
We show that all the requirements for this map to be an embedding except for the

preservation of ^ are satis�ed if G is 1-generic. Our proof here of the preservation of ^
uses 2-genericity of G. We follow the numbering of clauses in De�nition

latrep
6.3.8.

1. By de�nition, 0 is preserved by our embedding as G0(n) = 0 for all n and so f(0) =
0. As for f(1), note that G1 �T G: Given n, G1(n) = G(n)(1) so G1 �T G(�A).
For the other direction, given G1(n) we already pointed out that there is only one
� 2 � such that �(1) = G1(n) and we can �nd this �, which is by de�nition G(n),
recursively. Thus f(1) = g.

2. Suppose x �L y. We must show that Gx �T Gy. Given n, we want to compute
Gx(n) = G(n)(x). Find any � 2 � such that �(y) = Gy(n). One exists because
G(n) is one such. As � is uniformly recursive we can search for and �nd one
recursively in Gy. Then since x �L y and G(n) �y �, by De�nition

latrep
6.3.8(2) we

have that G(n) �x � so G(n)(x) = �(x) = Gx(n).

4 Suppose x _ y = z. We must show that Gz �T Gx � Gy. By the preservation of
order, Gz �T Gx �Gy, so it su¢ ces to compute Gz(n) = G(n)(z) from Gx(n) and
Gy(n). We search for an � 2 � such that �(x) = G(n)(x) and �(y) = G(n)(y), i.e.
� �x;y G(n). There is one and we can �nd it recursively in Gx�Gy as above. Now
as � �x;y G(n), � �z G(n) by De�nition

latrep
6.3.8(3), so �(z) = G(n)(z).

Until this point, we have not actually used any genericity beyond the requirements
imposed by De�nition

forcing2
6.1.12. We now turn to nonorder and meet.

6.3. EMBEDDING LATTICES 67

3 Suppose x � y. We want to prove that �Gye 6= Gx for every e. Suppose now that G
is 1-generic (over A) and consider the �1 sets

Se = fp 2 �<! : p (9n)[�Gye (n) #6= Gx(n)]g

The 1-genericity of G implies that there is a p 2 G \ Se or there is a p 2 G no
extension of which is in Se. Suppose p 2 G \ Se, then �Gye (n) 6= Gx(n) and we
are done. Otherwise, no extension of p is in Se. Suppose then, for the sake of a
contradiction, that �Gye = Gx. Let � and � be as in De�nition

latrep
6.3.8(3) for x and

y. As the recursive sets Dn = fpj9m > n(p(m) = �g are clearly dense below p, the
1-genericity of G guarantees that there is a q � p and an m > jpj with q(m) = �

and q 2 G (Exercise
ngenmeetdense
6.2.11). Moreover as �Gye (m) # , we may choose q so that

q �Gye (m) #. Consider now the condition q̂ such that q̂(k) = q(k) for k 6= m and
q̂(m) = �. Our choice of �, � and q guarantees that q̂ � p, q �y q̂ and q 6�x q̂.
Thus q �Gye (m) #= i and q̂ �Gye (m) #= i for some i but qx(m) 6= q̂x(m). So one
of q and q̂ is in Se by de�nition for the desired contradiction.

5 Suppose that x^y = z and �Gxe = �
Gy
e = D. We want to prove thatD �T Gz. Now

the assertion that �Gxe and �Gye are total and equal is �2. By the 2-genericity (over
A) of G and Theorem

for=t
6.2.15, there is a p 2 G such that p forces this sentence. Thus

for each n and q � p, there is an r � q and an i such that r �Gxe (n) = i = �
Gy
e (n).

We now wish to compute D(n) from Gz. As above, we can recursively in Gz �nd a
q � p and an i such that q �Gxe (n) = i = �

Gy
e (n) and qz � Gz (since some initial

segment of G does this with i = �Gxe (n) = D(n)).

We claim that i = D(n). To see this consider a t 2 G such that t � p, jtj � jqj and
t �Gxe (n) #= �

Gy
e (n) #. Necessarily, �txe (n) #= �

ty
e (n) #= D(n). By extending q

to agree with t on [jqj; jtj) j if jtj > jq we may assume that jtj = jq = m and so
t �z q. Let l = jpj. We now use both the interpolants guaranteed by De�nition
latrep
6.3.8(5) and the fact that p forces �Gxe and �Gye to be total and equal.

For each k with l � k < m we choose interpolants k;i (for i 2 f1; 2; 3g) between
q(k) and t(k) as in De�nition

latrep
6.3.8(5). We let qi(k) = p(k) = t(k) for k < l and

qi(k) = k;i for l � k < m. We also let q0 = q and q4 = t. So q = q0 �x q1 �y
q2 �x q3 �y q4 = t. We now extend the qi in turn to make them force convergence
at n but remain congruent modulo z. In fact, we make a single extension for all of
them. By the fact that p (�Gxe = �

Gy
e and both are total) and q1 � p, we can �nd

an s1 such that q1^s1 �Gxe (n) #= �
Gy
e (n) #. We now, similarly, extend q2^s1 to

q2^s1^s2 such that q2^s1^s2 �Gxe (n) #= �
Gy
e (n) #. Finally we extend q3^s1^s2 to

q3^s1^s2^s3 �Gxe (n) #= �
Gy
e (n) #. Let s = s1^s2^s3 and consider qi^s for i � 4.

Looking at each successive pair we see, by the alternating (between x and y) con-
gruences among the qi, that they all force the same equal values for �Gxe (n) and
�
Gy
e (n). (This follows from the transitivity of equality and preservation of either
computations (use property from §

codeTM
2.1) or forcing (Exercise

ext
6.2.8) under extensions.)

68 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

Thus the �rst value, i, given by q and q0 is equal to the last value, D(n), given by
t and q4, as required.

By Theorem
compfor
6.2.6, there is a 2-generic G �T 000 (A00). As G(�A)�T G1(�A), we have

that f(1) � 000 (a00) as required.
We can now disprove the homogeneity conjecture for D0 = hD;�T ;0 i. This conjecture,

like the analogous one for D, was based on the empirical fact that every theorem about
the degrees or the degrees with the jump operator relativizes and so if true in D (or D0)
then it is true in D(� c) or D0(� c) for every c. The conjectures asserted then that
D �= D(�c) and even that D0 �= D0(�c) for every degree c.

jhomc Theorem 6.3.14 There is c such that [0;000] � [c; c00] and so (D;�;0) � (D(� c);�;0),
i.e. The homogeneity conjecture for D0 fails.

Proof. If not, then [0;000] �= [c; c00] for every c. To �nd a contradiction, it is su¢ cient
(by Theorem

parlatemb
6.3.7) to �nd a partial lattice recursive in c which cannot be embedded in

[0;000].
Now it is a fact of lattice theory that there are continuum many �nitely generated

lattices, indeed ones with only four generators. We supply such lattices with seven
generators in the next section. On the other hand, only countably many �nitely generated
lattices can be embedded (as lattices) in [0;000] since the lattice embedded is determined
by the image of its generators. Thus we may choose a lattice L which is �nitely generated
but not embeddable in [0;000]. L has some degree, say c. By Theorem

parlatemb
6.3.7, L is

embeddable in [c; c00]. Thus [0;000] � [c; c00] as required.
We will produce speci�c such degrees c in the next section and more examples will

be provided in later Chapters.
Our usual question now is can we improve the complexity bound on the (top of

the) embedding in Theorem
parlatemb
6.3.7. In particular, we might want the f(1) � a0 or even

f(1)0 = a0. Such improvements would also improve Theorem
jhomc
6.3.14 by replacing c00 by

c0. As was often the case in the constructions of Chapter
embeddings
5, we can do this in two ways.

The �rst asks for new dense sets (corresponding to new requirements) to add to those
for 1-genericity that force us to preserve meets but can be meet recursively in 00. The
second method says we should show, by some more clever argument, that the dense sets
(requirements) for 1-genericity actually su¢ ce to preserve meets as well.
For the �rst method, note that making the dense sets that force the preservation of

meets to be uniformly recursive in 00 su¢ ces get a generic G with (P �G)
0 �T G� P

0
.

(Here we use Propositions
meetdense
6.1.25 and

ngenericlowng
6.2.17.)

latemb0� Theorem 6.3.15 If L is a partial lattice with 0 and 1 recursive in A, then there is an
embedding f : L !D[a; a0] with f(0) = a and f(1)0 = a0. Moreover, for x 2 L, f(x) is
uniformly recursive in f(1).

6.3. EMBEDDING LATTICES 69

Proof. Again we consider the case that A �T 0 and so we have a recursive lattice table
� for L. We use the same notion of forcing and the same de�nition of our embedding
as in Theorem

parlatemb
6.3.7. We consider any 1-generic G which meets (in addition to the Cn

of Proposition
ngenericdense
6.2.10 that guarantee 1-genericity) some new dense sets De. Now all the

conditions, other than the preservation of meets, required to make f an embedding hold
by the proof of Theorem

parlatemb
6.3.7 and the 1-genericity of G. By our remarks before the

statement of the Theorem, it su¢ ces to show that the De are uniformly recursive in 00
and guarantee the preservation of meets.
For e 2 N and x ^ y = z in L, we de�ne the new dense sets as follows:

De;x;y = fpjp 9n(�Gxe (n) #6= �Gxe (n)) or
(9n < jpj)(8q � p)(q 1 �Gxe (n) #) or (9n < jpj)(8q � p)(q 1 �Gye (n) #) or
(8r; s � p)(8n)(8i; j)(s �z r & s �Gxe (n) #= i & r �Gye (n) #= j ! i = jg.

As the �rst clause in the de�nition of De;x;y is �1 and the others are �1, these sets
are clearly uniformly recursive in 00. The argument that meeting the De;x;y guarantees
the preservation of meets is much as before but simpler. Suppose �Gxe = �Gxe and both
are total. Thus there is no p 2 G satisfying any of the �rst three clauses in the de�nition
of De;x;y. So we may suppose that there is one satisfying the fourth clause. We now
claim that we can compute �Gxe = �Gxe recursively in Gz: For any n �nd a q � p such
that q �z G and q �Gxe (n) #= i. (There is one as before.) We claim that �Gye (n) = i.
Again the point is that there is an r 2 G and an j such that r �

Gy
e (n) #= j and,

of course, j = �
Gy
e (n). We may, as above, assume that jqj = jrj by lengthening one if

necessary without changing the output of the forced computations. The fourth clause of
the de�nition of De;x;y now guarantees that i = j as required.
All that remains is to prove that the De;x;y are dense. Again, we can extract the proof

from that of the previous Theorem. Given any p ask if there is a q � p satisfying the
fourth clause of the de�nition of De;x;y. If so, we are done. If not, then for every q � p
there are r; s � q, n, i and j witnessing its failure, i.e. s �z r & s �Gxe (n) #= i & r
�
Gy
e (n) #= j but i 6= j. (Note that, by our conventions on congruences and forcing
convergence, n < jrj = jsj.) Now follow the construction above to interpolate k;i (for
i 2 f1; 2; 3g) between r(k) and s(k) and get qi for i � 4 starting with r, ending with s, all
agreeing on jpj and congruent modulo z. Attempt the extension procedure used above to
get s1, s2, s3. If at some point we are unable to �nd the next sk to force convergence at
n, then we have a condition extending p such that no extension forces convergence at n,
i.e. an extension of p satisfying the second or third clause in the de�nition of De;x;y. If we
can �nd all the desired extensions, we argue much as before that one of the qi^s1^s2^s3
satis�es the �rst clause of the de�nition of De;x;y as required.
We now give the proof which shows that 1-genericity actually su¢ ces to guarantee

the embedding preserves meets.

70 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

emb<1gen Theorem 6.3.16 Given a recursive (in A) partial lattice L and any G 1-generic (over
A) for the notion of forcing P of the proof of Theorem

parlatemb
6.3.7 the map from L to the

degrees below that of G(�A) given by x 7�! deg(Gx)(_a) is a partial lattice embedding.
More speci�cally, G(�A) �T G1(�A) whose degree is the top of the embedding is low
(over A), i.e. f(1)0 = a0.

Proof. Again we assume for convenience that A �T 0. We use the same forcing as in
Theorem

parlatemb
6.3.7, assume G is 1-generic and only have to show that meets are preserved.

Suppose that x ^ y = z and �Gxe = �
Gy
e = D. Consider the �1 sets

Te = ftjt 9n(�Gxe (n) #6= �Gye (n) #)g

and

Se;t = fs : s ? t or (s � t & 9n; i; j9q; s0; s2; r � t(q �x s0 �y s �x s2 �y r
& q �Gxe (n) #= i & r�Gye (n) #= j & i 6= j))g.

By our assumptions there is no t � G with t 2 Te so let t � G be such that
(8p � t)(p =2 Te) and consider Se;t. We �rst claim that no s � G can be in Se;t. Of course,
no s � G can be incompatible with t � G. So the only way we can have s 2 Se;t is if
s � t and we have n; i; j; q; s0; s2 and r as in the de�nition of Se;t. By our assumption that
�Gxe = �

Gy
e = D, we may extend s to ŝ � G such that ŝ �Gxe (n) #= �

Gy
e (n) #= D(n).

we may then extend q; s0; s2 and r by the string � such that s^� = ŝ to get q̂; ŝ0; ŝ2
and r̂ which also witness that ŝ 2 Se;t. By the de�nition of ŝ 2 Se;t, either i 6= D(n)
or j 6= D(n). Suppose i 6= D(n). As q �x s0, s0 �Gxe (n) #= i but as s0 �y s,
s0 �Gye (n) #= D(n) and so s0 2 Te while s0 � t for a contradiction. The argument for
j 6= D(n) is similar.
Thus there is an r̂ � G with no extension in Se;t. In particular every extension of r̂

is compatible with t and so r̂ � t, i.e. r̂ � t. We now claim that for any q � r̂ with
q �z G such that q �Gxe (n) #= �

Gy
e (n) #= i, i = D(n) and so D �T Gz as required.

If not consider a counterexample q. Let v be such that r=r̂^v = q so q �z r and both
extend r̂. Choose interpolants s0;; s; s2 between q and r; i.e. q �x s0 �y s �x s2 �y r
with all extending r̂. These conditions now provide witnesses that s 2 Se;t for the desired
contradiction as s � r̂.

jhomc0� Corollary 6.3.17 There is c such that [0;00] � [c; c0].

latemb0�pr1 Exercise 6.3.18 If L is a recursive lattice with 0 and 1 then it can be embedded into
D(� g) preserving both 0 and 1 for any Cohen 1-generic g. (Recall Exercise

cohenvar
6.2.12.)

We close this section with noting that not all constructions that can be done by adding
on dense sets recursive in 00 to the ones for 1-genericity can be replaced by showing that
1genericity for the original forcing su¢ ced and investigating some variants of n-genericity
suggested by the argument for Theorem

emb<1gen
6.3.16.

6.3. EMBEDDING LATTICES 71

Exercise 6.3.19 If H �T 00 is 1-generic, then there is a uniformly recursive in 00 se-
quence De of dense sets (also for Cohen forcing) such that H does not meet all the De.
Indeed, if G meets all the De then H �T G.

De�nition 6.3.20 Given a notion of forcing P and an n � 1, a �lter G or descending
sequence in P is weakly n-generic if it meets every dense �Pn subset D of P. The asso-
ciated generic G is then also P weakly n-generic. A degree g is P weakly n-generic if it
contains a P is weakly n-generic G.

In the following Exercises, if no other notion of forcing is mentioned, Cohen forcing
is intended.

Exercise 6.3.21 For any P, every weakly (n+1)-generic G or g is n-generic and every
n-generic G or g is weakly (n � 1)-generic. (For convenience we take weakly 0-generic
to mean that it meets every recursive dense set)

Exercise 6.3.22 For any P and weakly (n+1)-generic G, if X �T P(n); G then X �T 0.

Exercise 6.3.23 There is a weakly (n+ 1)-generic g which is not (n+ 1)-generic.

Exercise 6.3.24 There is an (n+ 1)-generic g which is not weakly (n+ 2)-generic.

Thus the classes of weakly n-generic and n-generic degrees g form a strictly descending
hierarchy of degree classes as n increases (with the n-generic degrees properly containing
the weakly (n+ 1)-generic degrees).
Notes: Representations by equivalence relations is an old subject in lattice theory.

In degree theory they were �rst used to embed all �nite lattices in D and certain special
lattices as initial segments of D by Thomason [1970]. The version used here in terms of
tables is particularly suited to degree theory and was introduced in Lerman [1971] and
extensively presented in his [1983]. Their use to embed lattices not as initial segments
appears in Shore [1982] where it is used to prove Theorems

latemb
6.3.1,

parlatemb
6.3.7,

jhomc
6.3.14, Corollary

jhomc0�
6.3.17 and

latemb0�
6.3.15 as well as Exercise

latemb0�
6.3.15 and various strengthenings of Theorem

jhomc
6.3.14

such as Corollary
jhomc0�
6.3.17. The �rst proof of Theorem

jhomc
6.3.14 and so the failure of the ho-

mogeneity conjecture for D0 is due to Feiner [1970] but it depended on the construction
of �1 but not recursively presented Boolean algebras and known, but much more com-
plicated, embeddings of lattices as initial segments of D. Theorem

emb<1gen
6.3.16 and Exercise

latemb0�pr1
6.3.18 come from Greenberg and Montalbán [2003]. The notion of weakly n-generics and
the Exercises about them are from Kurtz [1983]. ??Exercise

paul
6.3.5 due to Paul Shafer

(personal communication).??

72 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

6.4 E¤ective Successor StructuresESS

For later applications, we would like to have a speci�c family of size 2@0 of �nitely
generated partial lattices that code arbitrary sets S in a relatively simple way and can be
embedded below various degrees related to S in ways that we specify later. By Corollary
extparlat
6.3.3, this will also supply the 2@0 many �nitely generated lattices required for the proof
of the failure of the homogeneity conjecture for the degrees with the jump operator
(Theorem

jhomc
6.3.14).

We begin our description of the desired partial lattices with ones that are e¤ective
successor structures.

ess De�nition 6.4.1 An e¤ective successor structure (ess) is a partial lattice with constant
symbols e0; e1; d0; f0; f1 generated by the corresponding elements and containing pairwise
incomparable elements dn such that, for each n � 0,

(d2n _ e0) ^ f1 = d2n+1 and (d2n+1 _ e1) ^ f0 = d2n+2.

codeSrp De�nition 6.4.2 If L is an ess and g0; g1 2 L̂ a partial lattice extension of L, we say that
g0; g1 roughly code the set S = fnjdn � g0; g1g in L̂. We say that g0; g1 precisely code
the set S if, in addition, g0; g1 form an exact pair for the ideal generated by fdnjn 2 Sg,
i.e. every x � g0; g1 is below a �nite join of some of the dn.

It is clear that given a set S there is an ess L and an extension LS of L generated (over
L) by by two additional elements g0; g1 that precisely code S. (If this is not clear now, it
will be when we consider the subclass of e¤ective successor structures given in De�nition
ness
6.4.3 and Remark

dnindep
6.4.4.) Thus the class of structures LS provides us with continuum

many di¤erent �nitely generated partial lattices (and so lattices as well). Moreover,
we have represented an arbitrary set S by a �nitely generated partial lattice LS in a
reasonably simple way. For later applications we now analyze the relations between the
complexities of S and LS and so of their embeddings in D. To make these relations as
simple as possible we want to impose some additional conditions on our partial lattices
and relax our notion of coding a set S.

ness De�nition 6.4.3 A nice e¤ective successor structure (ness) is a partial lattice extension
of an ess containing various new elements and constants naming them: a, naming its
greatest element, b, naming its least element, as well as c0; c1 and d̂n for each n 2 ! such
that c0 � c1 and (8n 2 !)(dn _ c0 � c1 & dn ^ d̂n = b & (8m 6= n)(d̂n � dm).

dnindep Remark 6.4.4 In any ness L � D the degrees dn (denoted by the constants dn) are
independent: no �nite join x of dm�s for m 6= n can be above dn (denoted by d̂n) as
x � d̂n while dn ^ d̂n = b (denoted by b) implies that dn � dn. Thus, for any set S, L
can be extended to an LS � D by adding on an exact pair g0;g1 for the ideal generated
by the dn for n 2 S so that S is precisely coded by g0;g1 in LS.

6.4. EFFECTIVE SUCCESSOR STRUCTURES 73

We now want to analyze the complexity of sets coded in a related manner in such
substructures of D. As ^ on degrees is more complicated than � or _, our �rst goal is to
eliminate the use of ^ (in de�ning the dn from the generators) in favor of an approximation
in terms of just � and _ which will be su¢ cient to code a set S. Moreover, as the use
of � also increases the complexity of formulas in D, we do not want to use it either. We
provide such an approximation 'n(x) to dn in an arbitrary ness.

De�nition 6.4.5 A formula � of a language F is positive �1 if it is built from the atomic
formulas of F using only conjunction, disjunction and existential quanti�cation.

approxdn Proposition 6.4.6 If L is a ness then there is a recursive sequence 'n(x) of positive
�1 formulas in the language containing only _, � and the constants c0; c1; d0; e0; e1; f0; f1
such that the following two assertions are true in L for every n.

1. 'n(dn).

2. 8x('n(x)! b < x � dn).

Moreover, if L̂ is a partial lattice extension of L, then the same facts are true in L̂.

Proof. We de�ne 'n by recursion on n. We begin with '0(x) � x = d0. The successor
steps depend on their parity.

'2n+1(x) � x _ c0 � c1 & 9y('2n(y) & x � (y _ e0); f1).
'2n+2(x) � x _ c0 � c1 & 9y('2n+1(y) & x � (y _ e1); f0).

It is clear by induction that the 'n are positive �1 formulas with only the desired
constants. We prove the two assertions of the Proposition by induction. Both are obvious
for '0. Consider '2n+1 and the �rst assertion. By De�nition

ness
6.4.3, d2n+1 _ c0 � c1. We

claim that d2n is the desired witness y that the second clause of '2n+1(d2n+1) holds as
well: by induction '2n(d2n) and, by De�nition

ness
6.4.3, d2n+1 � (d2n _ e0); f1 as required.

Now, for the second assertion, suppose that '2n+1(x) holds. As x_c0 � c1 and c0 � c1,
b < x. Let y be the witness that the second clause of '2n+1(x) holds. Thus '2n(y) and so
by induction y � d2n. Finally, by the second clause in '2n+1, x � (d2n _ e0) ^ f1 = d2n+2
as required. The argument for '2n+2 is essentially the same.
The same arguments work in any L̂ extending L.
For later use in complexity calculations (starting with Proposition

codeSs3
6.4.9), we now

point out that we can replace all the existential quanti�ers in the 'n by bounded ones.

qtbdd Proposition 6.4.7 With the notation of Proposition
approxdn
6.4.6, if we replace all the existen-

tial quanti�ers 9y in 'n (for any n) by bounded quanti�ers 9y � a to get formulas '̂n,
then 'n(x) and '̂n(x) are equivalent in every L̂ extending L.

74 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

Proof. Fix any L̂ extending L and proceed by induction on n. The �rst formula '1 has
no quanti�ers so there is nothing to prove. For '2n+1 as we may assume that we have
replaced all the quanti�ers in '2n by bounded ones, the only quanti�er that we need to
consider is 9y in the second clause 9y('2n(y) & x � (y _ e0); f1). By Proposition

approxdn
6.4.6,

'2n(y)! y � d2n and so this clause is equivalent to (9y � a)('2n(y) & x � (y _ e0); f1).
The argument for '2n+2 just replaces 2n by 2n+ 1.
We now adjust our notion of coding a set S by using the 'n in place of the dn and

then calculate the complexity of sets coded in D.

codeS De�nition 6.4.8 If L is a ness and g0; g1 2 L̂ a partial lattice extension of L, we say
that g0; g1 code the set S = fnjL̂ � 9x('n(x) & x�g0; g1)g in L̂.

codeSs3 Proposition 6.4.9 Given a ness L � D and any degrees g0;g1, the set S coded by
g0;g1in D is �3 in A � G0 � G1 = Z 2 z and is the same set coded by g0;g1 in any
extension L̂ of L in D containing fxjx � zg. (As might be expected we are taking the
degrees denoted by the constants of the ness to have the natural names: a denotes a, b
denotes b, etc. We also follow the usual convention of naming representatives of the
degrees: A 2 a, B 2 b, etc.)

Proof. By Proposition
qtbdd
6.4.7, 'n(x) and its bounded version '̂n(x) are equivalent in any

L̂ as in our Proposition. Thus we may replace the 'n by these '̂n in the de�nition of the
set S coded by g0;g1 in L̂. As by Proposition

approxdn
6.4.6, they can hold only of x � a and all

the constants in these formulas are below z and the quanti�ers are bounded by a � z, it is
clear that the truth of the de�ning formula 9x('n(x) & x�g0; g1) for n 2 S is independent
of our choice of L̂ as long as it contains fxjx � zg. So we consider L̂ =fxjx � zg.
We can represent all the degrees below z by sets of the form �Zi and, in particular

we choose indices a, b etc. so that �Za 2 a, �Zb 2 b, etc. Conversely, every total �Zi
has degree � z. We now translate the de�ning formulas �n = 9x('̂n(x) & x�g0; g1)
that code whether n is in S into the language of Turing reducibility on sets recursive
in Z and so sentences �̂n of arithmetic. First, recall the uniform procedures for dealing
with join and changing oracles for sets recursive in Z from Examples

ujoin
2.1.10 and

utrans
2.1.11:

�Ze ��Zi = �Zp(e;i) and �
�Zi
e = �Zt(e;i). We begin our translation of the �n by choosing, for

each constant symbol v, a number v̂ such that �Zv̂ 2 v. We now replace each occurrence
of v in �n by �Zv̂ . We next inductively replace each bounded quanti�er (9y � a) (y) by
9i(�Zt(i;â) is total & (�Zt(i;â)). Then we inductively eliminate _ by replacing terms of the
form �Ze _ �Zi by �Zp(e;i). Finally, we replace all atomic formulas of the form �Ze � �Zi
or �Ze = �Zi by �

Z
e �T �Zi and �Ze �T �Zi , respectively. It is clear that the resulting

sentence �̂n (of arithmetic) is equivalent to the truth of �n in L̂. As �Zt(i;â) being total is a
�Z2 property (Example

totp2
4.4.3) while �Ze �T �Zi and �Ze �T �Zi are �Zs relations (Examplelets3

4.4.4), �̂n is �Z3 as required.

setscoded Remark 6.4.10 For any degree d and ness L contained in D(�d), if we can show that
all �D3 sets are coded in L by pairs below d, then we know that these sets are exactly

6.4. EFFECTIVE SUCCESSOR STRUCTURES 75

those which are �D3 . Similarly, if we have a ness L � L̂ � D such that, for every d 2 L̂,
every set �D3 is coded in L by a pair in L̂, then the sets so coded are precisely the sets
�D3 for any d 2 L̂.

These calculations will play a crucial role in our determination of the complexity of
the theories of D and various substructures such as the degrees below 00 as well as our
global results on de�nability and automorphisms of D and its substructures in various
?? later chapters.
We give one application now that determines speci�c counterexamples to the homo-

geneity conjecture for D0. Stronger results will be provided in ??.

jhomcc Corollary 6.4.11 The degrees below 00, [0;00], are not isomorphic to [0(5);0(6)] and so
D(�;0) � D(�0(5))(�;0).

Proof. By Theorem
latemb0�
6.3.15 or

emb<1gen
6.3.16 (relativized to 0(5)), there is a ness L and degrees

g0;g1 in [0(5);0(6)] which codes 0(5). However, by Proposition
codeSs3
6.4.9, any such substructure

in [0;00] codes a set which is �0
0
3 and so �4. Of course, 0

(5) =2 �4.

Exercise 6.4.12 Improve Corollary
jhomcc
6.4.11 by replacing [0(5);0(6)] by [0(4);0(5)]. Hint:

Code both 0(4) and its complement.

Exercise 6.4.13 Show that D(�;0) � D(�0(3))(�;0). Hint: Use the fact that Theorem
letemb1gen
?? embeds lattices recursive in A so that the top of the lattice has jump A0.

We conclude by noting that we can always restrict ourselves to coding by exact pairs
in substructures of D and so to precise coding.

codeexactp Proposition 6.4.14 If L � D is a ness, S � N and g0 and g1 are an exact pair for the
ideal generated by the dn for n 2 S, i.e. g0, g1 precisely code S, then S is the set coded
by g0 and g1 in D (and so in any L̂ � D containing the degrees below a _ g0 _ g1).

Proof. Let Ŝ be the set coded by g0, g1 in D. Clearly if n 2 S, dn � g0;g1. By
Proposition

approxdn
6.4.6, D � 'n(dn) and so by De�nition

codeS
6.4.8, n 2 Ŝ. On the other hand ,

if n 2 Ŝ, then, again by De�nition
codeS
6.4.8, there is an x � g0;g1 such that D � 'n(x).

The �rst of these facts tells us that x is below the join of �nitely many dm for m 2 S.
The second that x � dn. As the di are independent by Remark

dnindep
6.4.4, n 2 S as required.

That the same set S is coded in any L̂ � D containing the degrees below a _ g0 _ g1
follows from Proposition

codeSs3
6.4.9.

Notes: The conditions on (nice) e¤ective successor structures and their use in coding
arithmetic come from Shore [1981] as does Proposition

codeSs3
6.4.9. ??other references for some

of the development of these ideas??

76 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

Chapter 7

The Theories of D and D(� 00)

In the previous chapter, we talked about embeddability issues. We need to consider more
in order to understand the theory of the degrees. We now approach theorems which say
that the theories of (i.e. the sets of sentences true in) D and D(� 00) are as complicated
as possible. More precisely they are of the same Turing (even 1�1) degree as true second
and �rst order arithmetic, respectively. The method used is interpreting arithmetic in
the degree structures.

7.1 Interpreting Arithmeticinterp

We say that we can interpret (true �rst order) arithmetic in a structure S with parameters
�p if there are formulas 'D(x), '+(x; y; z), '�(x; y; z), '<(x; y) all with parameters �p and
one 'c(�p) such that for any �p 2 S such that S �'c(�p) the structureM(�p) with domain
D(�p) = fx 2 SjS � 'D(x)g and relations +;� and < de�ned by '+(x; y; z), '�(x; y; z),
'<(x; y), respectively, is isomorphic to true arithmetic, i.e. the natural numbers N with
relations given by +, � and < respectively and there is at least one such �p. (We are
writing the operations + and � in relational form +(x; y; z) , x + y = z and similarly
for �.) In this situation, the theory of true �rst order arithmetic, Th(N), i.e. the set
of sentences of arithmetic in this language true in N, is reducible to Th(S), the set of
sentences in the language of S true in S. Indeed, the reduction is a 1�1 reduction. More
precisely there is a recursive function T taking sentences ' of arithmetic to ones 'T of
S such that N � ', S �8�p('c(�p) ! 'T). The de�nition of T is given by induction.
Atomic formulas +(x; y; z); �(x; y; z) and x < y are taken to '+(x; y; z), '�(x; y; z),
'<(x; y), respectively. A formula of the form 9w is taken to 9w('D(w) & T) while
8w is taken to 8w('D(w) ! T). It should be clear (and, if not, routine to prove)
by induction that if M(�p) �= N then, any sentence ' (of the relational formulation of
arithmetic) is true in N if and only if 'T is true inM(�p). Thus if 'c(�p) guarantees that
M(�p) �= N, we have the desired recursive reduction from Th(N) to Th(S).
A second order structure is a two sorted structure (i.e. one with two sorts of variables

say x and X in its language and two domains U andW � 2U over which the two types of

77

78 CHAPTER 7. THE THEORIES OF D AND D(� 00)

variable range, respectively. This provides the semantics for the quanti�ers 9x; 8x; 9X;
and 8X in the obvious way). The language also has relation symbols and relations on
the �rst sort as in a standard �rst order language and structure. In addition, it has
one relation x 2 X between elements of the �rst sort and ones of the second sort that
is interpreted by true membership. We say that it is a true second order structure if
W = 2U ; i.e. the second order quanti�ers range over all subsets of the domain U of the
usual �rst order structure. It is a model of true second order of arithmetic if U = N, the
�rst order language is that of arithmetic as above and W = 2N. (Note that as with true
�rst order arithmetic there is, up to isomorphism, only one model of true second order
of arithmetic.)

We extend our notion of an interpretation of arithmetic to second order structures
by adding a formula 'S(x; �y) which implies 'D(x). For each tuple of degrees �y, we are
thinking of 'S(x; �y) as de�ning the set of n 2 N such that 'S(dn; �y) holds for dn the
degree corresponding to the nth element of the model in the ordering given by '<, We
then translate the second order quanti�ers by replacing each atomic formula x 2 X by
'S(x; �yX), 9X by 9�yX T and 8X by 8�yX T where we are thinking of the �yX as
coding the set X. If, as before, 'c(�p) guarantees that the associated �rst order structure
is isomorphic to N and, in addition, as �y ranges over Sn (where n is the length of �y) the
sets S�y = fxj'S(x; �y)g range exactly over all subsets of D(�p) then it clear (or routine
to prove) that, for any second order sentence ' of arithmetic, ' is satis�ed in the true
second order model of arithmetic if and only if S � 'c(�p) ! 'T . In this case we again
have a recursive reduction: a sentence of second order arithmetic is �true�, i.e. satis�ed
in the model of true second order of arithmetic if an only if S �8�p('c(�p)! T).

Our goals now are to prove that there are interpretations of true second order arith-
metic in D and true �rst order arithmetic in D(�00). The �rst we complete in this
chapter. We actually show in the next section that we can code and quantify over all
countable relations on D in a �rst order way by quantifying over elements of D. From
this result is routine to get a coding as described here of second order arithmetic in D.
The results and analysis need for D(� 00) are mostly contained in this chapter but the
proof also requires material from the next chapter as well. In each case, the correctness
condition 'c(�p) includes the translations (via T) of the axioms of a �nite axiomatization
of arithmetic such as Robinson arithmetic that is strong enough to guarantee that any
model of the axioms in which the ordering < on its domain is isomorphic to ! is actually
isomorphic to N. The crucial steps are then to prove that there are �p such thatM(�p) �= N
and that there is a formula 'ĉ which guarantees that the ordering of M(�p) (given by
'<(�p)) is isomorphic to !.

We begin with D and coding countable subsets of pairwise incomparable degrees
by using Slaman-Woodin forcing. We then show how to deal with arbitrary countable
relations on degrees.

7.2. SLAMAN-WOODIN FORCING AND TH(D) 79

7.2 Slaman-Woodin Forcing and Th(D)
Let S = fciji 2 Ng be a countable set of pairwise incomparable degrees. We want to
make S de�nable in D from three parameters c, g0 and g1. The de�nition is that S is
the set of minimal degrees x � c such that (x _ g0) ^ (x _ g1) 6= x in the strong sense
that there is a d � x _ g0;x _ g1 such that d � x.

sw Theorem 7.2.1 For any set S = fC0; C1; : : :g of pairwise Turing incomparable subsets
of N let C = �Ci. There are then G0, G1 and Di such that, for every i 2 N and
j < 2, Di �T Ci �Gj while Di �T Ci. Moreover, the Ci are minimal with this property
among sets recursive in C in the sense that for any X �T C for which there is a D
such that D �T X � Gj (j < 2) but D �T X there is an i such that Ci �T X. Indeed,
there is a notion of forcing P recursive in C such that any 2-generic computes such G0
and G1. Thus for ci; c and g0;g1 the degrees of Ci, C, G0 and G1 respectively, the set
S = fciji 2 Ng is de�nable in D from the three parameters c, g0 and g1.

Proof. Without loss of generality we may assume that each Ci is recursive in any of
its in�nite subsets: simply replace Ci by the set of binary stings � such that � � Ci.
The point of this assumption is that to compute Ci from some X it su¢ ces to show that
X can enumerate an in�nite subset of Ci as then there is an in�nite subset of this set
recursive in X and so then is Ci.
We build Gi as required by forcing in such a way as to uniformly de�ne the Di from

G0 and Ci and such that Di is also recursive in G1 � Ci (although not uniformly). We
begin with the coding scheme that says how we compute the Di.
Let fci;0; ci;1; : : :g list Ci in increasing order. Our plan is that Di(n) should be G0(ci;n)

and so the Di are uniformly recursive in G0 � Ci. We call hi; ki a coding location for Ci
if k 2 Ci. To make sure that Di �T G1�Ci as well, we guarantee that G[i]0 (cn) = G

[i]
1 (cn)

for all but �nitely many n. We now turn to our notion of forcing P.
The forcing conditions p are triples of the form hp0; p1; Fpi where p0; p1 2 2<!, jp0j =

jp1j, and Fp is a �nite subset of !. We let the length of condition p be jpj = jp0j = jp1j.
Re�nement is de�ned by

p � q , p0 � q0; p1 � q1; Fp � Fq; and

if i 2 Fq and jqj < hi; ci;ni � jpj then p0(hi; ci;ni) = p1(hi; ci;ni):

This is a �nite notion of forcing with extension recursive in C. The function V is de�ned
in the obvious way: V (p) = p0�p1 so our generic object de�ned from a �lter G is G0�G1
where Gk = [fpkjp 2 Gg. We use Gk in our language to mean the kth coordinate the
generic object. Note that C �T P as well (Exercise) and so n-generic for P means generic
for all �Cn sets.
Note that for any ' 2 �1, if p ' then (p0; p1; ;) ' as V (p) = V (hp0; p1; ;i. So if

q � p and q for 2 �1 then (q0; q1; FP) as well.

80 CHAPTER 7. THE THEORIES OF D AND D(� 00)

Suppose that G is 1-generic for P. It is immediate from the de�nition of �P and the
density of the recursive (in P) sets fpji 2 Fpg that G[i]0 and G

[i]
1 di¤er on at most �nitely

many n 2 Ci. (If i 2 Fp and p 2 G then G[i]0 (m) = G
[i]
1 (m) for m 2 Ci and m > jpj.)

Thus Di �T G1 � Ci as required.
We next show that Di �T Ci, that is �Cie 6= Di for each e. Suppose for the sake of a

contradiction that Di = �
Ci
e for some e (and so in particular �Cie is total). Consider the

�C1 set
Si;e = fp : 9m(p0(hi; ci;mi) 6= �Cie (m))g.

The Si;e are dense because if p 2 P and m is such that hi; ci;mi > jpj then we can de�ne
q � p by Fq = Fp and for jpj � j � hi; ci;mi put q0(j) = q1(j) = 1� �Cie (m). So q 2 Si;e
and q � p as desired. Thus, there is a p 2 G \ Si;e for which

Di(m) = G0(hi; ci;mi) = p0(hi; ci;mi) 6= �Cie (m);

contradicting Di = �
Ci
e .

Now, we have to ensure the minimality of the Ci. In other words, we want to prove
that if

�X�G0e = �X�G1i = D; X �T C and D �T X

then Ck �T X for some k.
Consider the sentence ' that says that �X�G0e and �X�G1i are total and equal. It is

�2 in C (because X �T C) and true of G = G0 � G1. So, if we now assume that G
is 2-generic, there is p 2 G such that p '. Suppose �rst that :9n(9� � p0)(9� �
p0)[�

X��
e (n) #6= �X��e (n) #]. Then we claim D is computable from X. To compute D(n)

search for any � � p0 such that �X��e (n) # and output this value as the answer. There
is such a � � G0 by the totality of �X�G0e . Our assumption that there is no pair of
extensions of p0 that give two di¤erent answers implies that any such � gives the answer
�X�G0e (n) = D(n).
On the other hand, suppose there is such a splitting for n given by p0^�, p0^� . By

extending one of � and � if necessary, we may assume that j�j = j� j. We claim that p0^�
and p0^� di¤er at a coding location hk; ck;mi for some k 2 Fp. Let � 0 be such that

�
X�(p1^�^� 0)
i (n) #= �X�(p0^�^� 0)e (n) # :

There must be such a � 0 as (p0^� ; p1^� ; Fp) � p and so it has a further extension
q = (p0^�^�0; p1^�^�1; Fp) which forces �

X�G0
e (n) #= �X�G1i (n) #. Next consider

q̂ = (p0^�^�0; p1^�^�0; Fp) � p. It also has an extension (p0^�^�0^�0; p1^�^�0^�1; Fp)
�X�G0e (n) #= �X�G1i (n) #. It is now clear that � 0 = �0^�1 has the desired property.
Next, consider the condition q = (p0^�^� 0; p1^�^� 0; Fp). Notice that q � p because:

1. �X�(p0^�)e (n) = �
X�(p0^�^� 0)
e (n) as p0^�^� 0 � p0^�.

2. �X�(p1^�^�
0)

i (n) = �
X�(p0^�)
e (n) by our choice of � 0, but

7.2. SLAMAN-WOODIN FORCING AND TH(D) 81

3. �X�(p0^�)e (n) 6= �X�(p0^�)e (n) because n; p0^�; p0^� were chosen to be splitting.

Hence, �X�(p0^�^�
0)

e (n) 6= �
X�(p1^�^� 0)
i (n) and so q does not extend p. However,

p0^�^�
0 � p0 and p1^�^�

0 � p1, so it must be that p0^�^� 0 and p1^� ^�
0 di¤er at a

coding location above jpj. Therefore, p0^� and p0^� di¤er at a coding location hk; ni
with k 2 Fp.
We now show that there must be such p0^� and p0^� which di¤er at only one number

(which then must be a coding location hk; ni for some k 2 Fp). Suppose �; � are strings
as above with j�j = j� j = `. Let � = 00;

0
1; : : : ;

0
z = � be a list of strings in f0; 1g` such

that 0i ;
0
i+1 di¤er at only one number for each i. Let � be such that �

X�(p0^01^�)
e (n) #

(such a � exists by the same argument as before). Set 1i = 0i ^� for each 0 � i � z.

Repeat this process for each j � z. At step j + 1, let � be such that �
X�(p0^jj+1^�)
e (n) #,

and set j+1i = ji^� for each 0 � i � z. At the end, we have strings z0;
z
1; : : : ;

z
z such

that �X�(p0^
z
i)

e (n) # for each i, and p0^zi ; p0^zi+1 di¤er at only one number for each i.
Since

�X�(p0^
z
0)

e (n) = �X�(p0^�)e (n) 6= �X�(p0^�)e (n) = �X�(p0^
z
z)

e (n);

there must be an i for which �X�(p0^
z
i)

e (n) 6= �X�(p0^
z
i+1)

e (n). The strings p0^zi ; p0^
z
i+1

di¤er at only one number and it must be a coding location hk;mi for some k 2 Fp as
required.
Next, we show that X can �nd in�nitely many coding locations hk;mi for some �xed

k 2 Fp. Suppose we want to �nd such a location hk;mi with m > M . Search for
strings p0^� and p0^� that agree on the �rst M positions, di¤er at only one position,
and satisfy �X�(p0^�)e (n) 6= �X�(p0^�)e (n). Such strings must exist because we could have
started the above analysis at any condition q 2 G with q � p (so we can �nd such strings
agreeing on arbitrarily long initial segments). The position at which p0^� and p0^� di¤er
must be a coding location bigger than M . Since Fp is �nite, in�nitely many of these
coding locations must be for the same k. Given this k, X can �nd in�nitely many coding
locations hk; ck;mi. Hence, X can enumerate an in�nite subset of Ck and so can compute
Ck by our initial assumption on the Ci.
As 2-genericity su¢ ced for the proof of the theorem above , we can get the required

Gj �T C 00 and, indeed with (G0 � G1)
00 �T C 00. We show below (Theorem

sw0�
7.3.1 and

Exercise
sw1gen
7.3.3) that we can do better.

Now we work toward coding arbitrary countable relations on D.

joinw1gen Proposition 7.2.2 If H is Cohen 1-generic over C, then, for any i; j 2 ! and X; Y �
C, if X �H [i] � Y �H [j] then i = j and X � Y .

Proof. Suppose that for some e, X;Y �T C, �Y�H
[j]

e = X �H [i] and consider the set

Se = f� 2 2<! : 9n(�Y��
[j]

e (n) #6= X � �[i](n))g:

Se 2 �1(C) so either there is a � 2 Se \H or there is a � � H no extension of which is
in Se. The �rst alternative clearly violates our assumption that �Y�H

[j]

e = X �H [i] and

82 CHAPTER 7. THE THEORIES OF D AND D(� 00)

so there is a � � H such that � =2 Se for all � � �. Let n = j�[i]j. If i 6= j and there
were � � �[j] such that �Y��e (2n+ 1) #, we could extend � to a � such that � [j] = � and
� [i](n) = 1��Y��e (2n+1) (as the value of � [i](n) is independent of � [j]). In this case, we
have

�Y��
[j]

e (2n+ 1) #6= � [i](n) = (X � � [i])(2n+ 1)

and so � 2 Se, contradicting our choice of �. Therefore, there can be no � � �[j]

making �Y��e (2n + 1) converge while �Y�H
[j]

e is total by assumption and �[j] � H [j] for
a contradiction. Thus i = j.
Next, we show that X �T Y . To compute X(n) from Y , search for a � � � such that

�Y��
[j]

e (2n) converges (such a � exists because �Y�H
[i]

e is total and �[j] � H [j]). Then, as
usual, we claim that �Y��

[j]

e = (X � � [i])(2n) = X(n) for if not, � 2 Se and extends � for
a contradiction.

reldef Theorem 7.2.3 Every countable relation R(x0; : : : ; xn�1) on D is de�nable from pa-
rameters. Indeed, if C is a uniform upper bound on representatives Ci of the sets with
degrees ci in the domain of R as well as of the

D
Cj0 ; : : : ; Cjn�1

E
such that R(cj0 ; : : : ; cjn�1)

and H is Cohen 1-generic over C then there is a notion of forcing recursive in C � H
such that any 2-generic computes the required parameters. Moreover, for each n there is
a formula 'n(x0; : : : ; xn�1; �y) with �y of length some k > 0 (depending only on n) which
includes the clauses that xi � y0 for each i < n such that as �p ranges over all k-tuples
of degrees, the sets of n-tuples of degrees f�ajD � '(�a; �p)g range over all countable n-ary
relations on D.

Proof. We take c = deg(C) to be our �rst parameter. Let H be Cohen 1-generic over C
and hi;j be the degree of H [hi;ji]. We code R using the following countable sets of pairwise
incomparable degrees.

Hi = fhi;jjj 2 Ng for i < n

Fi = fcj _ hi;jjj 2 Ng for i < n

R = fh0;j0 _ h1;j1 _ � � � _ hn�1;jn�1 : R(cj0 ; cj1 ; : : : ; cjn�1)g
Each of these sets consists of pairwise incomparable degrees. The �rst and third by

Proposition
genindep
6.2.23 that for a Cohen 1-generic H the sets H [k] form a very independent

set. (So, for any �nite sets A and B of hi;j, _fxjx 2Ag � _fxjx 2Bg if and only if
A � B.) The elements of each Fi are pairwise incomparable by Proposition

joinw1gen
7.2.2. Our

de�ning formula ' for R is now

&i<n(xi � c) & (9yi)i<n(yi 2 Hi & &i<n(xi _ yi) 2 Fi & _ fyiji < ng 2 R)

where we understand membership in the sets Hi, Fi and R as being de�ned by the
appropriate formulas and parameters as given by Theorem

sw
7.2.1. This also supplies

7.2. SLAMAN-WOODIN FORCING AND TH(D) 83

the notion of forcing required in our Theorem by taking (the disjoint union of) three
versions of the one provided in Theorem

sw
7.2.1 for the three families of pairwise Turing

incomparable sets needed for these de�nitions as they are uniformly recursive in C �H.
The veri�cation that this formula de�nes the relation is straightforward. If R(�x) then
every element of the sequence �x is below c and is therefore equal to a cji (for i < n).
The degrees hi;ji 2 Hi then are the witness yi required in '. In the other direction, if
' holds of any n-tuple then all its elements are below c and we need to consider the
situation where '(xj0 ; : : :xjn�1) for some ji, i < n. Let the required witnesses be yi. As

yi 2 Hi and (xji _ yi) 2 Fi, yi = hi;j. Then as
_
i<n

yi 2 R, R(xj0 ;xj1 ; : : : ;xjn�1). The

assertions in the Theorem about the form of the required formulas ' are now immediate
from Theorem

sw
7.2.1.

Note that with the above assumptions on c in this proof, Theorem
sw
7.2.1, the remarks

immediately following it and Proposition
ngeneric0n
6.2.13, we can get all the parameters need for

this de�nition of R below c00. We improve this by one jump in the next section.
We can now precisely characterize the complexity of Th(D) as that of true second

order arithmetic.

ThD Theorem 7.2.4 Th(D;�) �1Th2(N;�;+;�; 0; 1).

Proof. That Th(D;�) �1Th2(N;�;+;�; 0; 1) is easy. As A �T B is de�nable in arith-
metic (indeed as we have seen it is �3 in A and B) and quanti�cation over all sets gives
quanti�cation over all degree, we can recursively translate any sentence about D to an
equivalent one of about second order arithmetic. For the other direction we use the
formulas '1, '2 and '3 of Theorem

reldef
7.2.3 to give an interpretation of true second order

arithmetic in D. We consider sequences of parameters �pD, �p+, �p� and �p< so that '1(�pD)
de�nes a countable set of degrees and plays the role of 'D for our interpretation. Our
correctness condition then includes the sentences that say that '3(�p+), '3(�p�) and '2(�p<)
(playing the roles of '+, '� and '<, respectively) de�ne relations on the countable set
de�ned by '1(�pD) to determine a structureM(�p) (where �p is the concatenation of all the
sequences of parameters used here) that satis�es all the axioms of our �nite theory of
arithmetic. Theorem

reldef
7.2.3 then says that there are choices of these parameters such that

the structure so de�ned is isomorphic to N. After all, N is just a countable set with two
ternary relations and one binary one. We now use '1(x; �q)^'1(�pD) as the 'S required for
our interpretation of true second order arithmetic. Again by Theorem

reldef
7.2.3, as �q ranges

over tuples of degrees, the subsets ofM(�p) de�ned by 's range over all subsets ofM(�p) as
required. All that remains to do is to show that we can extend the list of correctness con-
ditions that guarantee thatM(�p) is a model of our �nite axiomatization of arithmetic to
also guarantee that it is isomorphic to N. We can do this by adding on the sentence which
asserts that every nonempty subset of M(�p) (as given by 'S(�q; �p) for some �q) has an <M
least element, i.e. 8�qf9x('S(x; �q; �p))! 9x['S(x; �q; �p)^:9y('S(y; �q; �p)^'<(y; x; �p<))]g.

84 CHAPTER 7. THE THEORIES OF D AND D(� 00)

thjumpideal Exercise 7.2.5 If C is a jump ideal of D (i.e. a downward closed subset that is also
closed under jump and join), then the theory of C is 1-1 equivalent to that of the model
of second order arithmetic where set quanti�ers range over the sets with degrees in C.

Notes: Slaman and Woodin forcing was introduced in Slaman and Woodin [1986]
where they proved Theorems

sw
7.2.1 and

reldef
7.2.3. Theorem

ThD
7.2.4 (which as presented here

follows easily from these results) is originally due to Simpson [1977] although with a
very di¤erent proof using then new initial segments results and Theorem

exactpair
5.2.14. Another

version using simpler codings and previously know initial segment results along with
Theorem

exactpair
5.2.14 is in Nerode and Shore [1980]. Exercise

thjumpideal
7.2.5 is from Nerode and Shore

[1980a].

7.3 Th(D � 00) ThD<0�
We now want to improve our coding results so that they become applicable below 00. We
begin with the Slaman and Woodin coding of sets of pairwise incomparable degrees.

sw0� Theorem 7.3.1 For any set S = fC0; C1; : : :g of pairwise Turing incomparable subsets
of N let C = �Ci. There are then G0,G1 �T C 0 and Di such that, for every i 2 N and
j < 2�Di �T Ci �Gj while Di �T Ci. Moreover, the Ci are minimal with this property
among sets recursive in C in the sense that for any X �T C for which there is a D such
that D �T X �Gj (j < 2) but D �T X there is an i such that Ci �T X.

Proof. We follow the ideas of the proof of Theorem
sw
7.2.1 but replace the uses of 2-

genericity for extending conditions to make something converge. At various steps we ask
if there are appropriate extensions, if so we take them and continue our construction.
If not we have a condition that forces some functional to diverge and so can satisfy the
relevant requirement in that way.
Proof. We build Di �T G0 � Ci; G1 � Ci such that Di �T Ci. The requirements for
diagonalization here are:

Pe;i : �
Ci
e 6= Di:

Let Xj = �
C
j . We also have requirements for minimality:

Re;;j : �
G0�Xj
e = �G1�Xje = D) D �T Xj or 9i(Ci �T Xj):

We list all the requirements as Qs. We build G0; G1 by �nite approximations 0;s; 1;s
of equal length. As before we let Di(m) = G0(hi; ci;mi) where fci;mg is an enumeration
of Ci in increasing order. So Di �T G0 � Ci. We guarantee that Di �T G1 � Ci as
before by making sure that, for each i, G0(hi; ci;mi 6= G1(hi; ci;mi for at most �nitely
many m. In particular we institute a rule for the construction that when we act to
satisfy requirement Qn at stage s by extending the current values of k (k = 0; 1) we

7.3. TH(D � 00) 85

require, for i � n, hi;mi � j0;sj = j1;sj andm 2 Ci, that the extensions 0k are such that
00(hi;mi) = 01(hi;mi). As we act to satisfy any Qn at most once, this rule guarantees
that there are at most �nitely many relevant di¤erences between G0 and G1 for each i.
At stage s, if Qs = Pe;i, we act to satisfy Pe;i. Choose m such that hi; ci;mi �

j0;sj. Ask if �Cie (m) #. If not, let k;s+1 = k;s for k = 0; 1: (As usual this satis�es
Pe;i.) If it does converge, extend each of 0;s; 1;s by the same string � to 0;s+1; 1;s+1
with 0;s+1(hi; ci;mi) 6= �Cie (m). This also satis�es the requirement because Di(m) =
G0(hi; ci;mi) by de�nition and trivially obeys the rule of the construction.
Note that C 0 can decide if �Cie (m) #, so this action is recursive in C 0.
If Qs = Re;j, this stage has a substage for each requirement Qn = Re0;j0 with n � s

that has not yet been satis�ed. For notational convenience we write k for k;s in the
description of our action at stage s. At the end of each substage we de�ne successive
extensions k;l of k satisfying the rule of the construction. We �rst try to satisfy Re;j
(which, of course, we have not attempted to satisfy before). We ask if 9x9�k � k which
satisfy the rule of our construction and such that the �k �X e-split at x, i.e.

��0�Xje (x) #6= ��1�Xje (x) # :

Note that, when we are acting to satisfy any Qn, checking if extensions of the current
values of k satisfy the rule of the construction is recursive in �fCiji � ng and so
uniformly recursive in C. Thus this question can be answered by C 0. There is one
subtlety here. We must be careful with what we mean by a computation from Xj as
there is no list of all the sets recursive in C that is uniformly recursive in C. So what we
mean here is that there is a computation of �Cj providing a long enough initial segment
of Xj so as to make the desired computations at m converge. This makes the whole
question one that is �C1 and so recursive in C

0.
If the answer is yes, choose as usual the �rst such extensions (in a uniform search

recursive in C) as 0;0; 1;1. Note that we have now satis�ed Re;j. If the answer is no,
ask if 9x9�; � ((0^� �Xj)je(0^� �X)) (See De�nition

esplit
5.2.10). This question is also

�1(C).

� If not, let k;s;0 = k;s. Then, as usual, if �
G0�Xj
e is total, it is recursive in X as we

guarantee that G0 � 0;0. To calculate it at x, �nd any � such that �
0^��Xj
e (x) #.

This computation must give right answer. So in this case we have also satis�ed
Re;j.

� If so,we can �nd such � and � (recursively in C). We interpolate between �; � with
strings � = �0 = �1; : : : ; �z = � which di¤er successively at exactly one number.
Ask if 9�1 such that �0^�1^�1�Xje (x) #. If not, let k;0 = k^�1. Note that this
extension satis�es the rule of the construction and that we have satis�ed Re;j by
guaranteeing that �G0�Xje (x) ". If yes, consider �2^�1 and ask again if there is a �2
such that ��2^�1^�2�Xje (x) #. If not, let k;0 = �2^�1 as before obeying the rule of
the construction and satisfying Re;j. If so, we continue on inductively through the
�k.

86 CHAPTER 7. THE THEORIES OF D AND D(� 00)

� Eventually we either de�ne k;0 and satisfy Re;j or we �nd �1; : : : ; �z such that
�
0^�l^��Xj
e (x) # for every l � z where � = �1^ : : : ^�z. In the second case, we set

k;0 = k;s. This action does not satisfy Re;i but it demonstrates that there are
�̂ and �̂ which di¤er at exactly one number and for which (0^�̂ � X)je(0^�̂ �
X). The point here is that, as �0^�0^��Xje (x) #= �0^��Xje (x) #6= �0^��Xje (x) #=
�
0^�z^"�Xj
e (x) #, there is an l such that �0^�l^��Xje (x) #6= �0^�l+1^��Xje (x) # while

�l^� and �l+1^� di¤er at exactly one number. Now consider 1^�̂. If there is no
� such that �1^�̂^��Xje (x) # then we can again satisfy Re;j by setting k;s;0 =

k;s^�̂. If there is such a �, we compare �
1^�̂^��Xj
e (x) # with �0^�̂^��Xje (x) # and

�
0^�̂^��Xj
e (x) #. As the last two are di¤erent one of them must be di¤erent from
the �rst. If �1^�̂^��Xje (x) #6= �0^�̂^��Xje (x) #, we would contradict our assumption
that the answer to our very �rst question was no as 1^�̂^� and 0^�̂^� certainly
satisfy the rule of the construction. If �1^�̂^��Xje (x) #6= �0^�̂^��Xje (x) #, the only
way we would not have the same contradiction is if the one point at which �̂ and
�̂ di¤er is a coding location hk; ck;mi with k < s. Thus the only way our actions at
this stage do not satisfy Rhe;ji is if there are �̂^� and �̂^� which di¤er at at exactly
one point such that (1^�̂^� � Xj)je(0^�̂^� � Xj) and for any such �̂ and �̂ the
point of di¤erence must be a coding location hk; ck;mi with k < s.

� In this last case we set 0;0 = 0 and 1;0 = 1;s. In any event, we now proceed to
extend 1;0 (and then 1) in the same way but attempting to satisfy eachQn = Re0;j0
with n < s that has not yet been satis�ed. After some �nite number of such
attempts we have tried them all, satisfying some and for the others producing
one more example of an x and two strings �̂ and �̂ di¤ering at one number only
(after j0j) such that (0^�̂�Xj0)je(1^�̂ �Xj0) for each he0; j0i which we have not
yet satis�ed and a guarantee that any two such strings di¤er at a coding location
hk; ck;mi with k < n.

� At the end of this process we let k;s+1 be the �nal extension of k that we have
produced.

We now claim that all the requirements are satis�ed. It is immediate that Pe;i is
satis�ed when we act for Qs = Pe;i at stage s: Consider any Re;j = Qs0. If we ever act so
as to satisfy it at some stage s of the construction, it is clearly satis�ed and we never act
for it again. As we violate the rule of the construction at some hk; ck;mi only when we act
to satisfy requirement Qn for n � k and we do so at most once for each n, Di �T G1�Ci
as required.
Finally, suppose that the �rst requirement that we never act to satisfy during the

construction isQn. It must be some Re;j. Suppose that all requirementsQr for r < n have
been satis�ed by stage s0 > n. At each stage s > s0 with Qs = Re0;j0 we attempt to satisfy

Re;j at some substage of the construction. As we fail, there are �
�0�Xj0
e0 (x) #6= ��1�Xj0e0 (x) #

with �k � k;s � k;n which di¤er at exactly one point and any such pair di¤er at a

7.3. TH(D � 00) 87

coding location hk; cm;ki with k � n. Recursively in Xj we can then search for and �nd
in�nitely many extensions �k of k;n with this property with the points at which they
di¤er becoming arbitrarily large (as jk;sj is clearly going to in�nity). As there are only
�nitely many k � n, there must be one k � n for which in�nitely many of these �k di¤er
at a point of the form hk; zi with in�nitely many di¤erent z. As every such point is a
coding location, recursively in X we can compute an in�nite subset of Ck, so by our
initial assumption that each Ci is recursive in everyone of its in�nite subsets Ck �T Xj

as required for Re;j to be satis�ed in the end.
This step-by-step construction is the much the same as the forcing argument we saw

before, but grittier, and we gain a quanti�er. This helps us determine the true complexity
of Th(D;� 00): Th(D;� 00) �m Th(N;+;�;�).

Exercise 7.3.2 It is easy to show that the Gi of Theorem
sw0�
7.3.1 can be made to have

(or already have) jumps below C 0.??Need this for de�nability in D(�00) do proof or some
details??

sw1gen Exercise 7.3.3 With the notation as in Theorem
sw
7.2.1 show that for any G 1-generic

for P, G0 and G1 have the properties required by the Theorem. So in particular, we can
make G00 �T 00 �T G

0
1. This then supplies the analogous result for Theorem

reldef
7.2.3, i.e. a

notion of forcing recursive in the appropriate C � H such that any 1-generic computes
the parameters necessary to de�ne the given relation. Hint: This is not easy. A proof
can be found in Greenberg and Montalbán [2003]. ??Do out, need just for minimality
205-207????(G0 �G1)

0 �T 00??.

reldef0� Theorem 7.3.4 If R is an n-ary relation on D(�00) which is uniformly recursive in a
low degree c in the sense that there are families of sets fXig = S and fhXi1 ; : : : ; Xinig =
T uniformly recursive in C 2 c such that fdeg(Xi)jXi 2 Sg is the �eld of R (i.e. all ele-
ments that occur in any n-tuple satisfying R) and fhdegXi1 ; : : : ; degXini j hXi1 ; : : : Xini 2
Tg = R, then there are �p < c0 = 00 which de�ne R by the formula 'n of Theorem

reldef
7.2.3.

Proof. We begin with a G which is Cohen 1-generic over C so that (C � G)0 �T C 0.
The set of degrees R and the �nite families of sets of degrees Hi and Fi of the proof of
Theorem

reldef
7.2.3 are all now uniformly recursive in C � G and consist of pairwise Turing

incomparable sets so, by Theorem
sw0�
7.3.1, there are sequences of parameters de�ning each

of them all below (C � G)0. The proof of Theorem
reldef
7.2.3 now shows that they de�ne R

as required.
We now explain how we plan to code arithmetic in D(�00): The �intended model�

starts with an nice e¤ective successor structure determined by parameters �q: c, b0, b1,
e0, e1, d0, f0 and f1 with c0 = 00 and c being above all of the other parameters and all the
required d̂n as well. Moreover, the dn are all uniformly recursive in c. We can do this
by Exercise

latemb0�
6.3.15 or

latemb1gen
??. We then choose, as in the proof of Theorem

ThD
7.2.4 parameters

�pD, �p+, �p� and �p< so that '1(�pD) de�nes fdnjn 2 Ng and '3(�p+), '3(�p�) and '2(�p<)
(playing the roles of '+, '� and '<, respectively) that de�ne relations on the countable

88 CHAPTER 7. THE THEORIES OF D AND D(� 00)

set de�ned by '1(�pD) to determine a structureM(�p) (where �p is the concatenation of all
the sequences of parameters used beginning with �q) that satis�es all the axioms of our
�nite theory of arithmetic and such that d0 is the least element in the ordering ofM(�p)
given by '2(�p<) and, for each n, dn+1 is the immediate successor of dn in this order.
We can �nd such parameters below 00 by the arguments for the proof Theorem

reldef
7.2.3

combined with Theorem
sw0�
7.3.1 (relativized to c) since the dn and the desired relations on

them are uniformly recursive in c and c0 = 00. Now this model is standard since the dn
are ordered in order type ! and constitute the universe of the model.
The problem is that there is no obvious way to de�nably say that the universe of

the model is precisely the dn in terms of just the prescribed parameters (or any other �-
nite list). The issue is that we only have a scheme to generate these degrees not one
to de�ne them. We can come fairly close in a �rst order way. In addition to the
correctness conditions that guarantee that the de�ned relations give a model of arith-
metic on fxj'D(x; �p)g, we can approximate niceness by adding the sentences c � b and
8d['D(d)! d _ c � b & 9d̂(d ^ d̂ = 0 & (8d� 6= d)('D(d

�)! (d ^ d� = 0) & (d̂ � d�))].
We can approximate the desired condition that fdnjn 2 !g is the domain of our structure
by saying that d0 is the least element in the ordering ofM(�p) given by '2(�p<) and for
every d such that 'D(d; �p), if d is an even number in M(�p), then (e0 _ d) ^ f0 is its
immediate successor in the ordering given by '2(�p<) while if it is an odd number then
its immediate successor is given by (e1 _ d) ^ f1. This guarantees that fdnjn 2 !g is
the standard part of the modelM(�p). Thus if we had a formula '̂S(x; �r; �p) which, as �r
ranged over n-tuples from D(�00), de�ned a collection of subsets ofM(�p) that include
fdnjn 2 !g, we could guarantee that M(�P) was standard by saying that every subset
(i.e. picked out by some choice of parameters �r) ofM(�p) which contains its least element
(d0) and is closed under immediate successor is all ofM(�p).
The crucial point now is that the proof of Proposition

codeSs3
6.4.9 shows that, under these

conditions, fdnjn 2 !g 2 �C3 as is the ideal generated by this set. That is, the standard
part of any M(�p) for �p satisfying all of these correctness conditions and the ideal it
generates are both �C3 . Our goal now is to prove that for every c < 0

0 and every �C3
ideal in the degrees below c, there are g0;g,1 �T 00 which are an exact pair for the given
ideal. Proposition

codeSs3
6.4.9 and Remark

codeprecisely
?? then show that we could de�ne the desired set

fdnjn 2 !g in terms of this exact pair. We later prove this required result as Theorem
resigma3ideal
8.2.11. It supplies the �nal ingredient of our theorem.

Th(D<0�) Theorem 7.3.5 Th(D �00) �1�1 Th(N).

Proof. The above argument (together with Theorem
resigma3ideal
8.2.11) shows that we can interpret

true �rst order arithmetic in D(�00). Thus Th(N) �1�1Th(D �00). The other direction
is immediate since we can de�ne the sets recursive in 00 in arithmetic as well as the
ordering of Turing reducibility on them. Thus we have a recursive translation of sentences
about D(�00) to ones of arithmetic that preserves truth. Of course, this implies that
Th(D �00) �1�1 Th(N).

7.3. TH(D � 00) 89

Notes: Theorem
sw0�
7.3.1 and a special case of Theorem

reldef0�
7.3.4 are in Slaman and Woodin

[1986]. The full version of Theorem
reldef0�
7.3.4 is in Odifreddi and Shore [1991] as is the proof

of Theorem
Th(D<0�)
7.3.5 which is originally due to Shore [1981].

90 CHAPTER 7. THE THEORIES OF D AND D(� 00)

Chapter 8

Domination Properties

8.1 Introduction

An important topic in the study of the complexity of functions from N to N is the
notion of rate of growth and of one function growing faster than another or faster than
a whole class of functions. These issues are not only natural but they have important
connections with the computational complexity of the functions as measured by Turing
and other reducibilities. In this chapter we will study some of these notions and their
impact on the structure of the degrees. They will play a crucial role in our analysis of
the complexity of important degree structures including D(� 00) which we study in this
chapter ??and all of D as well as many jump ideals that we will study in later chapters??.
We begin with some basic de�nitions.

De�nition 8.1.1 1. The function g dominates the function f (f < g) if, for all but
�nitely many x, f(x) < g(x).

2. The degree g dominates the function f if some g 2 g dominates f .

3. The function g dominates the degree f if g dominates every function f 2 f .

4. The degree g dominates the degree f if for every f 2 f there is a g 2 g which
dominates f .

We also sometimes express these relations in the passive form saying, for example,
that f is g-dominated or f is g-dominated for the �rst two relations. A function g that
dominates the degree 0 is called dominant.

In the literature a degree f that is not 0-dominated (i.e. there is an f 2 f which
is not dominated by any recursive function) is, for historical reasons unrelated to our
concerns, called hyperimmune. If f is not hyperimmune, i.e. it is 0-dominated, is also
called hyperimmune free. For example, we show later that every 0 < a < 00 is hyper-
immune (Theorem

delta2dom
8.2.3) while the minimal degrees constructed by Spector (§

spectormin
9.2) are

hyperimmune free.

91

92 CHAPTER 8. DOMINATION PROPERTIES

0domtt Exercise 8.1.2 Prove that if a is 0-dominated and B �T A 2 a then B �tt A. So
any 0-dominated Turing degree consists of exactly one tt (and so wtt) degree. Hint: if
B = �Ae then consider the function f such that f(n) = �s(�A�se;s (n) #).

8.2 R.E. and �02 degrees

redom Theorem 8.2.1 If A >T 0 is r.e. then there is a function m �T A which is not 0-
dominated, i.e. it is not dominated by any recursive function. Indeed, any function g
which dominates m computes A.

Proof. For A r.e., let As be the standard approximation to A at stage s. Let m be the
least modulus function for this approximation: m(x) = �s(8t � s)(As � x = At � x). For
r.e. sets, the approximation changes its mind at most once and is correct in the limit, so
m(x) is also the �s(As � x = A � x) and is clearly of the same degree as A. Moreover, if
g(x) � m(x) for almost all x, then A �T g as A � x = Ag(x) � x for all but �nitely many
x. Thus, if A >T 0, then m is not dominated by any recursive function and any g that
dominates m computes A.
The Shoen�eld limit lemma (Theorem

limitlemma
4.3.9) gives us a recursive approximation h(x; s)

to any A 2 �0
2 (or equivalently A �T 00). So the least modulus function m makes sense

for such an approximation as well. So does the second version used in the above proof.
Here we call it the computation function: f(x) = �(s > x)(8y < x)(h(y; s) = A(y)) (for
technical reasons, we do not consider �rst few stages). It calculates the �rst stage after
x at which the approximation is correct up to x. But, since we are no longer looking at
r.e. sets, the approximation might change even after it�s correct and the computation
function f need not be the same as the least modulus m. The two functions may not be
the same even up to degree.

Exercise 8.2.2 Find an A <T 0
0 and an approximation h(x; s) to A for which the least

modulus function m computes 00. On the other hand, the computation function f for h
is always of the same degree as A.

We can, nonetheless extend Theorem
redom
8.2.1 to all A 2 �0

2.

delta2dom Theorem 8.2.3 If A is �0
2, then there is an f �T A which is not 0-dominated. Indeed,

any function g which dominates f computes a.

Proof. By the Shoen�eld limit lemma, there is a recursive h(x; s) such that lims!1 h(x; s) =
A(x). Let f(x) be the computation function for this approximation. Suppose f < g. We
claim that even though h(z; s) may change at z < x for s > f(x), we can still compute
A from g. Let s0 be such that (8m � s0)(f(m) < g(m)). To calculate A(n) for n > s0
�nd an s > n such that h(n; t) is constant for t 2 [g(s); gg(s)]. Since h(n; t) is eventually
constant, such an s exists. Moreover, we can �nd it recursively in g: compute the inter-
vals [g(n+ 1); gg(n+ 1)]; [g(n+ 2); gg(n+ 2)]; [g(n+ 3); gg(n+ 3)]; : : : checking to see if

8.2. R.E. AND �0
2 DEGREES 93

h is constant on the intervals. By the clause that makes f(x) > x in the de�nition of the
computation function and our choice of s0, gg(s) > fg(s) > g(s), so the �rst t > g(s) at
which h is correct for all elements below g(s) is in [g(s); gg(s)]. For this t, h(n; t) = A(n).
As we chose s so that the value of h(n; t) is constant on this interval, A(n) = h(n; t) for
any t 2 [g(s); gg(s)] and we have computed A recursively in g as required.

Exercise 8.2.4 What are the correct relativizations of the previous two theorems?

Exercise 8.2.5 The above results can be extended by iterating the notions of �r.e. in�
or more generally ��0

2 in� as long as one includes the lower degrees. We say that A
1-REA if it is r.e. then we de�ne n-REA by induction: A is n + 1-REA if A is of the
form B �WB

e where B is n-REA. (REA stands for r.e. in and above.) Prove that any
n-REA set A has an f �T A such that any g > f computes A: Do the same with �0

2

replacing r.e. These results can be carried into the trans�nite. Prove, for example, that
0(!) has the same property.

re1gen Theorem 8.2.6 If A > 0 is r.e. and P is a recursive notion of forcing then there is a
1-generic sequence hpsi �T A so that the corresponding 1-generic G is recursive in A as
well.

Proof. We build a 1-generic sequence ps recursive in A. Let f �T A be the least modulus
function for A. The requirements are

Re : for some s, ps 2 Se or (8q � ps)(q =2 Se), where Se is eth �1 set of conditions.

At stage s, we have a condition ps. Note that we are thinking of P as a subset of N
and so have the natural ordering � on its members (and all of N) as well as the forcing
ordering �P . We say that Re has been declared satis�ed by stage s if there is a pn with
n � s such that pn 2 Se;f(s). Find the least e < s such that Re has not yet been declared
satis�ed and such that (9q �P ps)(q � f(s) & q 2 Se;f(s)). For this e, choose the least
such q and put ps+1 = q. If there is no such e, let ps+1 = ps.
To verify that the construction succeeds, suppose for the sake of a contradiction that

e0 is least such that
:9s(ps 2 Se0 _ (8q �P ps)(q =2 Se0)):

Choose s0 > e0 such that 8i < e0 if there is a ps 2 Si then there is one with s < s0
and ps 2 Si;f(s0) (so by this stage we have already declared satis�ed all higher priority
requirements that are ever so declared). We claim that we can now recursively recover
the entire construction and the values of f(s) for s � s0. As this would compute A
recursively, we would have our desired contradiction. Consider what happens in the
construction at each stage s � s0 in turn. Suppose we have ps. At stage s we look for the
least e < s such that (9q �P ps)(q � f(s) & q 2 Se;f(s)). There is no such e < e0 by our
choice of s0. If e0 itself were such an e, we would act for it and declare Pe0 to be satis�ed,
contrary to our choice of e0. On the other hand, by our choice of e0 there is a q �P ps

94 CHAPTER 8. DOMINATION PROPERTIES

with q 2 Se0. We can �nd such a q recursively (because we know it exists). We did not
�nd this q in the construction at stage s because either q > f(s) or q 2 Se0 � Se0;f(s).
So we can now �nd a bound t on f(s) by �nding the stage at which q enters Se0. Given
t � f(s) we can calculate f(s) as the least z such that Az � s = At � s. Once we have
f(s) we can recursively determine what happened at stage s of the construction and in
particular the value of ps+1. Thus we can continue our recursive computation of f(s) as
claimed.
Relativizing Theorem

re1gen
8.2.6 to C gives, for any C recursive notion of forcing P, a

G �T A which is C 1-generic for P for any A >T C which is r.e. in C.

Exercise 8.2.7 The crucial property of the function f used in the above construction was
that there is a uniformly recursive function computing f(x) from any number greater than
it. Prove that if there is a partial recursive '(x; s) such that (8s � f(x))('(x; s) = f(x))
then f is of r.e. degree.

recohen Corollary 8.2.8 If a > 0 is r.e. then there is Cohen 1-generic G <T A and so, for
example, every countable partial order can be embedded in the degrees below a.

Similarly we have

Corollary 8.2.9 If a is r.e. in b and strictly above it, then every partial lattice recursive
in b can be embedded into [b; a).

renomax Corollary 8.2.10 If a is r.e. then every maximal chain in (D(� a);�T) is in�nite. In
fact, there is no maximal element less than a in (D(� a);�T).

Proof. Suppose b < a. Then a is r.e. in and strictly above b. Relativizing Theorem
re1gen
8.2.6 to a B 2 b and using Cohen forcing gives us a G �T A which is Cohen 1-generic
over B. So the degrees of B�G[i] are in fact all between b and a and even independent.

We now apply Theorem
re1gen
8.2.6 to provide the missing way of identifying the standard

parts of e¤ective successor models coded below 00 that we need to calculate the complexity
of Th(D(�00)).

resigma3ideal Theorem 8.2.11 If A >T C, A is r.e. in C and I is an ideal in D(� deg(C)) such that
W = fe : deg(�Ce) 2 Ig 2 �C3 then there is an exact pair G0, G1 for I below A.

Proof. We provide a C-recursive notion of forcing P such that any 1-generic for P gives
an exact pair for I and apply Theorem

re1gen
8.2.6 relativized to C. The conditions of P are

of the form p = hp0; p1; Fp; npi where pi 2 2<!, jp0j = jp1j = jpj, Fp 2 N<!, np 2 ! such
that

(8i 2 f0; 1g)(8he; x; yi)(9�1hw;mi) (he; x; y; w;mi 2 pi) .
We de�ne V as expected V (p) = p0� p1. So for a 1-generic G, we have Gi = [fpijp 2

Gg. If e 2 W , we want �Ce to be coded into Gi. The unusual restriction above on

8.2. R.E. AND �0
2 DEGREES 95

conditions in P suggests how we intend to do this coding. Since W 2 �C3 we have
a relation R �T C such that e 2 W , 9x8y9zR(e; x; y; z). We denote the pairs of
elements of W and their witnesses by Ŵ = fhe; xi : 8y9zR(e; x; y; z). To calculate �Ce
for e 2 W , our plan is to �rst choose an x such that he; xi 2 Ŵ . We then search for
hw;mi such that he; x; y; w;mi 2 Gi and announce that �Ce (y) = m. The de�nition of P
guarantees that this procedure gives at most one answer. The de�nition of the partial
order �P below guarantees that this procedure makes only �nitely many mistakes for any
1-generic. Genericity also guarantees that, when he; xi 2 Ŵ , it gives a total function.
The number np in our conditions acts as a bound for how far we have to search to

su¢ ciently verify the �2 assertion that x is a witness that e 2 W (and so also that �Ce
is total). The set Fp tells us for which he; xi we can make no further mistakes in our
coding of �Ce into G

he;xi
i when we extend p. With this intuition, we de�ne extension in

P by q �P p i¤
qi � pi; Fq � Fp; nq � np;

and

(8i 2 f0; 1g)(8he; x; y; w;mi 2 [jpj; jqj)(he; xi 2 Fp & he; x; y; w;mi 2 qi
! �Ce;nq(y) = m & 8y0 � y9z � nq (R(e; x; y

0; z))

Note that P is recursive in C.
Suppose that G0; G1 are given by a C-1-generic sequence hpsi �T A as in Theorem

re1gen
8.2.6 relativized to C. We claim that G0; G1 are an exact pair for I.
First assume that he; xi 2 Ŵ . We show that �Ce �T Gi. As the sets fpj he; xi 2 Fpg

are obviously dense in P, there is an s such that he; xi 2 Fps . For any he; x; y; w;mi 2 pt
with t > s, �Ce (y) = m by de�nition and so as noted above, the prescribed search
procedure which is recursive in Gi returns only correct answers for y > jpsj. Next,
we claim that for each y > jpsj, i 2 f0; 1g and m = �Ce (y) the �

C
1 sets Se;x;y;m;i =

frj9w(he; x; y; w;mi 2 rig are dense below ps. This guarantees that hpti meets each of
these sets and so the search procedures are total and correctly compute �Ce (x) for all
but �nitely many x. To see that these sets are dense below ps, consider any q � ps
with no w such that he; x; y; w;mi 2 qi. Choose any w > jqj and de�ne an r �P q by
making jrj =

e; x; y; w;�Ce (y)i+ 1

�
, ri = qi [fhe; x; y; w;�Ce (y)ig (i.e. we let them be 0

at other points below the length), Fr = Fq and letting nr be the least n � nq such that
8y0 � y9z < n(R(e; x; y0; z) & �Ce;n(y) #) (one such exists since we are assuming that
he; xi 2 Ŵ). Then r�Pq and r 2 Se;x;y;m;i as desired.
We next want to deal with the minimality conditions associated with the Gi being

an exact pair for I. Suppose then that �G0e = �G1e = D is total. We want to prove that
D � �f�Ce : e 2 Fg for some �nite F � W . Consider the �1 set Se of conditions p:

Se = fp : 9n (�p0e (n) #6= �p1e (n)) #g.

By our assumption there is no ps 2 Se so we have a ps = p such that 8q �P p(q =2 Se).
We claim that D � �f�Ce : he; xi 2 Fp \ Ŵg. For every he; xi 2 Fp n Ŵ , let y(e; x)

96 CHAPTER 8. DOMINATION PROPERTIES

be the least y such that :8y0 � y9zR(e; x; y0; z) _ �Ce (y) ". It is clear that there is
no q �P p with any he; x; y; w;mi 2 qi for he; xi 2 Fp n Ŵ and y � y(e; x). Choose
q �P p in hpsi so that it has the maximal number of y�s with some he; x; y; w;mi 2 qi for
y < y(e; x) and i 2 f0; 1g. To compute D(y) for y > jqj, we �nd a t 2 P such that ti � qi,
�t0e (y) #= �t1e (y) #, no elements not in qi are added into ti in columns he; xi 2 FpnŴ and
for any he; x; y; w;mi 2 ti with he; xi 2 Fp \ Ŵ , �Ce (y) = m. Such an extension exists
because �G0e (y) #= �G1e (y) # and by the maximality property of q and the de�nition of
�P , G[he;xi]i = q

[he;xi]
i for he; xi 2 Fp n Ŵ and so there is such a t̂ 2 hpsi. Finding one such

t is clearly recursive in �f�Ce : he; xi 2 Fp \ Ŵg. Thus we only need to show that any
such t provides the right answer. If one such gave an answer di¤erent than that given by
t̂ (and so G0 and G1) then

t0; t̂1; Fp; n

�
(where n � nq is large enough so that �Ce;n(y) #

for every he; x; y; w;mi in t0 or t̂1 with he; xi 2 Fp \ Ŵ) would be an extension of p in Se
for the desired contradiction.
This Theorem completes the proof of Theorem

Th(D<0�)
7.3.5 that the theory of the degrees

below 00 is recursively isomorphic to true arithmetic. We can extend the result to all r.e.
degrees.

Th<re Exercise 8.2.12 For every r.e. r > 0, Th(D(�r) �1�1Th(N).

??Explain??

Notes: Theorem
redom
8.2.1 is due to Dekker [1954]; Theorem

delta2dom
8.2.3 to Miller and Martin

[1968]. We are not sure who �rst proved Corollary
recohen
8.2.8 (presumably using a di¤erent

method called r.e. permitting). The style of proof based directly on domination proper-
ties used here to prove Theorem

re1gen
8.2.6 is attributed to us in Soare [1987, Ch. VI Exercise

3.9] in the case of Cohen forcing. Theorem
resigmaeideal
?? is in Shore [1981] which also is the original

source of Exercise
Th<re
8.2.12.

8.3 High and GL2 degrees

We now look at stronger domination properties and their relation to the jump classes H1

and �L2 below 00 and their generalizations. Recall from §
jumphier
4.6 that for a � 00, a 2 H1 ,

a0 = 000; a 2 L2 , a00 = 000. For degrees a not necessarily below 00, a 2 GL2 ,
(a _ 00)0 = a00; a 2 GH1 , a0 = (a _ 00)0. It is also common to say that a is high if
a0 � 000. As it turns out these last are the degrees of dominant functions. Of course,
a 2GL2 means that a =2 GL2. We relativize these notions to degrees above b by writing,
for example, a 2GL2(b).
Let us begin by showing that there is there a dominant function. In fact, if C is any

countable class of functions ffig then there is function f which dominates all the fi. For
example, put f(x) = maxffi(x) : i < xg+1. This construction requires a uniform list of
all the functions fi. For the recursive functions we know that 000 can compute such a list.
Indeed, Tot = fe : �e totalg �T 000 (Exercise

Tot
4.5.4) and so there is a sequence fi uniformly

8.3. HIGH AND GL2 DEGREES 97

computable from 000 which then computes a dominant function as described. We can do
better than this and avoid using totality. If f(x) = maxf�e(x) : e < x & �e(x) #g then
f �T 00 and is also clearly dominant. We can even do a bit better and get away with
functions of high degree.

martin Theorem 8.3.1 (Martin�s High Domination Theorem) A set A computes a dom-
inant function f if and only if 000 �T A0.

Proof. Suppose �rst that 000 �T A0. By the Shoen�eld limit lemma (Theorem
limitlemma
4.3.9) and

the fact that Tot �T 000, there is an h �T A with lims!1 h(e; s) = Tot(e). We want to
compute a function f recursively in A such that, for every e for which �e is total, f(x)
is larger than �e(x) for all but �nitely many x. Any such f is dominant. To compute
f(x) we compute, for each e < x, both �e;t(x) and h(e; t) for t � x until either the �rst
one converges, say to ye, or h(e; t) = 0. As, if �e is not total, limh(e; t) = 0, one of these
outcomes must happen. We set f(x) to be one more than the maximum of all the ye so
computed for e < x. Note that f �T h �T A. It remains to verify that if �e is total then
�e < f . By our choice of h, 9s0(8s � s0)(h(e; s) = 1). So for x > s0 when we calculate
f(x) we always �nd a t such that �e;t(x) #= ye and so f(x) > �e(x) for all x > s0.
For the other direction, suppose we have a dominant f . As Tot is �02 and computes

000, it su¢ ces to show that it is also �2(f) as it would then be �2(f) and so recursive in
f 0. We claim that

8x9s�e;s(x) # , 9c8x�e;f(x)+c(x) # :

Suppose �e is total (if not, then of course both conditions fail). Let k(x) = �s�k;s(x) #.
Then k is recursive (because we know that8x�e(x) #). By hypothesis, f dominates k.
Thus, the right hand side holds. This is a �2(f) formula as desired.
Now a look at the de�nitions shows that for a �T 00, a =2 L2 is equivalent to 00 not

being high relative to a. Relativizing Theorem
martin
8.3.1 to an a �T 00 we see that a =2 L2

if and only if no f �T 00 dominates every (total) function recursive in A. We can then
handle GL2 by relativizing to a _ 00 to prove the following:

gl2 Proposition 8.3.2 A set A �T 00 has degree in L2 if and only if (8g �T 00)(9f �T
A)(f � g). An arbitrary set A has degree in GL2 if and only if (8g �T A _ 00)(9f �T
A)(f � g).

??Prove??
This says that, while sets that are not high do not compute dominant functions, if

they are not too low they compute functions which are not dominated by any recursive
function. This su¢ ces for many applications.

gl21gen Theorem 8.3.3 If A =2 GL2 then for any recursive notion of forcing P there is 1-generic
sequence hpsi �T A and so the associated 1-generic G is also recursive in A.

98 CHAPTER 8. DOMINATION PROPERTIES

Proof. For any g �T A _ 00, there is an f �T A not dominated by g. Without loss
of generality we may take f to be strictly increasing. We �rst construct the function
g that we want and then, using the associated f , we construct a 1-generic sequence ps
recursively in f (and so A). We again make use of the natural order � on P � N.
Let Se list the �1 subsets of P . As usual, we declare Se to be satis�ed at s if

(9n � s)(pn 2 Se;s). We de�ne g by recursion using 00. Given g(s), we want to determine
g(s+1). For each condition p � g(s)+1, ask 00 if (9q �P p)(q 2 Se) for each e � g(s)+1.
If such an extension exists, let xe be the least x such that (9q �P p)(q � x & q 2 Se;x).
Put g(s+ 1) = maxfxeje � g(s) + 1g.
We cannot use g itself in the construction of the desired 1-generic hpsi because we

want hpsi �T A. But, since g �T A_ 00, we can use an increasing f �T A not dominated
by g. The construction of G is recursive in f (hence in A). At stage s, we have �nite
a condition ps. For each e � s not declared satis�ed at s, see if (9q �P ps)(q <
f(s+ 1) & q 2 Se;f(s+1)). If so, take the smallest such q for the least such e and let it be
ps+1. If not, ps+1 = ps. The construction is recursive in f , hence in A. Thus hpsi �T A
and the associated G �T A as well. Note that ps � f(s) by induction. Indeed ps � g(s)
as well because g(s) gives a bound on the witness required in the de�nition of ps.
To verify that G is 1-generic suppose, for the sake of a contradiction, that there is a

least e0 such that
:9s(ps 2 Se0 _ (8p �P ps)(p =2 Se0)):

Choose s0 such that, (8i < e0)[(9s)(Si is declared satis�ed at s)! Si is declared satis�ed
by s0]. Consider any s > s0 at which f(s+ 1) > g(s+ 1). By our choice of e0, there is a
q �P ps such that q 2 Se0. Moreover, as ps � g(s), by de�nition of g there is one� g(s+1)
such that it belongs to Se0;g(s+1) as well. By our choice of s, q � g(s+1) < f(s+1). Thus
at stage s+1, we would act to extend ps to a ps+1 2 Se0 for the desired contradiction.

cohenanr Remark 8.3.4 The function g we used in the above proof was actually recursive in 00.
In fact, for Cohen forcing g �wtt 00. Thus we used the weaker property that for every
function g �wtt 00 there is an f �T A not dominated by g. This property is called array
non-recursiveness and is discussed in the next section.

As for the r.e. degrees, having a 1-generic below a degree a =2 GL2 provides a lot of
information about the degrees below a. For example, as in Corollary

recohen
8.2.8, we can embed

every countable partial order below any a =2 GL2. It is tempting to think that we could
also prove the analog of Corollary

renomax
8.2.10 that every maximal chain in the degrees below a

is in�nite. This is true for a < 00 (Exercise
max<0�
8.3.5) but was a long open question (Lerman

[1983]). Cai [2012] has now proven that it is not true. There are a =2 GL2 which are the
tops of a maximal chain of length three.

max<0� Exercise 8.3.5 Prove that if a � 00 and a =2 L2 then any maximal chain in the degrees
below a is in�nite.

On the other hand, we can say quite a bit that is not true of arbitrary r.e. degrees
about the degrees above a when a =2 GL2 .

8.3. HIGH AND GL2 DEGREES 99

De�nition 8.3.6 A degree a has the cupping property if (8c > a)(9b < c)(a _ b = c).

gl2cup Theorem 8.3.7 If a 2GL2 then a has the cupping property. Indeed, if A =2 GL2 and
C >T A then there is G �T A such that A�G �T C and G is Cohen 1-generic.

Proof. We need to add requirements Re : �Ge 6= A to the proof of Theorem
gl21gen
8.3.3 for

Cohen forcing (making all the requirements into a single list Qe) and code C into G as
well (so as to be recoverable from A � G). In the de�nition of g(s + 1) in that proof,
for each p � g(s) + 1 look as well for q0; q1 � p and x such that q0jeq1. Then make
g(s+1) also bound the least such extensions � 0; � 1 for each e; p � g(s)+1 for which such
extensions exist.
Again choose f �T A strictly increasing and not dominated by g. The construction

is done recursively in f � C. At stage s we have ps and we look for the least e such
that Qe has not yet been declared satis�ed and for which there is either a q �P p with
q � f(s + 1) that would satisfy Qe as before if it is an Si or a pair of strings q0; q1 � ps
with qi � f(s + 1) such that q0jeq1 if Qe = Ri. Let e be the least for which there are
such extensions. If Qe = Si choose q as before. If it is Ri Let q be the qj such that
�
qj
e (x) #6= A(x). We then let ps+1 = q^C(s) and declare Qe to be satis�ed. If there is no
such e, we let ps+1 = ps^C(s). Note that ps+1 � f(s + 1) + 1 (the extra 1 comes from
appending C(s)).
Since the construction is recursive in f � C and f �T A �T C, we have G �T C.

But, C �T hpsi because C(s) = ps+1(jps+1j). However, hpsi �T A _ G because f �T A
tells how to compute each stage from the given ps to the choice of q. Then G tells us the
last extra bit at the end of ps+1.
To verify thatG has the other required properties suppose e0 is least such thatQe fails.

Assume that by stage s0 we have declared all requirements with e0 < e0 which will ever
be declared satis�ed to be satis�ed. Consider a stage s > s0 at which f(s+1) > g(s+1).
If Qe = Si then we argue as in the previous theorem. If Qe = Ri and there were any
q0; q1 � ps with q0jeq1 then would have taken one of them as our q and declared Qe = Ri
to be satis�ed contrary to our choice of e0. On the other hand, if there are no such
extensions, then as usual �Ge is recursive if total and so Ri would also succeed contrary
to our assumption.

renoncup Remark 8.3.8 Not every r.e. degree has the cupping property.

For other results about GL2 degrees it is often useful to strengthen Theorem
gl21gen
8.3.3 to

deal with notions of forcing recursive in A rather than just recursive ones.

gl2genseq Theorem 8.3.9 For A 2 GL2, given an A recursive notion of forcing P and a sequence
Dn of dense sets uniformly recursive in A_00 (or with a density function d(n; p) �T A_00)
there is a generic sequence hpsi �T A meeting all the Dn. Of course, the generic G
associated with the sequence is recursive in A as well.

100 CHAPTER 8. DOMINATION PROPERTIES

Proof. Let mK be the least modulus function for K = 00 and let 	A�Kn = Dn, i.e. the
	n uniformly compute membership in Dn. We de�ne g �T A _ 00 by recursion. Given
g(s) we �nd, for each p; n � g(s)+1 the least q such that q �P p and q 2 Dn as witnessed
by a computations of 	A�Ku�u

n;u (n) = 1 where Ku is the same as K on the use from K in
this computation. Next we let g(s+ 1) be the least number larger than q, u and mK(u)
for all of these q and u as well as mK(g(s) + 1). As g �T A_ 00 and A 2 GL2 there is an
increasing f �T A not dominated by g.
We construct the sequence hpsi recursively in f �T A. At stage s we have ps. Our

plan is to satisfy the requirement of meeting Dn for the least n for which we do not seem
to have done so yet and for which we can �nd an appropriate extension of ps when we
restrict our search to q � f(s + 1) as well as our use of 00 to what we have at stage
f(s + 1). More formally, we determine (recursively in A) for which Dn (n � s) there is

a t � s such that 	
(A�Kf(s+1))�f(s+1)
n (pt) = 1. Among the other n � s, we search (again

recursively in A) for one such that (9q �P ps)(q � f(s+1) & 	
(A�Kf(s+1))�f(s+1)
n (q) = 1).

If there is one we act for the least such n by letting ps+1 be the least such q for this n. If
not, let ps+1 = ps. Note that ps+1 � f(s+ 1) by the restriction on the search space and
ps+1 � g(s+1) as well since g(s+1) also bounds the least witness by the de�nition of g.
We now claim that for each n there is a ps 2 Dn. If not, suppose, for the sake of a

contradiction, that n is the least counterexample. Choose s0 such that for allm < n there
is t < s0 such that pt 2 Dm and indeed such that 	

(A�Ks0)�s0
m (pt) = 1 andKs0 � u = K � u

where u is the use of this computation of 	m at pt. Thus, by construction, we never
act for m < n after s0. As g does not dominate f we may choose an s > s0 with
f(s+1) > g(s+1). At stage s we have ps and pt =2 Dn for all t � s in the sense required,

i.e. 	
(A�Kf(s+1))�f(s+1)
n (pt) = 0 since any computation of this form gives the correct answer

by our de�nition of g(s + 1) and the fact that f(s + 1) > g(s + 1). There is a q �P ps

with q 2 Dn and the least such is less than f(s + 1) and 	
(A�Kf(s+1))�f(s+1)
n (q) = 1 with

the computation being a correct one from A�K by the de�nition of g(s+1) < f(s+1).
Thus we would take the least such q to be ps+1 2 Dn for the desired contradiction.
We now give a couple of applications that play a crucial role in our global analysis

of de�nability in D(� 00). ??Later also for D and, in particular, of the jump operator
??. The �rst is a jump inversion theorem that ??strengthens and (check original)??
generalizes Shoen�eld�s.

gl2completeness Theorem 8.3.10 (GL2 jump inversion) If A 2 GL2, C �T A _ 00, and C is r.e. in
A, then there is a B �T A such that B0 �T C.

Proof. Let Cs be an enumeration of C recursive in A. We want a notion forcing recursive
in A and a collection of dense sets Dn such that for any hDni generic G, G0 �T C. This
time, our notion of forcing has conditions p 2 2<!. The de�nition of extension for P is
a bit tricky. If q � p and

he; xi 2 [jpj; jqj)) [Cjpj(x) = q(he; xi) or 9n � e (�pn(n) " & �qn(n) #)]

8.3. HIGH AND GL2 DEGREES 101

we say that q �1 p. Now this relation is clearly recursive in A since A computes Cjpj
for each p. However, it need not be transitive (Exercise). We let �P be its transitive
closure. As, given any r � p, there are only �nitely many q�s with r � q � p we can
check all possible routes via �1 from p to r recursively in A and so �P is also recursive in
A. The plan for coding C into G0 uses the Shoen�eld limit lemma and partially explains
the notion of extension. It guarantees that e 2 C) G[e] =� ! while e =2 C) G[e] =� ;.
Thus e 2 C , limsG(he; si = 1 and so C �T G0. Suppose we have a generic sequence
hpsi �T A for some collection of dense sets as in Theorem

gl2genseq
8.3.9. The de�nition of

extension guarantees that coding mistakes can happen in column e only when �psn (n)
�rst converges for some n � e. Thus C �T G0.
Our �rst class of dense sets include the trivial requirements and in addition force the

jump of G in the hope of making G0 �T C:

Dm;j = fp : jpj � j & [�pm(m) # or (8q � p)(�qm(m) "
or [(9e < m)(9he; xi 2 [jpj; jqj)(Cjpj(e) 6= q(he; xi) but :(9n � e)(�pn(n) " & �qn(n) #)])g

Note that, after we use A to compute Cjpj, membership in Dm;j is a �1 property and so
recursive in 00. Thus, the Dm;j are uniformly recursive in A _ 00. We must argue that
they are dense. Consider any p. We can clearly extend it to a q with jqj � j by making
q(he; xi) = Cjpj(e) for he; xi 2 [jpj; j). So we may as well assume that jpj � j. If �pm(m) #
then p 2 Dm;j and we are done. So suppose �pm(m) ". If there is q � p such that �qm(m) #
and (8e < m)(8 he; xi 2 [jpj; jqj)[Cjpj(x) = q(he; xi) or 9n � e (�pn(n) " & �qn(n) #)],
q �P p by de�nition (because �pm(m) " while �qm(m) # so any violation of coding is
allowed for e � m) and is in Dm;j. If there is no such q then p 2 Dm;j by de�nition.
Now we verify that G = [ps has the desired properties. By Theorem

gl2genseq
8.3.9, G �T A.

To see that C �T G0 consider any e. Let s be such that (8i � e)(�Gi (i) #) �psi (i) #
& i 2 C) i 2 Cjpsj): It is clear from the de�nition of �P that for any t > s and
hi; xi 2 [jpsj; jptj) with i � e, hi; xi 2 pt , i 2 C. Thus C(e) = limtG(he; ti and so
C �T G0 by the Shoen�eld limit lemma. For the other direction we want to compute
G0(e) recursively in C. (Of course, A �T C and so then is hpsi.) Suppose we have, by
induction, computed an s as above for e � 1. We can now ask if e 2 C. If so, we �nd
a u � t � s such that e 2 Cjptj and pu 2 De;jptj. If �

pu
e (e) #, then, of course, e 2 G0.

If �pue (e) " but e 2 G0, then there would be a v > u such that �pve (e) # and, of course,
pv �P pu. This would contradict the fact that pu 2 De;jptj by our choice of s and t and
the de�nitions of De;jptj and �P .

Shj2 Corollary 8.3.11 (Shoen�eld Jump Inversion Theorem) For all C � 00 there is
B < 00 such that B0 �T C if and only if C is r.e. in 00.

Proof. The �only if�direction is immediate. The �if�direction follows directly from the
Theorem by taking A = 00.
For later applications we now strengthen the above jump inversion theorem to make

B <T A.

102 CHAPTER 8. DOMINATION PROPERTIES

stgl2completeness Theorem 8.3.12 If A 2 GL2, C �T A _ 00, and C is r.e. in A, then there is B <T A
such that B0 �T C.

Proof. In addition to the requirements of Theorem
gl2completeness
8.3.10, we need to make sure that

�Gi 6= A for each i. To do this we modify the de�nition of extension to also allow violations
of the coding requirements for e when we newly satisfy one of these diagonalization
requirements for i � e. (As we did above for making �Gi (i) #.) We say q �1 p if

he; xi 2 [jpj; jqj)) [Cjpj(x) = q(he; xi) or
9n � e ([�pn(n) " & �qn(n) #] or [9y�qn(y) #6= A(y) & :9y�pn(y) #6= A(y)]) :

Again �P is de�ned as the transitive closure of this relation and it is recursive in
A _ 00 as before. We then adjust the Dm;j accordingly

Dm;j = fp : jpj > j & [�pm(m) # or (8q � p)(�qm(m) "
or [(9e < m)(9he; xi 2 [jpj; jqj)(Cjpj(e) 6= q(he; xi) but
:(9n � e)([�pn(n) " & �qn(n) #] & :(9y)[�qn(y) #6= A(y) & :9y�pn(y) #6= A(y)])]g.

We also need dense sets that guarantee that �Ge 6= A:

Di = fpj(9x)(�pi (x) #6= A(x) or

(8q0; q1 � p)(8x < jq0j; jq1j)[:(�q0i (x) #6= �
q1
i (x) #) or

((9e < i)(9he; xi 2 [jpj; jqj)(9j 2 f0; 1g)[(Cjpj(e) 6= qi(he; xi) but
:(9n � i)([�pn(n) " & �qn(n) #] & :(9y)[�qn(y) #6= A(y) & :9y�pn(y) #6= A(y)])]g.

The proof now proceeds as in the previous Theorem. The arguments for all the veri�ca-
tions are now essentially the same as there and are left as an exercise.??

Exercise 8.3.13 Verify that the notion of forcing and classes of dense sets speci�ed in
the proof of Theorem

stgl2completeness
8.3.12 su¢ ce to actually prove it.

Exercise 8.3.14 Prove that if A is r.e. and C �T 00 is r.e. in A then there is a B �T A
such that B0 �T C. Indeed we may also make B <T A. ??Hint:??

The next result says that every a 2 GL2 is RRE (relatively recursively enumerable),
i.e. there is a b < a such that a is r.e. in b and a bit more.

gl2rre Theorem 8.3.15 If a 2 GL2 then there is b < a such that a is r.e. in b and a is in
GL2(b), i.e. (a _ b0)0 < a00.

Proof. Let a 2 GL2. We�ll use a notion of forcing P with conditions p = hp0; p1; p2i,
pi 2 2<! such that

8.3. HIGH AND GL2 DEGREES 103

1. jp0j = jp1j, p0(dn) = A(n), p1(dn) = 1 � A(n) where dn is nth place where p0; p1
di¤er and

2. (8e < jp0 + p1j)(e 2 p0 � p1 , 9x(he; xi 2 p2)).

As expected, our generic set G0 �G1 �G2 is given by V (p) = p0 � p1 � p2. The idea
here is that if we can force p0; p1 to di¤er at in�nitely many places while still making our
generic sequence recursive in A, the �rst clause in the de�nition of �P guarantees that
G0 � G1 �T A. The second clause works towards making G0 � G1 r.e. in G2 with the
intention being that deg(G2) = g2 is to be the b required by the theorem. Extension in
the notion of forcing is de�ned in the simplest way as q �P p , qi � pi but note that
this only applies to p and q in P and not all q with qi � pi are in P even if p 2 P. The
notion of forcing is clearly recursive in A.
We now de�ne the dense sets needed to satisfy the requirements of the Theorem. We

begin with D2n = fp : p0; p1 di¤er at at least n pointsg. These sets are clearly recursive
in A. We argue that these are dense by induction on n. Suppose D2n is dense. To show
that D2n+2 is dense, it su¢ ces, for any given p 2 D2n � D2n+2, to �nd a q �P p in
D2n+2. Let q0 = p0^A(n), q1 = p1^(1 � A(n)). Choose i 2 f0; 1g such that qi(jp0j) = 1.
De�ne q2 � p2 by choosing x large and setting q2(h2jp0j+ i; xi) = 1 and q2(z) = 0 for all
z =2 dom(p2) and less than h2jp0j+ i; xi. Now q = hq0; q1; q2i satis�es the requirements to
be a condition in P . It obviously extends p and is in D2n+2.
For any generic recursive in A which meets all the D2n, G0 �G1 �T A and G0 �G1

is r.e. in G2.
We also want dense sets similar in �avor to those of the previous theorems to force

the jump of G2 to make (a _ g02)0 < a00. Let

D2n+1 = fp : �p2n (n) # or (8� � p2)

(��n(n) " or (9he; xi 2 �)((p0 � p1)(e) = 0)g.

For p 2 P , membership in D2n+1 is a 00 question and so these sets are recursive in A_00.
We want to prove that they are dense. Suppose have a p 2 P and so we want a q �P p
with q 2 D2n+1. We may suppose that �p2n (n) " and that the second clause fails for p
as otherwise we would already be done. Thus we have a � � p2 such that ��n(n) # but
:(9he; xi 2 �)((p0�p1)(e) = 0). We claim that there is a q �P p such that q2 � � and so
�q2n (n) # and q 2 D2n+1 as required. The only issue is that there may be some hj; yi 2 �
with j > jp0 � p1j. If so, we must de�ne q0 and q1 accordingly, i.e. j 2 q0 � q1. So if j
is even, we want j

2
2 q0; if it is odd,

j�1
2
2 q1. We now de�ne q0; q1 at the appropriate

element (j
2
or j�1

2
) to both be 1. Elsewhere we let both q0 and q1 be 0. Thus we have

not added any points at which q0 and q1 di¤er beyond those in p0; p1). Now we extend �
to q2 by adding he; yi for some large y if (q0 � q1)(e) = 1 and e � jp0 � p1j and wherever
not yet de�ned we let q2(z) = 0. Thus q 2 P and is the desired extension of p in D2n+1

as �q2n (n) = �
�
n(n) #.

We now let hpsi �T A be a generic sequence meeting every Dn as given by Theoremgl2genseq
8.3.9. We have already seen that G0�G1 �T A and it is r.e. in G2 �T A. If we can show

104 CHAPTER 8. DOMINATION PROPERTIES

that (A � G02)
0 <T A00 then we will be done as this clearly implies that G2 <T A. We

�rst claim that G02 �T A _ 00. To see if n 2 G02, recursively in A _ 00 �nd an s such that
ps 2 D2n+1. Then we claim that n 2 G02 , �

ps;2
n (n) #. If �p2n (n) #, then we are done.

If not, then (8� � ps;2) (�
�
n(n) " or (9he; xi 2 �)((p0 � p1)(e) = 0)) and by de�nition of

membership and extension in P, �pt;2n (n) " for every pt;2 for t � s. Thus �G2n (n) " as
desired. AsG02 �T A_00, (A�G02) = A_00 and so as A =2 GL2, (A�G02)0 = (A_00)0 <T A00
as required.

Exercise 8.3.16 If A >T 0 is r.e. and C �T 00 is r.e. in A then there is a B �T A such
that B0 �T C. Indeed we may also make B <T A. Hint: Build �s �nite extensions that
obey a coding rule for columns for e � c(s) � s (so that we can enumerate C recursively
in A) except that we can violate this rule so as to force jump as above; search below
mA(s + 1) for extensions forcing the jump for e � s that obey rule. Also search for
extensions with �e giving di¤erent answers and allow violations in columns > e when we
satisfy this requirement by choosing one that gives an answer other than A.

We can now deduce a result that plays a major role in our analysis of de�nability in
D(�00). ??de�nition of the Turing jump in D and many related results.??

gl2sigma3exact Theorem 8.3.17 If b <T a and a 2 GL2(b) and I is a �B3 ideal in D(�b) then there
is an exact pair for I below a.

Proof. By Theorem
gl2rre
8.3.15 (relativized to b) there is a c such that b � c < a and a is

r.e. in c. So I is also �C3 . Now, by Theorem
resigma3ideal
8.2.11, we have the desired exact pair.

gl2codesigma3 Theorem 8.3.18 If A 2 a 2GL2 and S 2 �A3 then there is an embedding of a nice
e¤ective successor model (with the appropriate partial lattice structure) in the degrees
below deg(A) and an exact pair x;y � a for the ideal generated by the dn with n 2 S.
(Remember that the dn are the degrees representing n 2 N in the e¤ective successor
model.

Proof. Given A 2 GL2 and S 2 �A3 , Theorem
gl2rre
8.3.15 gives us a B < A such that A is

r.e. in B and A is GL2(B). Since A0 � A_00 and is r.e. in it, Theorem
gl2completeness
8.3.10 relativized

to B gives us a B̂ < A (with B �T B̂) such that B̂0 � A0 and so �B̂3 = �
A
3 , Moreover,

A is r.e. in B̂ because it was r.e. in B �T B̂. The result now follows by using Theoremre1gen
8.2.6 and Exercise

latemb1gen
?? to embed an e¤ective successor model between B̂ and A and then

Theorem
resigma3ideal
8.2.11 to pick out the ideal generated by the associated dn for n 2 S as the set

fej9n(�B̂e 2 dn)g is itself �B̂3 = �A3 as is then fej(9n 2 S)(�Ae 2 dn)g.
??Simplify second or as corollary to �rst??Below a H1 or GH1 degree?? Minimal

degree in ?? others here??complementation??

gl2below Exercise 8.3.19 Prove that every degree has a GL2 degree below it.

8.4. DEFINABILITY AND BIINTERPRETABILITY IN D(� 00) 105

Exercise 8.3.20 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(�a) preserving 0 and 1 for any a 2 GL2.

Notes: Theorem
martin
8.3.1 is due to Martin [1966]. Its very useful consequence, Proposi-

tion
gl2
8.3.2 is from Jockusch and Posner [1978] which also contains a version of Theorem

gl21gen
8.3.3 for Cohen forcing, Exercises

max<0�
8.3.5 and

gl2below
8.3.19 as well as Theorem

gl2completeness
8.3.10. The ver-

sion given here of Theorem
gl21gen
8.3.3 and the more general Theorem

gl2genseq
8.3.9 as well as Theorem

gl2rre
8.3.15 come from Cai and Shore [2012]. Corollary

Shj2
8.3.11 was originally proved in Shoen-

�eld [1959]. The original direct proof of (a stronger version of) Theorem
gl2codesigma3
8.3.18 is in

Shore [2007]. Remark
renoncup
8.3.8 follows, for example, from Slaman and Steel [1989, Theorem

3.1] or Cooper [1989]. Theorem
gl2cup
8.3.7 is from Jockusch and Posner [1978].

8.4 De�nability and Biinterpretability in D(� 00)def<0�

We already know that the theory of D(�00) is (recursively) equivalent to true �rst order
arithmetic and so as complicated as possible. We now want attack the problem of de-
termining which subsets of, and relations on, D(�00) are de�nable in the structure. The
interpretation of D(�00) in N gives a necessary condition. Only subsets and relations
de�nable in arithmetic can possibly be de�nable in D(�00). Our goal is to prove that, if
they are also invariant under the double jump, then the are, in fact, de�nable in D(�00).

De�nition 8.4.1 A relation R(x1; : : : ; xn) on degrees is invariant under the double jump
if, for all degrees x1; : : : ;xn and y1; : : : ;yn such that x00i = y

00
i for all i � n, R(x1; : : : ;xn),

R(y1; : : : ;yn).

We begin with the subsets of D(� 00) and, in particular, with the basic question of
de�nably determining the double jump of a degree a � 00. (This would actually su¢ ce to
show that all subsets of D(�00) invariant under double jump and de�nable in arithmetic
are de�nable in D(�00) but as we prove more later we omit this argument.) The crucial
point is that the sets we can code below an r.e. or GL2 degree a are precisely the ones
�A3 . We use this to determine a

00 via the following characterization of the double jump.

sigma3=dj Proposition 8.4.2 For any sets A and B, A00 �T B00 if and only if �A3 = �
B
3 . Indeed,

for any n � 1, A(n) �T B(n) if and only if �An+1 = �
B
n+1.

Proof. The hierarchy theorem
hierarchy
4.5.1 says that, for any set X and n � 1, �Xn+1 = �X

(n)

1 .
On the other hand, for any Z and W , �Z1 = �

W
1 i¤ Z �T W since the equality implies

that both Z and �Z (W and �W) are �1, i.e. r.e., in W (Z) and so each is recursive in the
other. Thus if �An+1 = �

B
n+1 then �

A(n)

1 = �B
(n)

1 and so A(n) �T B(n) as required.

defL2 Theorem 8.4.3 The set L2 = fx � 00jx00 = 000g is de�nable in D(�00).

106 CHAPTER 8. DOMINATION PROPERTIES

Proof. Our analysis of coding in models of arithmetic in Proposition
codeSs3
6.4.9 and preceding

Theorem
Th(D<0�)
7.3.5 (which is really part of the proof of that theorem), shows that we have

a way to, de�nably in D(�00), pick out, via correctness conditions, parameters �p that
de�ne structuresM(�p) isomorphic to N: (The crucial point here is Theorem

resigma3ideal
8.2.11 which

says that there is an exact pair for the ��p03 ideal generated by the standard part of the
model below 00 as it is r.e. in and strictly above �p0.) Also note that, by PropositioncodeSs3
6.4.9, any set S coded inM(�p) them by a pair g0;g1 and a coding formula 'S(x; �p) is
�A3 as long as the parameters �q for the nice e¤ective successor structure determining the
domain of the model and g0;g1 are recursive in A.
We now claim that x 2 L2 if and only for any such �q;g0;g1 �T x the set S coded by

g0;g1 is �3. Moreover, this property is de�nable in D(�00) and so proves the Theorem.
First suppose that x 2 L2. Then our initial remarks show that S 2 �X3 for any

X 2 x. As X 00 �T 000, �X3 = �3 by Proposition
sigma3=dj
8.4.2. Next, if x =2 L2, then by Exerciselatemb1gen

?? and Theorem
gl21gen
8.3.3 there are parameters �q de�ning a nice e¤ective successor model

with join c < x with c0 = 00. By Theorem
reldef0�
7.3.4, we can extend these parameters to

ones �p de�ning a standard model of arithmetic which, of course, satis�es the de�nable
properties guaranteeing that it is such a model. Now, by Theorem

gl2sigma3exact
8.3.17, for any S 2 �X3

there are g0;g1 �T x which code S in this model. Since x00 > 000 there is an S 2 �X3 ��3
again by Proposition

sigma3=dj
8.4.2 and so a code for such an S below x as required.

Finally, note that, as we are working in de�nable standard models of arithmetic, we
can de�nably say that a set is �3 simply by using the translation into our degree structure
of the corresponding sentence of arithmetic.

defdjclasses Theorem 8.4.4 For every h � 000 which is r.e. in 000, the set fx � 00jx00 = hg is de�n-
able in D(�00).

Proof. The previous theorem handles the case that h = 000. For h > 000 Let E 2
e 2 [00;000] be such that E 0 2 h. There is such an E by Corollary

Shj2
8.3.11 and we can

�x a de�nition of one in arithmetic. Consider the formula which says that for any
q;g0;g1< x and �p which de�ne a standard model of arithmetic and a set S coded in the
model as in the proof of the Theorem, S 2 �E2 and for any set Ŝ 2 �E2 (again as given by
a de�nition in arithmetic) there are such q;g0;g1< x and �p de�ning Ŝ. Proposition

sigma3=dj
8.4.2

and calculations already described now show that this guarantees that �X
0

2 = �X3 = �
E
2

and so x00 = e0 = h as required.

defjclasses Corollary 8.4.5 The jump classes Ln (a(n) = 0(n)) and Hn (a(n) = 0(n+1)) are de�nable
in D(�00) for n � 2.

Proof. In the proof of Theorem
defdjclasses
8.4.4, require instead of E 0 2 h that E(n�1) �T 0(n) for

Ln and E(n�1) �T 0(n+1) for Hn.
By a separate additional argument that requires results beyond the scope of these

lectures we can also get the de�nability of H1. While we could make such an argument

8.4. DEFINABILITY AND BIINTERPRETABILITY IN D(� 00) 107

at this point it will be easier later. We do so in Corollary
defH1
8.4.11. The de�nability of L1

in D(�00) is an important open problem.
If we now wish to deal with arbitrary relations on D(�00) rather than simply subsets,

we are faced with the problem that our analysis so far has, for each degree a, produced
various models of arithmetic in which we code the sets �A3 . To discuss even binary
relations we must have a way to analyze any a and b (or equivalently the sets coded
below them as long as we are only working up to invariance under the double jump) in a
single model (perhaps with additional correctness conditions). The basic formulation of
this issue is given by asking about the biinterpretability of the structure (here D(�00))
with arithmetic (here �rst order). A similar notion applies to other structures (such as
the r.e. degrees, R) still with �rst order arithmetic and to ones such as D but for second
order arithmetic.

biint De�nition 8.4.6 A degree structure S is biinterpretable with true �rst (second) order
arithmetic if it is interpretable in �rst (second) order arithmetic and we have formulas
in parameters �p (including a correctness condition) as speci�ed in §

interp
7.1 which provide an

interpretation of true arithmetic in S (i.e. the models M(�p) satisfying the correctness
condition are all standard). For second order arithmetic, we also have a formula 'S(x; �y)
which de�nes sets (coded) in the model given by �p. We require that the sets de�ned by
'S(x; �y) as �y ranges over all parameters in S are all subsets of N.
Moreover, for both �rst and second order arithmetic, there is an additional formula

'R(x; �y; �p) such that S � 8x9�y'R(x; �y; �p) and for every a; �g 2 S, S �'R(a; �g; �p) if and
only if the set fnj'S(dn; �g; �p)g (where dn is the nth element of the model M(�p) coded
by the parameters �p) is of degree a. These last conditions then say that the set coded in
M(�p) by �g is of degree a and that all degrees a in S have codes �g for a set of degree a.
We say that S is biinterpretable with true �rst (second) order arithmetic up to double

jump if we weaken the second condition on 'R so that for every a; �g 2 S, S �'R(a; �b; �p)
if and only if the set fnj'S(dn; �g; �p)g has the same double jump as a.

It is not hard to see that, if a degree structure S is biinterpretable with �rst or
second order arithmetic, then we know all there is to know about de�nability in, and
automorphisms of, S.

biintdef Theorem 8.4.7 If a degree structure S is biinterpretable with �rst or second order arith-
metic then it is rigid, i.e. it has no automorphisms other than the identity, and a relation
on S is de�nable in S if and only if it is de�nable in �rst or second order arithmetic,
respectively.

Proof. We �rst prove rigidity. Let �p satisfy all the formulas required for it to determine
a standard model of arithmetic via the given formulas. Consider any a 2S with some �g
such that S � 'R(a; �g; �p) and any automorphism 	 of S. The image 	(�p) = �r satis�es
all the same formulas as �p and so also de�nes a standard model of arithmetic. The image
�h of �g under 	 also determines a subset of this model via 'S and it must be the �same�

108 CHAPTER 8. DOMINATION PROPERTIES

subset in the sense that they correspond to the same subset of N via the isomorphisms
among M(�p), M(�r) and N. Of course, 'R(b; �h;�r) (where b =	(a)) is also true in S
since 	 is an automorphism. Our de�nition of biinterpretability now says that a = b as
required for rigidity.
Now consider any relation Q(�x) on S. By the assumption that S is interpretable in

�rst or second order arithmetic, we know that Q is de�nable in those structures. For the
other direction, suppose Q is de�nable by a formula � of �rst or second order arithmetic.
If this is �rst order arithmetic then we expanded it by a sequence �X of second order
parameters (of the same length n as �x) whose intended interpretations are some subsets of
the model. If it is second order arithmetic then we simply assume that the formula already
contains a sequence �X of free second order variables (of the same length as �x). In any
case, � de�nes the property that the sequence of the degrees of X satis�es Q.) Q is then
de�ned in S by the formula 	(�z) � 9�p; �g0 : : : 9�gn�1('c(�p) &

V
i<n

'R(zi; �gi; �p)! �T (�gi; �p))

where T is the translation of formulas of second order arithmetic given in §
interp
7.1. Here

our correctness condition 'c guarantees that the model M(�p) is standard and we also
assume that the requirements of the de�nition of biinterpretability are satis�ed. So the
translation of � asserts (because of the properties of 'R) that a sequence of sets of degree
zi satisfy � (in N), i.e. Q holds of �z.
Our goal now is to prove that D(�00) is biinterpretable with arithmetic up to double

jump and so every relation on it invariant under the double jump is de�nable in it if and
only if it is de�nable in �rst order arithmetic.

D0biintDJ Theorem 8.4.8 D(�00) is biinterpretable with arithmetic up to double jump.

Theorem
defL2
8.4.3 and Theorem

defdjclasses
8.4.4 show that we can de�ne the double jump classes

of degrees a in D(�00) by talking about the sets that are coded (by our usual formula
'S(x; �g)) in standard models M(�p) of arithmetic with �q; �g below a as in the proof of
Theorem

defL2
8.4.3. The point here is that these sets determine �A3 and so a

00 by Proposition
sigma3=dj
8.4.2. If we wish to de�ne the relations needed for biinterpretability up to double jump, we
need to be able to talk about the sets that are �A3 for an arbitrary degree a simultaneously
in a single model. Our plan is to provide a scheme de�ning isomorphisms between
two arbitrary standard models satisfying some additional correctness condition. Such
isomorphisms would allow us to de�nably transfer (codes for) sets in di¤erent models to
ones for the same sets in a single model and so de�ne the required relation 'R. We begin
with a lemma that is used to build such isomorphisms by interpolating a sequence of
additional models between the two given ones and isomorphisms between each successive
pair of models.

gl21genovertwoL1 Lemma 8.4.9 If c � 00, c 2 L2 , a0; a1 2 L1 and P is a recursive notion of forcing,
then there is a G �T C which is 1-generic for P and such that A0 � G and A1 � G are
both low.

8.4. DEFINABILITY AND BIINTERPRETABILITY IN D(� 00) 109

Proof. Let Dn;2 be the usual dense sets for making G 1-generic for P. They, and the
density function for them, are uniformly recursive in 00. Now consider, for i 2 f0; 1g, the
sets Dn;i = fpj�Ai�V (p)n (n) # or (8q � p)�

Ai�V (q)
n (n) "g. As the Ai are low, these sets

and their density functions are also uniformly recursive in 00. Thus, by Theorem
gl2genseq
8.3.9,

there is a 1-generic sequence hpki and an associated generic set G both recursive in C
meeting all these dense sets. Any such G clearly has all the properties required in the
theorem. (Follow, for example, the proof of Proposition

ngenericlown
6.2.18 using these De;i in place

of D1;e.)

Proof (of Theorem
D0biintDJ
8.4.8). In addition to the previous correctness conditions for

our standard models M(�p) we require for the rest of this section that p0, the �rst of
the parameters �p, which bounds the parameters �q de�ning the nice e¤ective successor
structure providing the domain dn of the model, is in �L2. (This condition is de�nable by
Theorem

defL2
8.4.3.) Given two such modelsM(�p0) andM(�p4) we want to show that there

are additional models M(�pk) for k 2 f1; 2; 3g and uniformly de�nable isomorphisms
between the domains of these models taking di;n to d1+1;n for i < 4. (Given parameters
�pk de�ning a modelM(�pk) we write dk;n for the degree representing the nth element of
this model. Similarly, we write �pk;0 for the �rst element of �pk and �qk for the parameters in
�pk determining the e¤ective successor structure which provides the domain ofM(�pk).)
Thus (as we explain below) we produce a single formula �(x; y; �z; �z0) which uniformly
de�nes isomorphisms between any two of our standard modelsM(�p0) andM(�p4) (with
�z and �z0 replaced by �p0 and �p4).
We begin by choosing �q1 < 00 as given by a 1-generic over p0;0 sequence and function

for the recursive notion of forcing (Exercise
latemb1gen
??) that embeds a nice e¤ective successor

model with �q1;0, the �rst element of �q1, being the bound on all the other required para-
meters. As p0;0 2 L2, 00 is �L2(p0;0) and so such �q1 exists by Theorem

gl21gen
8.3.3 (relativized

to p0;0). Note that �q1 (and so �q1;0) is in L1 by Proposition
ngenericlown
6.2.18 as it is associated with

a 1-generic sequence recursive in 00. We may now extend �q1 to �p1 de�ning a standard
model M(�p1) by Exercise

sw1gen
7.3.3 and Theorem

gl21gen
8.3.3 as 00 is GL2(�q1). Similarly, we see

that there are �q3 and �p3 bearing the same relation toM(p4) as �q1 and �p1 do toM(p0).
Now as �q1;0 and �q3;0 are both low we may apply Lemma

gl21genovertwoL1
8.4.9 to the forcing of Exercise

latemb1gen
??

to get �q2 < 00 (again as 00 2 �L2(�q1;0); �L2(�q3;0)) such that both �q1;0 � �q2;0 and �q2;0 � �q3;0
are in L1 and then extend �q2 to �p2 de�ningM(�p2) as we did for �q1.
We now apply Exercise

sw1gen
7.3.3 and Theorem

gl21gen
8.3.3 to get the desired schemes de�ning our

desired isomorphisms: Given any n 2 N and i < 4, consider the �nite sequences of degrees
hdi;0; : : : ;di;ni and hdi+1;0; : : : ;di+1;ni. We want to show that there are parameters �ri < 00
such that the formula '2(x; y;�ri) (where '2(x; y; �z) ranges over binary relations as �z varies
as in Theorem

reldef
7.2.3) de�nes an isomorphism taking di;k to di+1;k for each k � n. By

the results just cited it su¢ ces to show that the
L
k<n

di;k �
L
k<n

di+1;k are in L2 for each

i < 4. For i = 0, note that �q1 is associated with a 1-generic/p0:0 sequence which is
recursive in 00. Thus by Proposition

ngenericlown
6.2.18 (suitably relativized) (�q1�p0;0)0 = p00;0 and

so (�q1;0��p0;0)0 = p00;0. As p0;0 2 L2, 000 = �p000;0 = (�q1;0��p0;0)00 as required. The argument

110 CHAPTER 8. DOMINATION PROPERTIES

for i = 3 is similar. For the other pairs, we have already guaranteed that �q1;0 � �q2;0 and
�q2;0 � �q3;0 are both L1.
We can now de�ne the desired isomorphism �(n;m; �p0; �p4) between M(�p0) and

M(�p4). We say that an n in the domain of M(�p0) (i.e. 'D(n; �p0)) is taken to m
in the domain ofM(�p4) if and only if there are degrees �pk for k 2 f1; 2; 3g de�ning mod-
els of arithmeticM(�pk) and ones �ri for i < 4 as above such that each '2(x; y;�ri) de�nes
an isomorphism between initial segments of (the domains of)M(�pi) andM(�pi+1) where
the initial segment inM(�p0) is the one with largest element n and that inM(�p1) has
largest element m. Clearly this can all be expressed using the formulas 'D(x; �pk) and
'<(x; y; �pk) de�ning the domains of M(�pk) and the orderings on them. Note that the
de�nition of this isomorphism is uniform in �p0 and �p4 and that we have shown that for
any �p0 and �p4 de�ning our standard models of arithmetic, there are parameters below 00

de�ning all these isomorphisms. In other words, we have described the desired formula
�(x; �y; �z; �z0).
We now wish to de�ne the formula 'R(x; �y; �p0) required in the de�nition of biinter-

pretability up to double jump (forM(�p0) a model of arithmetic). (We have replaced �p
in De�nition

biint
8.4.6 by �p0 to match our current notation.) First, 'R says that, if x 2 L2

(as de�ned by Theorem
defL2
8.4.3), then �y de�nes (via our standard 'S) the empty set in

M(�p0). In addition, 'R says that, if x =2 L2 and S is the set de�ned in M(�p0) by �y,
then for every set Ŝ 2 �S3 (with Ŝ de�ned by other parameters �h inM(�p0) and Ŝ 2 �S3
expressed in the translation of arithmetic into M(�p0)), there are �g < x and �p4 with
�p4;0 < x such that �g codes a set Ŝ4 in M(�p4) and, for every n and m, �(n;m; �p0; �p4)
implies that 'S(n; �h; �p0),'S(m; �g; �p4), i.e. Ŝ = Ŝ4. By all that we have done already,
this guarantees that every Ŝ 2 �S3 is �X3 . For the other direction, 'R also says that if
�g < x and �p4 with �p4;0 < x are such that �g codes a set Ŝ4 inM(�p4) then there is a set
Ŝ (coded inM(�p0) by some �h) which is �S3 (as expressed inM(�p0)) such that Ŝ = Ŝ4
as expressed as above using �. So again by what we have already done, this guarantees
that every Ŝ4 2 �X3 is �S3 . Thus, by Proposition

sigma3=dj
8.4.2, S has the same double jump as

X as required.

D0defDJ Theorem 8.4.10 A relation on D(�00) which is invariant under the double jump is
de�nable in D(�00) if and only if it is de�nable in true �rst order arithmetic.

Proof. Follow the proof of Theorem
biintdef
8.4.7 but use Theorem

D0biintDJ
8.4.8 in place of the assump-

tion that the structure is biinterpretable with arithmetic.

defH1 Corollary 8.4.11 H1 is de�nable in D(�00).

Proof. This follows immediately from the Theorem and fact that x < 00 is in H1 if and
only if D(�00) �8z9y � x(z00 = y00). This fact is proven for r.e. x in Nies, Shore and
Slaman [1998, Theorem 2.21] but (as indicated there on p. 257) replacing the last use
of the Robinson jump interpolation theorem in the proof by Theorem

gl2completeness
8.3.10 provides a

proof for D(�00).

8.4. DEFINABILITY AND BIINTERPRETABILITY IN D(� 00) 111

The analogous theorems hold for both D and R, i.e. they are biinterpretable with
second or �rst order arithmetic, respectively, up to double jump. (Moreover, in D the
jump is also de�nable.) Their de�nable relations which are invariant under the double
jump are then characterized in the same way. Indeed, every jump ideal I of D (i.e. an
ideal that is also closed under the jump operator) which contains 0(!) is biinterpretable
with second order arithmetic up to double jump if one takes the second order structure
to have sets precisely those with degrees in I and the jump is de�nable in I as well.
By more extensive uses of Theorem

gl2genseq
8.3.9 we can prove our biinterpretability and so

de�nability results for D(� x) for any x � 00 in �L2.

L2biintDJ Exercise 8.4.12 For every x � 00 in �L2, Th(D(�x) is biinterpretable with true �rst
order arithmetic and so its theory is 1-1 equivalent to that of true arithmetic. Moreover,
for every x � 00 a relation on D(� x) invariant under double jump is de�nable in D(� x)
if and only if it is de�nable in �rst order arithmetic. (For x 2 L2, this last result is trivial.
Otherwise, it follows from biinterpretability as before.)

The Biinterpretability Conjectures for D(�00); R and D assert that these structures
are actually biinterpretable with �rst, �rst and second order arithmetic, respectively.
As we have seen proofs of these conjectures would show that the structures are rigid
and would completely characterize their de�nable relations. These are the major open
problems of degree theory.

Notes: The de�nitions of biinterpretability for di¤erent degree structures and the
associated conjectures are due to Harrington and Slaman and Woodin (see Slaman [1991]
and [2008]). Theorems

defL2
8.4.3 and

defdjclasses
8.4.4 are originally due to Shore [1988] but for triple

jump in place of double jump. The improvement of one jump is essentially an application
of Proposition

sigma3=dj
8.4.2 as pointed out in Nies, Shore and Slaman [1998] where Corollary

defH1
8.4.11 also appears. Slaman and Woodin also proved Theorem

biintdef
8.4.7 (again see Slaman

[1991] and [2008]). Plans for proving Theorem
D0biintDJ
8.4.8 were proposed in both Shore [1988]

and more concretely in Nies, Shore and Slaman [1998] but neither actually provided the
de�nitions of the required comparison maps nor the proofs that they exist as we have
done here. Thus Theorems

D0biintDJ
8.4.8,

D0defDJ
8.4.10 and the improvement to initial segments of

D(�00) bounded by any x 2 �L2 of Exercise
L2biintDJ
8.4.12 are new. A proof of Exercise

L2biintDJ
8.4.12

is in Shore [2014]. Biinterpretability up to double jump for the r.e. degree R is proven
in Nies, Shore and Slaman [1998]. Slaman and Woodin (see Slaman [1991] and [2008])
proved it for D. A very di¤erent proof that also gives the results described for jump
ideals containing 0(!) is in Shore [2007]. The de�nability of the jump is proven in Shore
and Slaman [1999] based on the results of Slaman and Woodin. This reliance is removed
in Shore [2007] where the jump is also de�ned in every jump ideals containing 0(!).
??forward references??

112 CHAPTER 8. DOMINATION PROPERTIES

8.5 Array Nonrecursive Degrees

The notion of array nonrecursiveness was originally introduced in the context of r.e.
degrees to capture certain types of arguments in which one needed multiple permissions
from (changes in) a given r.e. set to construct a desired set. (DJS I) It was phrased
in terms of the r.e. set meeting (intersecting) the elements of certain types of arrays
of uniformly given �nite sets. It was later (DJS II) generalized to all degrees with a
de�nition based on a domination property involving functions weak truth-table reducible
to 00 and shown to have many of the properties of GL2 degrees.

anrdeg De�nition 8.5.1 A degree a is ANR if for every function g �wtt 00 there is an f �T a
such that f is not dominated by g.

Exercise 8.5.2 If a 2 GL2 then a 2 ANR.

This notion is actually equivalent to two related ones, one seemingly weaker and the
other seemingly stronger. (DJS and CSh)

anreq Proposition 8.5.3 The following are equivalent for a degree a:

1. a is ANR.

2. There is a function f �T a which is not dominated by the least modulus function
mK for 00.

3. For any A 2 a and g = �e(A� 00) such that there is a function r �T A bounding
the use from 00 in the computation of g at each x, there is a k �T A which is not
dominated by g.

Proof. That (1) implies (2) and (3) implies (1) are immediate from the de�nitions. We
prove that (2) implies (3).
Without loss of generality we may assume that f , g and r are increasing. We de�ne

the required k �T A as follows: To calculate k(n) compute, for each s > n in turn,
�e;fr(s)(A�00fr(s);n) (i.e. compute fr(s)many steps in the standard enumeration of 00 and
then, using this set as the second component of the oracle (and A for the �rst), compute
�e at n for fr(s) many steps) until the computation converges and then add 1 to get the
value of k(n). This procedure must converge as �e(A � 00;n) converges. Now, as mK

does not dominate f , there are in�nitely many n such that there is a j 2 [r(n); r(n+1))
with f(j) > mK(j). For such n we have fr(n + 1) > f(j) > mK(j) � mKr(n). Thus
00fr(s) � r(n) = 00 � r(n) for every s > n. So the computation of �e(A � 00;n) is,
step by step, the same as that of �e(A � 00fr(s);n) for each s > n as all the oracles
agree on the actual use of the true computation. So eventually we get an s > n such
that �e;fr(s)(f � 00fr(s);n) # and the output must be �e(A � 00;n). Thus, for these n,
k(n) = g(n) + 1 > g(n) as required.

8.5. ARRAY NONRECURSIVE DEGREES 113

lowanr Exercise 8.5.4 There is an a 2 ANR with a 2 L1. In fact, there is a Cohen 1-generic
A whose degree is ANR. Hint: use Proposition

anreq
8.5.3(2) and the principal function

??de�nition?? of A.

Exercises on f is ANR, relativizations and uniformity

That there are Cohen 1-generics below every a 2 ANR follows immediately from
the proof of Theorem

gl21gen
8.3.3 and Remark

cohenanr
8.3.4. This, as usual, gives one whole array of

corollaries. We now prove the analog for ANR of the stronger version given for GL2
degrees in Theorem

gl2genseq
8.3.9. This allows us to carry out almost all of the known forcing

constructions for GL2 degrees for ANR ones.

anrgenseq Theorem 8.5.5 If A is of ANR degree, P is an A-recursive notion of forcing, C = hDni
a sequence of sets dense in P (including the ones fpj jV (p)j > lg for each l) with a
density function d(x; y) = 	(A� 00;x; y) such that the use from 00 in the computation of
	(A� 00;x; y) is bounded by a function r̂ �T A, then there is a C-generic sequence hpsi
recursive in A. Indeed, 8n9s(ps+1 = d(ps; n)).

Proof. Without loss of generality we may assume that r̂(x; y) is increasing in both x
and y. Next note that the nondecreasing function mK r̂(s; s) satis�es the hypotheses of
Proposition

anreq
8.5.3(3), i.e. it is computable from A � 00 and its 00 use is bounded by a

function (r̂(s; s)) recursive in A. Finally note that the maximum of the running times
of 	(A � 00;x; y) for x; y � s is also is such a function. (We run 	 on each input and
then output the sum of the number of steps needed to converge.) Finally, we let r be the
maximum of these three functions so it too is of the desired form. By Proposition

anreq
8.5.3,

we now have an increasing function g �T A not dominated by r. We use g to construct
the desired generic sequence ps by recursion.
We begin with p1 = 1. At step s + 1 we have (by induction) a nested sequence

hpiji � si with pi � s. We calculate 00g(s+1) and see if there are any changes on the use
from 00 in a computation based on which some Dm was previous declared satis�ed. If so,
we now declare it unsatis�ed. Suppose n is the least m < s+ 1 such that Dm is not now
declared satis�ed. (There must be one as we declare at most onem to be satis�ed at every
stage and none at stage 1.) We compute 	g(s+1)(A � 00g(s+1); ps; n). If the computation
does not converge or gives an output q such that q > s+ 1 or q �P ps we end the stage
and set ps+1 = ps. Otherwise, we end the stage, declare Dn to be satis�ed on the basis
of this computation of the output q and set ps+1 = q. Of course, hpsi �T A.
We now verify thathpsi is C-generic and indeed 8n9s(ps+1 = d(ps; n)). Clearly if

we ever declare Dn to be satis�ed (and de�ne ps+1 accordingly) and it never becomes
unsatis�ed again then ps+1 = d(ps; n). Moreover, if we ever declare Dn to be satis�ed
(and de�ne ps+1 accordingly) and it remains satis�ed at a point of the construction at
which we have enumerated 00 correctly up to r(ps; n), then by de�nition ps+1 = d(ps; n)
and Dn is never declared unsatis�ed again. We now show that this happens.

114 CHAPTER 8. DOMINATION PROPERTIES

Suppose all Dm for m < n have been declared satis�ed by s0 and are never declared
unsatis�ed again. Let s+1 � s0 be least such that g(s+1) � r(s+1). If Dn was declared
satis�ed at some t+ 1 � s on the basis of some computation of 	g(t+1)(A� 00g(t+1); pt; n)
and there is no change in 00 on the use of this computation by stage g(s + 1) then the
computation is correct, pt+1 = 	(A� 00; pt; n) 2 Dn and Dn is never declared unsatis�ed
again. (The point here is that by our choice of s, g(s+1) > mKr(s+1; s+1) � mKr(pt; n)
and so 00g(s) � r(pt; n) = 00 � r(pt; n).) Otherwise, Dn is unsatis�ed at s and the least
such. By construction we compute 	g(s+1)(A � 00g(s+1); ps; n). The de�nition of r along
with our choice of g and s guarantee that this computation converges and is correct and
so unless d(ps; n) > s + 1 we declare Dn satis�ed, set ps+1 = d(ps; n) and Dn is never
declared unsatis�ed again. If d(ps; n) > s + 1, we set ps+1 = ps and, as Dn remains
unsatis�ed and the computations already found do not change, we continue to do this
until we reach a stage v + 1 � d(ps; n) at which point pv = ps and we set pv+1 = d(pv; n)
declare Dn satis�ed and it is never unsatis�ed again.

Exercise 8.5.6 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(�a) preserving 0 and 1 for any a 2 ANR. (DJS)

Exercise 8.5.7 Prove that every a 2 ANR has the cupping property.

jump inversion others Exercises??
Our goal now is to characterize the ANR degrees as those degrees a such that every

b � a is RRE. We begin with the analog of Theorem
gl2rre
8.3.15 which provides one half of

the equivalence.

anrrre Theorem 8.5.8 If a 2 ANR then a is RRE.

Proof. We use an A-recursive notion of forcing P with conditions p = hp0; p1; p2i,
pi 2 2<! such that

1. jp0j = jp1j, p0(dn) = A(n � 1), p1(dn) = 1 � A(n � 1) where dn is nth place where
p0; p1 di¤er and

2. (8e < jp0 � p1j)(e 2 p0 � p1 , 9x(he; xi 2 p2)).

Extension in this notion of forcing is de�ned simply by q �P p , qi � pi but note that
this applies only to p and q in P . Membership in P and �P are clearly recursive in A.
Our plan is to de�ne a class C of dense sets Dn with a density function d(p; n)

recursive in A � 00 with 00 use recursively bounded. Theorem
anrgenseq
8.5.5 then supplies a C-

generic sequence hpsi �T A from which we can de�ne the required G �T A in which a is
r.e. If ps = hps;0; ps;1; ps;2i we let Gi = [fps;ijs 2 Ng for i = 0; 1; 2 so Gi �T A. Then, if
we can force G0 and G1 to di¤er at in�nitely many places, G0 �G1 �T A. On the other
hand, the de�nition of the notion of forcing obviously makes G0�G1 r.e. in G2. Thus a
is be r.e. in g =deg(G2). We also have other requirements that make g < a as well.

8.5. ARRAY NONRECURSIVE DEGREES 115

We begin with the dense sets that provide the di¤erences we need:

D2n = fp 2 P : p0; p1 di¤er at at least n pointsg:

We de�ne the required function d(r; 2n) by recursion on n. Given r and n+1, we suppose
we have calculated d(r; 2n) = p = hp0; p1; p2i 2 D2n with p �P r. If p =2 D2n+2, we need
to compute a q = hq0; q1; q2i 2 D2n+2 with q �P p. Let q0 = p0^A(n), q1 = p1^(1�A(n)).
Choose i 2 f0; 1g such that qi(jp0j) = 1. De�ne q2 � p2 by choosing x large and setting
q2(h2jp0j+ i; xi) = 1 and q2(z) = 0 for all z =2 dom(p2) and less than h2jp0j+ i; xi. Now
q = hq0; q1; q2i satis�es the requirements to be a condition in P . It obviously extends p
and is in D2n+2. This computation is clearly recursive in A.
We must now add dense sets to guarantee that A �T G2:

D2n+1 = fp 2 P : 9x(�p2n (x) #6= A(x)) or 8(�0; �1 � p2)[9x(��0n (x) #6= ��1n (x)) #)
(9i 2 f0; 1g)(9 he; xi)(e < jp0 � p1j & �i(he; xi) = 1 6= (p0 � p1)(e)]g:

Of course, the �rst alternative guarantees that �G2n 6= A while the second that �G2n , if
total, is recursive. The point here is that if some ps in our generic sequence satis�es the
second clause then, we can, for any z, calculate �G2n (z) by �nding any � � ps;2 such that
��n(z) # and taking its value as �G2n (z). There is such a � � G2 as �G2n is assumed to
be total and G2 � ps;2. If there were some other � � ps;2 with ��n(z) #6= ��n(z) # then,
by our choice of s and the de�nition of D2n+1, there is no he; xi with e < jp0 � p1j such
that �(he; xi) = 1 6= (p0 � p1)(e). Thus we could form a condition q �P ps with q2 = �
by extending p0 and p1 by setting q1(w) = q2(w) = 1 (for w � jp0j) if either h2w; vi
or h2w + 1; vi is in � for any v. In this way no new di¤erences between q0 and q1 (not
already in p0 and p1) occur and the de�nition of being a condition is satis�ed. Thus q is
a condition extending ps;2 with �q2n (z) #6= A(z) contradicting our choice of s.
We compute the required density function d(q; 2n+1) as follows. Given q we ask one

question of 00 determined recursively in q: Are there extensions �0; �1 of q2 that would
show that q does not satisfy the second disjunct in the de�nition of D2n+1. If not, let
d(q; 2n+1) = q which is already in D2n+1. If so, we �nd the �rst such pair (appearing in
a recursive search) and ask A which �i gives an answer di¤erent from A(x). We now need
a condition r = d(q; 2n+ 1) extending q with third coordinate r2 extending �i. For each
he; xi with e � jq1� q2j) and �i(he; xi) = 1 we de�ne rj(z) = 1 for both j 2 f0; 1g for the
z that makes (r0� r1)(e) = 1 and otherwise we let rj(u) = 0 for all other u less than the
largest element put into either r0 or r1 by the previous procedure. We now extend �i to
the desired r2 by putting in hk; yi for a large y for all those k � jq1j put into r0 � r1 for
which there is no hk; wi in �i. Otherwise we extend �i by 0 up to the largest element put
in by this procedure. It is clear that this produces a condition r as required. (No points
of di¤erence between r0 and r1 are created that were not already present in q.)
We now apply Theorem

anrgenseq
8.5.5 to get a C-generic sequence hpsi �T A. As promised,

we let Gi = [fps;ijs 2 Ng for i = 0; 1; 2 and, as described above, A �T G0 �G1 which is
r.e. in G2. In addition, the conditions in D2n+1 guarantee (as above) that �G2n 6= A as
well.

116 CHAPTER 8. DOMINATION PROPERTIES

Exercise 8.5.9 Prove that every a 2 ANR has the cupping property. Hint? Indi¤erence
set, i.e. f : N!f0; 1; 2g approach??

characterization as all above are RRE reference notions and terminology about trees
from §

spectormin
9.2

general de�nability issues forward refs
??Exercises on Relativization via Proposition

mod
??:

anrreldef De�nition 8.5.10 A function f is ANR if it is not dominated by m. It is ANR relative
to h if h �T f and f is not dominated by mh. A degree a is ANR relative to b, ANR(b),
if there are f 2 a and h 2 b such that f is ANR relative to h, ANR(h).

Chapter 9

Minimal Degrees and Their Jumpsmindegs

9.1 Introduction

We now return to extension of embeddings problem. We saw that as long as we do
not attempt to put a new degree in the extension below a given degree, then anything
consistent is possible (??Exercise

extemb
5.2.22). We now turn toward the issue of whether one

can put new degrees below given ones. The answer is strongly negative. In fact, strong
enough so that we can rule out all the extensions not constructed by ??Exercise

extemb
5.2.22

for �nite lattices P. Clearly embedding every �nite lattice P as an initial segment of D
su¢ ces as then if Q adds elements below any of P then there can be no extension to Q of
the embedding of P as an initial segment. We prove this and more in Chapter

initialseg
10. This

su¢ ces to decide the truth of all two quanti�er sentences in D (Chapter
2qtth
10.4) and also

to show that the set of true three quanti�er sentences is not decidable (Chapter
3qtth
10.5).

We begin with the simplest case.

De�nition 9.1.1 A degree a > 0 is minimal if, for any b � a, b = 0 or b = a. A degree
is a is a minimal cover of c > a if for any b with c � b � a, b = c or b = a.

We cannot hope to construct a set of minimal degree by forcing with �nite conditions
like Cohen forcing as we have seen that generics for such forcings have every countable
partial order embedded below them. We move then from approximations (conditions)
that are clopen sets in Cantor space (all extensions of a � 2 2N) to ones that are prefect
subsets instead.

9.2 Perfect forcing and Spector minimal degreesspectormin

We represent perfect subsets of Cantor space, 2N (i.e. nonempty sets with every point a
limit point) by binary perfect (i.e. always branching) trees T (with no dead ends). The

117

118 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

perfect subsets of Cantor space are then the paths [T] through these trees. We present
such trees as functions T : 2<! ! 2<! with certain properties. ?? de�ne Cantor space
and relevant topology perfect trees etc. early on??

binfunctree De�nition 9.2.1 A binary function tree is a (possibly partial) function T : 2<! ! 2<!

such that

1. � � �) T (�) � T (�) (for � 2 dom(T), so, in particular, if T (�) # and � � �
then T (�) #) and

2. �j�) T (�)jT (�) (for �; � 2 dom(T)).

De�nition 9.2.2 We say that a binary string � is on T if there is a � such that T (�) = � .
We say that � is on T above � if there is a � � � with T (�) = � .

lth Exercise 9.2.3 If T is a binary function tree then (for � 2 domT), jT (�)j � j�j.

Exercise 9.2.4 If T is a binary tree in the sense of De�nition
tree
4.2.1 then [T] is perfect

if and only if there is a total binary function tree S such that [S] = [T]. If T is recursive
(as a subset of 2<!) then we may take S to be so as well.

T[C] De�nition 9.2.5 For total binary function trees, we let T [C] = [fT (�)j� � Cg for each
set C and call it the path in T determined by or following C.

Exercise 9.2.6 If T is a total binary function tree then fT [C]jC 2 2Ng = [T]; the set of
paths in T as de�ned for general trees in De�nition

tree
4.2.1.

Exercise 9.2.7 If S and T are total binary function trees then [S] � [T] if and only if
8�9�(S(�) � T (�)).

Exercise 9.2.8 If S is a total binary function tree and C 2 2N, then S[C] �T C � S. If
T is also a total binary function tree, [S] � [T] and S[C] = T [D] for some D 2 2N, then
D �T s[C]� T .

Exercise 9.2.9 Prove there is a total binary tree T �T 00 such that 8C(T [C]0 �T C_00)
and so if C �T 00 then T [C]0 �T C. This provides a proof of the Friedberg Jump Inversion
Theorem

frcomp
5.3.1 that exposes some of the uniformities in the proof.

treeorder De�nition 9.2.10 We de�ne an order �S on the binary function trees by S �S T ,
8�(S(�) #) 9�(S(�) = T (�)), in which case we say that S is a subtree of T .

Remark 9.2.11 In the remainder of this chapter all trees are partial recursive binary
function trees (unless otherwise speci�ed) and we just call them trees. In the rest of this
section they are also total unless otherwise speci�ed.

9.2. PERFECT FORCING AND SPECTOR MINIMAL DEGREES 119

Our forcing conditions, in this section, are these trees. The order relation S �S T is
then equivalent to 8�9�(S(�) = T (�)).
The function V required in the de�nition of a notion of forcing is given by V (T) = T (;)

but the notion of extension makes it clear that the only possible generic sets G extending
the condition T are the G 2 [T]. This notion S of forcing with perfect recursive binary
function trees is often called Spector forcing. Its analog in set theory is often called Sacks
forcing or perfect forcing. Note that this notion of forcing is only recursive in 000. The
crucial point here is that it takes 000 to determine if �e is total. Once we know it is total,
00 su¢ ces to determine if it is a binary function tree as this is then a �1 property. If S; T
are conditions in S then 00 can also determine if S �S T as this too is a �1 property.
The point here is that if there is any � such that T (�) = S(�) then it must be of length
at most jS(�)j by Exercise

lth
9.2.3

The requirements for a set G to be of minimal degree are as follows:

� Ne: G 6= �e and

� Me: If �Ge is total then either �
G
e is recursive or G �T �Ge .

The Ne requirements are very easy to meet.

spdiag Lemma 9.2.12 For each e the set of conditions fT jT :(�e = G)g is dense in S. In
fact the smaller set De = fT j:(�e = T (;)(x))g is already dense in S.

Proof. Given any tree T and �e, note that :(T (i) = �e) for i at least one of 0 or 1
as T (0)jT (1). Thus we may take as the desired extension S of T the subtree such that
S(�) = T (i^�), i.e. it starts with T (i) for the appropriate i and then continues on as
does T .
We formalize the operation that provides a witness to the density required in Lemma

spdiag
9.2.12:

FuTree De�nition 9.2.13 For any partial tree T and � 2 2<!, the full subtree of T above �,
Fu(T; �) or sometimes simply T�, is the tree S de�ned by S(�) = T (�^�).

Proposition 9.2.14 If T is (partial) recursive then so is T� and an index for it can be
found uniformly recursively in one for T .

Proof. Immediate.

Proposition 9.2.15 There are density functions for the De of Lemma
spdiag
9.2.12 which are

uniformly recursive in 00 on the set of (recursive binary function) trees.

Proof. Given any T , �nd an x such that T (�^0)(x) 6= T (�^1)(x). Then ask 00 if �e(x) #.
If so compute its value. In any case take i 2 f0; 1g such that :(T (�^i)(x) = �e(x)) and
take Fu(T; �^i) as the desired extension.
We must now see how to satisfy the minimality requirements Me. We have seen

several times how to make sure that �Ge is recursive. To do this we want a be in a
situation in which there are no extensions of the current approximation that e-split.

120 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

nosplits Lemma 9.2.16 If T is a partial tree such that there are no � and � such that T (�)jeT (�),
G 2 [T] and �Ge is total then �Ge is recursive.

Proof. As usual, to compute �Ge (x) we search for any � such that �
T (�)
e (x) #. Since

�Ge (x) # there is an initial segment of G such that �e (x) #= �Ge (x). As G 2 [T] there
is a � such that � T (�) � G and so � is a string as desired. We then note that, for
any such �, �T (�)e (x) = �

T (�)
e (x) = �Ge (x) as otherwise T (�)jeT (�).

We must now argue that if we cannot extend a given T to one with no e-splits on it
as above, then we can guarantee that, if total, �Ge �T G. To this end, we de�ne another
operation on trees that proceeds by searching for e-splits.

esplittree De�nition 9.2.17 The e-splitting subtree, Sp(T; e) = S, of a partial recursive tree T
is de�ned by recursion. S(;) = T (;). If S(�) = T (�) then we search for � 0; � 1 � � such
that the T (� i) e-split. We let � 0 and � 1 be the �rst such pair found in a standard search
and set S(�^i) = T (� i). A partial recursive tree S is an e-splitting tree if, for every �,
if one of S(�^0), S(�^1) is convergent then both are and they form an e-split.

esplits Proposition 9.2.18 Sp(T; e) is a partial recursive subtree of T with an index given
uniformly recursively in one for T . If Sp(T; e) is not total then there is a � such that
there are no e-splits on T above � for some � . Indeed, if Sp(T; e)(�̂) # but Sp(T; e)(�̂^0) "
and T (�) = Sp(T; e)(�̂), then there are no e-splits on T above � . Moreover, for any �,
Sp(T; e)(�^0) #, Sp(T; e)(�^1) # and so Sp(T; e) is an e-splitting tree.

Proof. The assertions about the uniformity of the procedure of forming the e-splitting
subtree and the equiconvergence of Sp(T;E)(�^i) for i 2 f0; 1g are immediate from the
de�nition. As for the rest, if S(;) " then T (;) " and we are done trivially. Otherwise, let
� be such that Sp(T; e)(�) #= T (�) for some � but Sp(T; e)(�^i) " for some (equivalently
both) i 2 f0; 1g. If there were an e-splititng on T above � then we would have S(�^i) #
for both i 2 f0; 1g by de�nition.
Thus to satisfy the minimality requirement Me, it su¢ ces to prove that if T� has

e-splits for every � (and so we cannot use Lemma
nosplits
9.2.16 to force �Ge to be recursive if

total) then Sp(T; e) forces G �T �Ge if the latter is total.

complemma Lemma 9.2.19 (Computation Lemma) If S is a partial recursive e-splitting tree,
G 2 [S] and �Ge is total then G �T �Ge .

Proof. We compute an ascending sequence n of initial segments of G (and so G itself)
from �Ge by recursion. We begin with 0 = S(;) which is an initial segment of G since
G 2 [S]. Suppose we have n = S(�n) � G. As G 2 [S], one of S(�n^0) and S(�n^1) is
also an initial segment of G. Thus S(�n^0) and S(�n^1) are both convergent and e-split.
We may then recursively �nd an x on which �S(�n^0)e (x) #6= �S(�n^1)e (x) #. Exactly one
of these two agrees with �Ge (x). We choose that i 2 f0; 1g and set �n+1 = S(�n^i).
We have thus proven the density of conditions needed to satisfy the minimality re-

quirements.

9.2. PERFECT FORCING AND SPECTOR MINIMAL DEGREES 121

nosplitsoresplit Lemma 9.2.20 The sets Ce = fT j either there are no e-splits on T or T is an e-
splititng treeg are dense in S. Moreover, there are density functions for these sets which
are uniformly recursive in 0

00
on the set of (recursive binary function) trees.

Proof. By the above Lemmas, either there is a � such that Fu(T; �) has no e-splits
or SP (T; e) is a total tree and so the Ce are dense. As the two options are �2 and �2
properties, respectively, 000 can decide which option to take and, if the �rst is chosen then
even 00 can �nd a suitable � as there being no e-splits on T� is a �1 property. If the
second is chosen then the index is given recursively.

spmindeg Theorem 9.2.21 There is a minimal degree g � 000. Indeed, for every degree c there is
a g � c00 which is a minimal cover of c.

Proof. Take any generic sequence hTni meeting all the De and Ce. The associated
generic set G = [Tn(;) is of minimal degree. By the above results on the complexity
of the density functions we may take the sequence and so G to be recursive in 000. The
remark about minimal covers, now follows by simply relativizing the proof to c.
Theorem

spmindeg
9.2.21 says that every degree c has a minimal cover, and indeed one recursive

in c00. Our usual question at such a point is can we do better in in terms of the complexity
of the minimal cover we construct (or equivalently in terms of the minimal degree the
basic construction provides). Before turning to this line of analysis, we point to a deeper
question: Which degrees are minimal covers? We provide a lot of information and partial
answers to this question in Chapter

PsJ
??. The analysis there will, in part, however, depend

on the answer to the complexity question that we give in the next section.
The most obvious question about the complexity of minimal degrees is whether we

can produce one below 00. It seems clear that we cannot use Spector forcing for this
as the notion of forcing (indeed even the set of conditions) is of degree 000. Given the
work that we have already done, however, one would try to use partial recursive trees
instead. The basic lemmas that we have already proven (

nosplits
9.2.16 and

complemma
9.2.19) still work.

The problem is that once we hit a partial tree, there may be no further extensions. We
construct a sequence of trees that satisfy all the requirements and construct a minimal
degree below 00 in the next section. The crucial new facet of the construction is that we
use partial trees but when we discover we have reached a terminal point we backtrack
and revise the previous trees in our sequence. A priority argument is then needed to
show that the sequence stabilizes and so we satisfy each requirement.
Another improvement that we can deal with in the setting of Spector forcing is saying

something about the double jump of G. In particular, we can show that G00 �T 000. As
we have often seen, we can either introduce new dense sets (requirements) that directly
control the double jump or cleverly argue that we have already done so. We present a
direct proof an leave the indirect one as an exercise. The idea here is that G00 �T TotG =
fej�Ge is totalg and so we want conditions that decide if e 2 TotG. The route is similar
to that taken to splitting trees. The �rst alternative is that we have a tree T and an x
such that �T (�)e (x) " for every �. Obviously in this situation we have forced that �Ge (x) "

122 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

and so it is not total. The second alternative is to produce a tree T such that �Ge (x) #
for every x and every G 2 [T]. The analog of the Sp(T; e) is Tot(T; e):

totdef De�nition 9.2.22 If T is a (partial) tree then S = Tot(T; e) is de�ned by recursion
beginning with S(;) = T (;). If we have S(�) = T (�) then search for a � � � such
that �T (�)e (j�j) #. If there is one we let � be the �rst found in a standard search and set
S(�^i) = T (�^i) for i 2 f0; 1g.

Proposition 9.2.23 An index for Tot(T; e) can be found uniformly recursively in one
for T . If Tot(T; e) is not total then there is a � and an x such that �T (�)e (x) " for every
� � �.

Proof. This is immediate from the de�nition of Tot(T; e).

totdense Proposition 9.2.24 The sets Be = fT j9x8�(�T (�)e (x) ")g[fT j(8�)(8x < j�j)(�T (�)e (x) #
)g are dense in S and uniformly recursive in 000 and so have density functions uniformly
recursive in 000.

Proof. To see that the Be are dense consider any T . If Tot(T; e) is a total function we
have the desired extension. If not, then there is a � and an x such that �T (�)e (x) " for
every � � �. So T� is then the desired extension. That the Be are uniformly recursive in
000 is immediate from their de�nition.

Proposition 9.2.25 If G is a generic de�ned from a sequence hTni �T 000 meeting all
the Be then G00 �T 000.

Proof. To decide if e 2 TotG �T G00, �nd an s such that Ts 2 Be and see which clause
of the de�nition of Be is satis�ed by T .

mintot Theorem 9.2.26 There is a minimal degree g with g00 = 000.

Proof. Add the dense sets Be to those Ce and De considered before. There is a generic
sequence recursive in 000 meeting all these sets and the generic G associated with it has
all the desried properties.
Of course, as might be naively expected, functions of minimal degree cannot have

any strong domination properties. For example, none can be GL2 by Theorem
ngl2genseq
??. Even

more striking is the fact that there is a single function of degree 00 that dominates every
function of minimal degree. This follows from the proof of Theorem

ngl2genseq
??. In particular,

by Proposition
anreq
8.5.3 and Theorem

anrgenseq
8.5.5 mK , the least modulus function for 00 is such a

function. For the minimal degrees we have constructed so far, we can say even more.

Exercise 9.2.27 Show that the minimal degree constructed in Theorem
mintot
9.2.26 is 0-

dominated, i.e. every function recursive in G is dominated by a recursive function.

9.2. PERFECT FORCING AND SPECTOR MINIMAL DEGREES 123

Exercise 9.2.28 Show that the G constructed in Theorem
mintot
9.2.26 has minimal tt and

wtt degree. (Hint: Recall Exercise
0domtt
8.1.2.)

Exercise 9.2.29 Show that the minimal degree constructed in Theorem
spmindeg
9.2.21 has double

jump 000. Hint: show that meeting the dense sets Ce guarantees that the sequence meets
the Be as well.

posnerl Exercise 9.2.30 (Posner�s Lemma) Show that meeting the dense sets Ce also guar-
antees that a generic sequence meets the De as well. Hint: Consider an n such that, for
every � and z, ��n(z) = 0 if :(9x < j�j)(�(x) 6= �e;j�j(x) #) and ��n(z) = �(z) otherwise.

Exercise 9.2.31 Show that for every d > 0 there is a minimal degree g �T d0_000 such
that g �T d. ??Improvement in Exercise ??

treeofmin Exercise 9.2.32 There are continuum many minimal degrees. Indeed, there is a binary
function tree T �T 000 such that every G 2 [T] is of minimal degree. Hint: Use conditions
(T; n) where T is a (recursive binary function) tree, n 2 N and extension is de�ned by
(S;m) � (T; n) if S �S T , m � n and S(�) = T (�) for every � of length � n.

contantichain Exercise 9.2.33 Use the previous Exercise to show that any maximal antichain in D
has size 2@0.

Exercise 9.2.34 Show that in Exercise
treeofmin
9.2.32we may also guarantee that G00 �T G_ 000

for every G 2 [T].

Exercise 9.2.35 Show that for every c � 000 there is a minimal degree g with g00 =
c = g _ 000.

De�nition 9.2.36 A binary tree T is pointed if every A 2 [T] computes T . It is uni-
formly pointed if there is an e such that �Ae = T for every A 2 [T].

Exercise 9.2.37 Relativize Theorem
spmindeg
9.2.21 to an arbitrary degree c to prove that every

degree c has a minimal cover, i.e. a g > c such that the open interval (c;g) is empty.
Hint: One can proceed as usual by adding a C 2 c into all oracle computations or one
can use uniformly pointed trees recursive in C. In this case, just use binary function
trees recursive in C which are subtrees of the tree T de�ned by T (�)(2n) = C(n) and
T (�)(2n+ 1) = �(n).

Exercise 9.2.38 All of the other results of this section now relativize.

Exercise 9.2.39 Prove that every strictly ascending sequence of degrees has a minimal
upper bound g. Hint: If the given sequence is cn, use uniformly pointed trees of degree
cn for some n.

124 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

Exercise 9.2.40 Show that the g of the previous exercise can be constructed so that
g00 � �c00n.

Exercise 9.2.41 Show that one can also get two minimal upper bounds g0 and g1 for
the cn of the previous exercise with (g0 _ g1)00 � �c00n. Note that these gi form an exact
pair for the ideal generated by the cn.

Exercise 9.2.42 Thus if in the previous two exercises cn = 0(n) then one gets a minimal
upper bound g for the 0(n) such that g00 = 0(!) and indeed two such (which then form an
exact pair for the arithmetic degrees) with (g0 � g1)00 = 0(!).

Exercise 9.2.43 Prove that there is a tree T such that each path on T is a minimal
upper bound for the ascending sequence cn.

De�nition 9.2.44 A tree T is a delayed e-splitting tree if for every n there is an m > n
such that the strings T (�) for j�j = m are pairwise e-splititng.

Exercise 9.2.45 Prove the computation lemma for delayed e-splitting trees.

Exercise 9.2.46 Uniform trees; strongly uniform = 1-trees. one every path of minimal
degree, F : N ! f0; 1; 2g. minimal degrees generate D minimal m-degree Perhaps write
out??

Exercise 9.2.47 other applications??

9.3 Partial trees and Sacks minimal degreessacksmin

Sacksmin Theorem 9.3.1 (Sacks) There is a minimal degree below 00.

Our plan is to use partial recursive binary trees in a construction recursive in 00. We
have already seen (Lemmas

nosplits
9.2.16,

complemma
9.2.19,

nosplitsoresplit
9.2.20 and Proposition

esplits
9.2.18 that we can

handle both the diagonalization and minimality requirements by using subtrees of the
form Fu(T; �) and Sp(T; e) even if they are partial as long as we do not run into a
node with no convergent extensions on the trees we are using. Now 00 can recognize this
situation when it occurs. Thus the problem is what to do when we arrive at a node with
no extensions on a tree. Of course, we must change the tree we intend our set to be on
but we must do so in a way that eventually stabilizes so that, for each requirement, we
remain, from some point onward, on some partial tree that satis�es the requirement.
Proof. At stage s, we have already speci�ed an initial segment �s of the set A of minimal
degree that we are building and a sequence (of indices for) nested partial recursive trees
T0;s �S T1;s �S � � � �S Tks;s with �s on each of them (i.e. there are �i;s such that
Ti;s(�i;s) = �s). In fact, �s = Tk;s(;). T0;0 is the identity function on binary strings.
(Indeed, as will become clear, T0;s is the identity function for every s.) Each Ti+1;s is

9.3. PARTIAL TREES AND SACKS MINIMAL DEGREES 125

either Sp(Fu(Ti;s; j); i) for some j 2 f0; 1gor Fu(Ti;s; �) for some � and is devoted to
satisfying the minimality requirement for �i with the choice of j devoted to satisfying
the diagonalization requirements.
We now �nd the least i � ks such that Ti;s(�i;s^0) ". Let ks+1 = i if one such exists,

and let ks+1 = ks + 1 otherwise. Note that this can be done recursively in 00 as we have
indices for each Ti;s as a partial recursive function.

� In the �rst case, we know that Ti;s(�i;s^0) " while Ti�1;s(�i�1;s^0) #. Note that
in this case Ti obviously cannot be of the form Fu(Ti�1; �) and so (by the rules
of the construction which we are maintaining by induction) must be of the form
Sp(Fu(Ti;s; j); i). Thus by Proposition

esplits
9.2.18 there are no extensions of �s on

Ti�1 which i-split. We now let Tks+1 = Fu(Ti�1;s; �i�1:s^0) (with the intention of
satisfying the minimality requirement for �i by being on a tree with no i-splits).

� In the second case, we let Tks+1;s+1 = Sp(Fu(Tks;s; j); ks) where we choose j so that
�ks 6= Tks+1;s+1(;) (to be speci�c, say we choose j = 1 if 9x(Tks;s(1) 6= �ks(x) #)
and j = 0 otherwise) and with the hope that we remain on this tree and so satisfy
the minimality requirement for �ks by being on a ks-splitting tree.

� In either case, we let Ti;s+1 = Ti;s for i < ks+1 and �s+1 = Tks+1;s+1(;). The trees
Ti are, of course, not de�ned at s+ 1 for i > ks+1.

We now claim that the Ti;s stabilize, i.e. there is a tree Ti = lims!1 Ti;s and all the
requirements are satis�ed. Note that if Ti;s reaches its limit by stage t then ks > i for
s > t. Suppose, by induction, that Ti;s �rst reaches its limit Ti at stage s. At s+1 we set
Ti+1;s+1 = Sp(Fu(Ti;s; j); i) (for some j) and we satisfy the diagonalization requirement
for �i. If we never change Ti+1;t at a t > s then Ti+1 = Sp(Fu(Ti;s; j); i)) and we satisfy
the minimality requirement for �i by Lemma

complemma
9.2.19. If there is a stage after s at which we

�rst change Ti+1, i.e. Ti+1;t 6= Ti+1;t+1 it must be because we are in the �rst case at stage
t and we set kt+1 = i+1 and Ti+1;t+1 = Fu(Ti; �i;t^0) because Sp(Fu(Ti;t; j); i))(�i+1;t^0)
is divergent. In this case, we can never change Ti+1 again. (No smaller one ever changes
by our choice of s and it can never be chosen as the least point of divergence as long as
it is a full subtree of the previous tree.) Moreover, �v remains on Ti on which there are
no i-splits above �t (Proposition

esplits
9.2.18). Thus we satisfy the minimality requirement for

�i by Lemma
nosplits
9.2.16.

Note that, in contrast to the Spector minimal degrees, no set recursive in 00 (and so
even those of minimal degree) is 0-dominated by Theorem

delta2dom
8.2.3. In ?? we actually need

to know a bit more about the set A of minimal degree that we have just constructed.

minwtt0� Corollary 9.3.2 The set A of minimal degree constructed above is actually �wtt 00.

Proof. To see that A �wtt 00 we need a recursive function f such that f(n) bounds use
from 00 needed to compute A(n). An abstract view of the above construction is that at
each stage s we have a number ks � s+ 1 and a sequence of indices for partial trees Ti;s

126 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

for i � ks. (Note that �s = Tks;s(;).) We then ask for each i � ks if Ti;s(�i;s^0) # where
this question is equivalent to the one that asks if 9�(Ti;s(�) = Tks;s(;) & Ti;s(�^0) #).
Each possible set of answers to these questions determines 0 < ks+1 � ks+1 � s+1 and
the indices for the Ti;s+1 for i � ks+1 except when they say that ks+1 = ks + 1. In this
case, we need to ask one more question of 00: is there an x such that Tks;s(1) 6= �ks(x) #?
Thus we can recursively lay out all possible routes of the construction as a tree which at
level s is (at most) s+ 1 branching along with the (at most s+ 1 many) questions of 00

needed to determine at each node of the tree at level s what stage s+1 of the construction
would be if the given node corresponds to the actual stage s of the construction. Now to
compute A(n) note that we extend �s at every stage of the construction so we only need
a recursive bound on the questions asked in any possible run of the construction for n
many stages. As the indices for all the possible Ti;s are uniformly computable from the
various assumed answers at the previous stages, it is clear that there is a recursive bound
on the questions that are needed in all possible runs of the construction for n many steps.

SacksMinCover Exercise 9.3.3 Theorem
Sacksmin
9.3.1 and Corollary

minwtt0�
9.3.2 above relativize to arbitrary degrees

c to give a minimal cover g of c with g �wttc0. Moreover, for any C there is a G which
is uniformly !-r.e. in C such that g is a minimal cover of c. (Recall De�nition

omegare
4.3.12

and Exercise
wtt0�
4.3.15.) ?? do out for later?? Also this earlier exercise??

Exercise 9.3.4 ??Show that for every d > 0 there is a minimal degree g �T d _ 00 such
that g �T d. Hint my construction in L p. 192?? only for d < 00??otherwise below d0??

0�treeofmin Exercise 9.3.5 Construct a tree T �T 00 such that every path on T is of minimal degree.

Cone avoiding?? join ?? Complementation??

9.4 Minimal degrees below degrees in H1 and GH1

We want to prove that if h 2 GH1 then there is a minimal degree a < h. The proof builds
on the construction of a Sacks minimal degree with highness giving us an approximation
to but is unusual in that it relies on the recursion theorem to make the approximations
work.

Remark: Not below every H2 Lerman [??]).

Question 9.4.1 If A >T 0 is r.e. then there is a minimal degree below A [??]. Can one
construct such a degree with the techniques presented in this chapter and the previous one
or some variation of them?

cone avoiding, join, complementation results?

9.5. JUMPS OF MINIMAL DEGREES 127

9.5 Jumps of minimal degrees

At the end of §
spectormin
9.2 we analyzed the possible double jumps of Spector minimal degrees. In

this section we want to investigate the possible single jumps of arbitrary minimal degrees.
Note �rst that every minimal degree is GL2 because every GL2 degree has a 1-generic
degree below it by Theorem

gl21gen
8.3.3. We show later ?? that there are minimal degrees in

both GL1 and GL2 �GL1. Finally, we completely characterize the jumps of minimal
degrees by giving a new proof due to Lempp, J. Miller S. Ng and L. Yu of Cooper�s jump
inversion theorem that every c � 00 is the jump of a minimal degree. The situation below
00 is more complicated. While there are both L1 and L2�L1 minimal degrees, not every
degree c which is r.e. in and low over 00 is the jump of a minimal degree below 00 (refs??
Shore noninversion theorem, Cooper).

9.5.1 Narrow trees and GL1 minimal degrees

To produce a minimal degree not inGL1 we must combine a diagonalization of A0 against
�e(A� 00). The key idea here are the narrow subtrees N(T).

De�nition 9.5.1 The narrow subtree N(T) of a total tree T is de�ned by recursion.
N(T)(;) = T (;). If N(T)(�) = T (�) then N(T)(�^i) = T (�^0^i).

Proposition 9.5.2 If T is recursive so is N(T) and an index for it can be found uni-
formly recursively in one for T . Of course, as with any recursive tree the question of
whether A 2 [N(T)] is �1 in A and the index for N(T) and so uniformly recursive in
A0, i.e. there is a recursive f such that (8A)(A 2 [N(T)] , f(n) 2 A0) where n is any
index for N(T).

Our plan is to use narrow subtrees to diagonalize. Intuitively we stay on some N(T)
with index i until we see that ��s�0

0
e (f(i)) #= 1. At that point we make A go o¤ N(T)

and so guarantee that A0 6= �A�00e . Formally we prove that diagonalization is dense.

nardense Lemma 9.5.3 The sets Fe = fT j(8G 2 [T]):(�A�00e = A0)g are dense in the Spector
notion of forcing and there is a density function which is uniformly recursive in 00 on
(the indices for) recursive trees..

Proof. Let n be an index for T and consider N(T) = S. If there is a � such that
�
S(�)�00
e (f(n)) #= 1 then the desired extension T̂ of T is Fu(T; �^1) where T (�) = S(�).
The point here is that no A 2 [T̂] is on S = N(T) while �A�0

0
e (f(n)) #= 1 for every

A 2 T̂ and so �A�0
0

e 6= A0. On the other hand, if there is no such � then N(T) is the
desired extension of T as f(n) 2 A0 for every A 2 [N(T)] while :(�A�00e (f(n)) = 1) for
every A 2 [N(T)] by our case assumption. It is clear that �nding the desired extension
of T is recursive in 000.

128 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

Theorem 9.5.4 There is a minimal degree g � 000 with g =2 GL1. We may also guar-
antee that g00 = 000.

Proof. Simply add the dense sets Fe to the ones De and Ce in the proof of Theoremspmindeg
9.2.21 to be met in the construction of G. To guarantee that g00 = 000 add in the dense
Be of Proposition

totdense
9.2.24.

Exercise 9.5.5 Modify the proof of Theorem
sacksmin
9.3 to construct an A �T 00 of minimal

degree with degree not in L1. Hint: intersperse stages at which one puts Ti+1;s+1 = N(Ti;s)
and then stays in this tree until ��se (f(n) #= 1 where e and n are as in Lemma

nardense
9.5.3 for

Ti;s.

9.5.2 Cooper�s jump inversion theorem

We want to prove that every degree c � 00 is the jump of a minimal degree. To do this
we modify the de�nition of the e-splitting subtree in an attempt to force the jump when
we can.

ejumpspl De�nition 9.5.6 The e-jump splitting subtree of T , JSp(T; e) = S is de�ned by
recursion. S(;) = T (;) which is labeled !. Suppose S (�) = T (�) is de�ned and is labeled
some m � !. We search simultaneously for � 0; � 1 � � such that T (� 0)jeT (� 1) and for a
� � � and an n < m such that �T (�)n (n) # but �T (�)n (n) ". If we �rst (in some canonical
search order) �nd an e-split then we let S(�^i) = T (� i) and label them both !. If we �rst
�nd a � and n as described we let S(�^0) = T (�) and label it n. S(�^1) is unde�ned in
this case. (Of course, if neither search terminates, S(�^i) " for both i = 0; 1.)

Proposition 9.5.7 If T is (partial) recursive then so is JSp(T; e) and an index for it
can be found uniformly recursively in one for T .

noisol Lemma 9.5.8 If JSp(T; e) = S, then there are no isolated paths on S, i.e. if A 2 [S]
then there are in�nitely many � such that S(�) � A and S(�^i) # for i = 0; 1.

Proof. This is immediate from the fact that whenever S(�) # but not both of S(�^i) are
de�ned then only S(�^0) is de�ned and its label is in N and remains strictly decreasing
until we reach a �^0t such that both S(�^0t^0) and S(�^0t^1) are de�ned and their labels
are !. Thus we can continue to extend only one side (necessarily the 0 one) as we follow
A on S only �nitely often.

jcomplemma Lemma 9.5.9 If S = JSp(T; e), G 2 [S] and �Ge is total then G �T �Ge .

Proof. As for the basic Computation Lemma
complemma
9.2.19, we compute an ascending sequence

n of initial segments of G (and so G itself) from �Ge by recursion. We also compute
�n and �n such that T (�n) = S(�n) = n and its label mn on S. We begin with
0 = T (;) = S(;) which is an initial segment of G since G 2 [S]. Suppose we have

9.5. JUMPS OF MINIMAL DEGREES 129

n = S(�n) = T (�n) � G and mn. As G 2 [S], one of S(�n^0) and S(�n^1) is also an
initial segment of G. We follow the procedure given in the de�nition of JSp(T; e)(�n^i).
If we �rst �nd an e-split then both S(�n^i) are convergent. As they e-split we can decide
which one is an initial segment of G using �Ge as in the basic Computation Lemma and
continue our recursion. If instead, we �rst �nd a new convergence for �T (�)n̂ (n̂) for n̂ < n,
only S(�n^0) is de�ned and it is then the next initial segment n+1 of G as required. Of
course, �n+1 = �n^0. This also supplies us with the next �n+1 and mn+1 = n̂.

lowmin Theorem 9.5.10 There is an A of minimal degree with A0 �T 00.

Proof. The construction is similar to that for Theorem
Sacksmin
9.3.1 except that we use e-jump

splitting subtrees instead of e-splitting subtrees and we have to be a bit more careful
about how we go o¤ the partial trees.
At stage s, we have an already speci�ed initial segment �s of A and a sequence (of

indices for) nested partial recursive trees T0;s �S T1;s �S � � � �S Tks;s with �s on each of
them, indeed with �s = Tk;s(;). T0;s is the identity function for every s. Each Ti+1;s is
either JSp(Fu(Ti;s; �); i) for some � or Fu(Ti;s; �) for some �.
We begin our search for ks+1 with Tks;s. We ask if Tks;s(1) #. If it is, so is Tks;s(0).

We then set Tks+1 = JSP (Fu(Tks ; j); ks) where we choose j so that �ks(x) 6= Tks;s(j)(x)
for some x and set ks+1 = ks + 1. If Tks;s(1) " we ask if Tks;s(0) #. If so we repeat
our procedure with Tks replaced by Fu(Tks;0). By Lemma

noisol
9.5.8 this process eventually

terminates either with an m such that Tks(0
m^1) #= Fu(Tks ; 0

m)(1) # and so a de�nition
of ks+1 = ks + 1 and Tks+1 = JSP (Fu(Tks ; 0

m^j); ks) or an m such that Tks(0
m) #

but Tks(0
m+1) " (m could be 0 and we take 00 = ;). In the later case, we move to

Tks�1 beginning with the �1 such that Tks�1(�1) = Tks(0
m) and asking if Tks�1(�1^1) #.

Continuing in this way we eventually reach l and m such that Tl;s(�^0m^j) # for some
� and each j 2 f0; 1g as T0;s is always the identity function and so de�ned at �^1 for
every �. We now let ks+1 = l + 1 and Tks+1 = Fu(Tl;s; �^0

m+1). We conclude the stage
by setting �s+1 = Tks+1(;). Note that we extend �s at every stage and A = [�s �T 00.
It is clear that the construction and so A is recursive in 00. We must now verify that

the Ti;s stabilize to trees Ti, all the requirements to make A of minimal degree and that
A0 �T 00. We argue much as in the proof of Theorem

Sacksmin
9.3.1 for the �rst two claims:

Note again that if Ti;s reaches its limit by stage t then ks > i for s > t. Suppose,
by induction, that Ti;s �rst reaches its limit Ti at stage s. At s + 1 we set Ti+1;s+1 =
JSP (Fu(Tis ; 0

m^j); i) for some m and j as the only other possibilities change Ti. This
action satis�es the diagonalization requirement for �i. If we never change Ti+1;t at a
t > s then Ti+1 = JSP (Fu(Ti; 0

m^j); i)) and we satisfy the minimality requirement
for �i by Lemma

jcomplemma
9.5.9. If there is a �rst stage after s at which we change Ti+1, i.e.

Ti+1;t 6= Ti+1;t+1, then it must be that we reached a situation with Tl;t(�^0m̂^|̂) # for
some � and both |̂ 2 f0; 1g with l the �rst such we �nd in our search starting with kt and
moving downward and m̂ the least such for l. As we now rede�ne Tl+1 it must be that
l = i by our induction hypothesis. As t is the �rst stage after s at which we change Ti+1,

130 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

Ti+1;t = JSP (Fu(Ti;s; 0
m^j); i). As we did not end our search for this l with l+1 = i+1, if

Tl;t(�) = Ti+1;t(�) then Ti+1;t(�^0) ". By the de�nition of Ti+1;t = JSP (Fu(Ti;s; 0
m^j); i)

this means that there are no i-splits on Ti;s = Ti above �. As A 2 [Fu(Ti; �)] we satisfy
the minimality requirement for �i by Lemma

nosplits
9.2.16. Once Ti+1 is a full subtree of Ti (as

it is at t + 1), it can never be changed again as that would change some Tk for k � i
contrary to our choice of s < t.
To compute A0 from 00 �nd a stage of the construction s at which we end the con-

struction with l � ks and Tl;s(�^0m^j) # for j 2 f0; 1g and we let ks+1 = l + 1 and
Tl+1;s+1 = Fu(Tl;s; �^0

m+1). In this case we have Tl+1;s(�^0) " where Tl+1;s(�) = Tl;s(�).
If n is the label of Tl+1;s(�), this means that there is no extension � of Tl+1;s(�) on
Tl;s such that �

�
n̂(n̂) # but �

Tl+1;s(�)

n̂ (n̂) " for n̂ < n. We now claim that, for n̂ < n,
n̂ 2 A , �

Tl+1;s(�)

n̂ (n̂) #. As long as �t stays on Tl;s for t > s (as it is now) the claim
is obvious. The only way �t can leave Tl;s for the �rst time after s at t is for the same
situation to occur with l1 < l. In this case, the associated label must be n1 � n (as no
new convergences below n can occur as long as we remain on Tl;s). In this case, no new
convergences below n1 can occur as long as we remain on Tl1;t. This process must halt
and so we eventually stay on some tree Tl̂;t̂ on which there are no new convergences below
some n̂ � n. To see that our original search in this procedure must �nd such stages s with
arbitrarily large n, �x an r and start with a stage u by which 8e � r(�Ae (e) #, ��ue (e) #).
Now consider a v > u for which �v is the empty function. When we reach the �rst stage
w at which kw = v + 1 for the �rst time after Ti has reached its limit for i � v we set
Tv+1;w+1 = JSP (Fu(Tv;w; 0

m^j); v)) for some m and j. This tree has Tv+1;w+1(�^1) " for
every � and so we would act as described above and for an n � r.

Theorem 9.5.11 There is a binary function tree T �T 00 such that every A 2 [T] is of
minimal degree and, moreover, A0 �T A _ 00.

Proof. We de�ne T by recursion beginning with T (;) = ;. Along each path in T we are
using the construction of Theorem

lowmin
9.5.10 with the change that when we would have chosen

one j 2 f0; 1g and set Tks+1 = Fu(S; j) for some S we follow both possibilities and de�ne
the next branching in T as the result of the two choices of j in the original construction.
Thus at any node � when we have T (�) de�ned we have an associated run of the above
construction during which we have chosen j = �(m) at the mth instance where we had
to choose a j in the construction. To de�ne T (�^i) we now continue the construction
as in the previous theorem until we reach the next stage s at which we must choose a j
and set Tks+1 = JSp(Fu(Tks;s; j); ks). We now let T (�^j) = JSp(Fu(Tks;s; j); ks)(;) for
j 2 f0; 1g and associate the version of the above construction in which we choose j with
T (�^j).

Corollary 9.5.12 (Cooper�s Jump Inversion Theorem) For every c � 00 there is
a minimal degree a such that a0 = c = a _ 00.

Proof. Take C 2 c and let A = [T (C � n).

9.6. THE MINIMAL DEGREES GENERATE D 131

remark not all degrees REA in 00 and low over it are jumps of minimal degrees below
00 references.
Theorem

lowmin
9.5.10 originally by Yates showed minimal below every nonrecursive r.e.

degree and was already known (Theorem ??) that there are low nonrecursive r.e. degrees.
Then ...

9.6 The minimal degrees generate D
Our goal in this section is to prove that the minimal degrees generate D under join and
meet. More speci�cally we prove that for every a there are minimal degrees m0, m1, m2

and m3 such that a = (m0 _m1) ^ (m2_ m3). Our forcing conditions in this section
are all recursive binary trees but we need a yet more restricted notion of tree. We begin
with uniform trees (which play a crucial role in the next chapter) and strongly uniform
trees or 1-trees.

1treedef De�nition 9.6.1 A binary tree T is uniform if for every n there are �n:0; �n;1 2 2<! such
that T (�^i) = T (�)^�n;i for every � of length n. T is strongly uniform if, in addition, for
every n, �n:0 and �n;1 are adjacent, i.e. there is exactly one j such that �n:0(j) 6= �n;1(j).
Strongly uniform trees are also called 1-trees.

In this section all trees are recursive 1-trees and they are the conditions in our basic
notion of forcing P with the usual notion of subtree as the extension relation. As Fu(T; �)
is clearly a 1-tree for any 1-tree T , the diagonalization requirements De of Lemma

spdiag
9.2.12

are still dense so we can meet those conditions as usual. Lemma
nopslits
?? applies to any binary

tree and so if our generic �lter includes a tree with no e-splits then again, if �Ge is total
it is recursive. The computation lemma (

complemma
9.2.19) also applies quite generally and so if

the sets Ce of Lemma
nosplitsoresplit
9.2.20 are dense then any generic for forcing with 1-trees is also

of minimal degree. Thus we must show that if the 1-tree T has no extensions without
e-splits then it has an extension which is e-splitting. It is actually helpful in this setting
to �rst provide the analog of Tot(T; e) that forces totality and proves the density of the
Be of Lemma

totdense
9.2.24.

1totdense Lemma 9.6.2 The sets Be = fT j9x8�(�T (�)e (x) ") or (8�)(8x < j�j)(�T (�)e (x) #)g are
dense in P.

Proof. Given a 1-tree T we de�ne a partial recursive function S = Tot1(T; e) by recursion
beginning as usual with S(;) = T (;). Let f�iji < 2ng list all the strings of length n and
assume that S(�i) = T (� i) has been de�ned for all i < 2n. To de�ne S for all � of
length n+1, we search �rst for a �0 such that �

T (�0^�0)
e (n) #. Then we recursively search

for �i such that �
T (�0^�0^:::^�i)
e (n) #. If we eventually �nd �i for all i < 2n, then we let

� = �0^ : : : ^�2n�1 and set S(�i^j) = T (� i^�^j) for j 2 f0; 1g. As T is a 1-tree it is easy
to see that, if total, so is Tot1(T; e) and it satis�es the second clause of Be. If it is not

132 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

total then there is some n, � i and � such that T (� i^�) " for every � � �. In this case,
Fu(T; � i^�) satis�es the �rst clause of Be with x = n.
We can now prove the remaining lemma that shows that all (su¢ ciently) generic G

for P are of minimal degree.

1nosplitsoresplit Lemma 9.6.3 The sets Ce = fT j 9x8�(�T (�)e (x) ") or there are no e-splits on T or T
is an e-splititng 1-treeg are dense in P.

Proof. By Lemma
1totdense
9.6.2, we may assume that the second clause of Be is satis�ed by T ,

i.e. (8�)(8x < j�j)(�T (�)e (x) #. We may also assume that there is no extension of T that
satis�es the second clause of Ce so we can �nd e-splits on any R � T . We now wish
to de�ne an e-splitting 1-tree Sp1(T; e) = S � T . We begin with converting arbitrary
e-splits into ones that are adjacent and then de�ning two new operations on 1-trees.

Claim 9.6.4 For any R � T there are adjacent � and � such that R(�)jeR(�) and so,
in particular, for any � there are �; � � � which are adjacent such that R(�)jeR(�).

Proof. By our second assumption on T there are � and � such that R(�)jeR(�). Without
loss of generality we may take j�j = j�j > n where R(�) and R(�) e-split at n. Consider
then the sequence h�iji � ki of adjacent binary strings of length n such that �0 = � and
�k = �. By our �rst assumption on T � R, �R(�i)e (n) # for every i � k. As the �rst and
last of these have di¤erent values there must be an i such that �R(�i)e (n) # 6= �R(�i+1)e (n) #.
Our desired adjacent e-split is then given by � = �i and � = �i+1.

De�nition 9.6.5 For any tree R and � 2 2<! we de�ne R� (the transfer tree of R over
�) for j�j � jR(;)j as the tree such that, for every � 2 2, R�(�) is the string gotten from
R(�) by replacing its initial segment of length j�j by �. For R � T we de�ne a new type of
subtree S = Sp0(R; e). We begin by using the above Claim to construct sequences �0i and
�1i for i 2 N with �0i and �1i adjacent such that �rst, R(�00)jeR(�10) and then, in general,
R(�00^ � � � ^�0i ^�0i+1)jeR(�00^ � � � ^�0i ^�1i+1). We now de�ne S by recursion with S(;) =
R(;) and S(�) = R(��

�(i)
i) (where we use summation notation � for concatenation and

the number of terms concatenated is j�j).

Remark 9.6.6 Note that as R is a 1-tree and the �0i and �
1
i are adjacent, S is also a

1-tree and, of course, S � R. Moreover, S(�)jeS(�) for any � 6= � as the strings extend
some e-split R(�00)jeR(�10) or R(�00^ � � � ^�0i ^�0i+1)jeR(�00^ � � � ^�0i ^�1i+1) for i � 0.

Proof continued. We now de�ne our e-splitting 1-tree Sp1(T; e) = S � T by recursion
beginning with S(;) = T (;). Let f�iji < 2ng list all the strings of length n and assume
that S(�i) = T (� i) has been de�ned for all i < 2n. We let R0 = Sp0(T�0 ; e) and for
0 < i < 2n we let Ri = Sp0(R

T (� i)
i�1 ; e) and R = R2n�1. We now let S(�i^j) = RT (� i)(j).

The veri�cations that this de�nes the next level of an e-splitting 1-tree contained in T

9.6. THE MINIMAL DEGREES GENERATE D 133

are straightforward. By the de�nition of Sp0, jR(;)j = jRi(;)j = jT (� i)j for every i < 2n
and R(0) and R(1) are adjacent. By the de�nition of the transfer trees, RT (� i)(0) and
RT (� i)(1) are adjacent extensions of T (� i) = S(�i) and the extensions are given by the
same pair of strings for each i as R is a 1-tree. Moreover, since R � Ri for every i < 2n,
each RT (� i)(j) is a node on Ri = Sp0(R

� i
i�1; e) (where R�1 = T) and so by the Remark

above, they form an e-splitting.
This completes the de�nition of level n+1 of S and so, by recursion of S = Sp1(T; e)

which is an e-splitting 1-tree extending T as required to establish the density of the Ce.

We have now shown the forcing with 1-trees produces a minimal degree.

1treemin Proposition 9.6.7 Any generic meeting the dense sets Be, Ce and De for forcing with
1-trees is of minimal degree.

Exercise 9.6.8 Show that there are generics G as in Proposition
1treemin
9.6.7 with G �T 000

and indeed with G00 �T 000.

Exercise 9.6.9 Show that the generic sets of Proposition
1treemin
9.6.7 are of minimal m-degree.

We next want a tree of such minimal degrees, i.e. a 1-tree T such that every path is
of minimal degree. We move to a tree of trees as we did in Exercise

treeofmin
9.2.32.

1treeofmin Theorem 9.6.10 If we force with the notion of forcing P1t with conditions (T; n) where
T is a 1-tree, n 2 N and extension is de�ned by (S;m) �Pt (T; n) if S �S T , m � n and
S(�) = T (�) for every � of length � n and V ((T; n)) is the �nite binary 1-tree given by
restricting T to strings of length n, then any su¢ ciently generic G is a 1-tree such that
every path on G is of minimal degree.

Proof. It is clear that G is a 1-tree from the fact that V (P) is a 1-tree for every condition
P and that if Q �P1 P then V (Q) � V (P) as 1-trees. To prove the theorem it su¢ ces, by
the last Proposition, to show that for each of the dense sets Be, Ce and De any condition
(T; n) there is a condition (R; n) �P1 (T; n) such that for each � of length n, RR(�) is in
the desired dense set. List the strings of length n as �i, i < 2n. Begin with S0 = TT (�0).
By the relevant Lemma above (

1totdense
9.6.2,

1noesplitoreplit
?? and

spdiag
9.2.12) we can re�ne S0 to a 1-tree S1 which

is in the dense set. We can then consider ST (�1)1 and re�ne it to S2 which is also in the
dense set. We continue in this way to de�ne Si for i < 2n by re�ning S

T (�i)
i to get an Si+1

in the dense set. At the end we have S = S2n such that ST (�i) is in the dense set for each
i < 2n. We now de�ne R by R(�) = T (�) for j�j � n and for � � �i R(�) = ST (�i)(�). It
is clear that (R; n) �P1 (T; n) and for each � of length n, RR(�) is in the desired dense set.
Let G be a generic 1-tree meeting all these dense sets. Now any M 2 [G] is P-generic
for the previous notion of forcing with 1-trees to the extent required by Proposition

1treemin
9.6.7

and so is of minimal degree by that Proposition.

134 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

Exercise 9.6.11 Show that there are generics G as in Theorem
1treeofmin
9.6.10 with G �T 000

and indeed with G00 �T 000.

Exercise 9.6.12 For each n � 3, Show that there are sets A of minimal degrees which
are �n but not �0

n. Hint: take a path in the G of Theorem
1treeofmin
9.6.10 which follows a path

C 2 �n ��0
n, i.e. A = [fG(C � k)jk 2 Ng. (For n = 2, the result can be proven using,

among other things, Exercise
0�treeofmin
9.3.5.)??

Finally, we use Pt to prove our main theorem for this section.

mingen Theorem 9.6.13 For every degree a there are minimal degrees m0, m1, m2 and m3

such that a = (m0 _m1) ^ (m2_ m3).

Proof. For any 1-tree G and set C, we let dn be the unique x such that G(�^0)(x) 6=
G(�^1)(x) for any � of length n and GC be the path through G such that GC(dn) = C(n).
(As G is a 1-tree the x as required to de�ne dn is unique for each � and the same for all of
them.) These notions apply to �nite 1-trees as G and �nite binary strings as C with the
obvious comment that there may only be �nitely many dn involved. If G is su¢ ciently
generic for P1t as required for Theorem

1treeofmin
9.6.10, and A is any set then it is clear that

A �T GA _G �A as n 2 A if and only if GA(x) = 1 where x is the nth place at which GA
and G �A di¤er (it is actually dn). Thus we have two minimal degrees which join above a.
Our plan now is to take G0 and G1 two mutually su¢ ciently generic 1-trees for P1t where
the notion su¢ ciently generic now depends on A and assures that (GA0 _G

�A
0)^(GA1 _G

�A
1).

Formally we consider the notion of forcing P2t whose conditions consist of pairs (P:Q)
with each of P and Q a condition in P1t. The ordering is given by (P̂ :Q̂) �P2t (P:Q)
if P̂ �P1t P and Q̂ �P1t Q. In addition to the dense sets de�ned by requiring that
each coordinate get into the dense sets from Theorem

1treeofmin
9.6.10 we have one more family

of dense sets for the new meet requirement. For (T; n) = P 2 P1t we let Pn be the
�nite 1-tree given by restricting T to strings of length at most n. The argument is by

now familiar. We let Ae = f(P:Q)j9x(�(P
A
n _P

�A
n)

e (x) #6= �(Q
A
n_Q

�A
n)

e (x) #) or (8(P̂ :Q̂) �P2t
(P:Q))(:9x(�(P

A
n _P

�A
n)

e (x) #6= �(Q
A
n_Q

�A
n)

e (x) #))g. Now if our generic meets Ae in condition
((P; n); (Q;m)) and the �rst clause holds then clearly �(G

A
0 _G

�A
0)

e (x) #6= �(G
A
1 _G

�A
1)

e (x) # as,
by the de�nition of extension in P2t, PAn _P

�A
n and Q

A
n _Q

�A
n are initial segments of G

A
0 _G

�A
0

and GA1 _G
�A
1 , respectively. On the other hand, if the second clause holds and �

(GA0 _G
�A
0)

e

and �(G
A
1 _G

�A
1)

e are total and equal, then we claim they are recursive in A. To compute

�
(GA0 _G

�A
0)

e (x) �nd any �nite extension Rm of Pn to a 1-tree of height m that is a subtree

of P and such that �(R
A
n_R

�A
n)

e (x) #. This Rm then extends to a full 1-tree R such that

(R; n) �P1t (P; n). There must be one as Pn � G0 and the computation of �
(GA0 _G

�A
0)

e (x)
only requires �nitely many levels of G0 � P . If this were not the correct answer then,
as for P and G0, there would be a �nite extension Sk of Qn contained in Q which gives

the same answer as �(G
A
1 _G

�A
1)

e (x) #. Again this Sk can be extended to an S such that

9.6. THE MINIMAL DEGREES GENERATE D 135

(S; n) �P1t (Q; n). Then ((R; n); (S; n)) �P2t (P;Q) but satis�es the �rst clause of Ae for
the desired contradiction.

Exercise 9.6.14 Show that the minimal degrees in GL1 generate D.

136 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

Chapter 10

Lattice Initial Segments of Dinitialseg

Known results, history. Plan and goals here. Include all �nite lattices and all countable
distributive ones two of the major steps in previous process. new proof based on ...
su¢ cient for all Applications. do two quanti�er theory decidable and three undecidable.
First present the proof for recursive lattices which su¢ ces for all our applications.

Then indicate how to extend argument to cover all sublattices of any recursive lattice
and so, for example, all distributive lattices.
??Explain intuition for construction: combine lattice tables as used to embed lattices

and tree constructions used to build minimal degrees. What problems arise when try to
merge and how adjust forcing conditions to overcome them. some done below do more.
??

10.1 Lattice Tables, trees and the notion of forcing

Our plan is to use lattice tables like those of
latrep
6.3.8 to provide the basics of our embeddings

of lattices as initial segments of D. For simple embeddings in §
latembsec
6.3 we used a Cohen

like forcing with conditions that were �nite sequences of elements of our representation.
In light of our move to trees in §

spectormin
9.2 to construct minimal degrees, it should not be

surprising that we now move to conditions that are trees built on lattice tables �, i.e.
maps T : �<! ! �<! to provide the appropriate notions of forcing. The generic G that is
built is then, as in §

latembsec
6.3, an in�nite sequence of elements from �. As a �rst approximation,

the embedding is given as before. For x 2 L, x 7�! Gx where Gx(n) = G(n)(x): (Recall
that the elements of � are maps from L to N.) Order, nonorder, join and meet are
handled much as in §

latembsec
6.3. The key idea for making the embedding onto an initial segment

again uses a type of e-splitting tree. While we want to deal with in�nite lattices, a crucial
component of the computation lemma for e-splitting trees (even in the minimal degree
case) is that the trees are �nitely branching. As long as they are �nitely branching, one
has a hope of determining the path taken by using �Ge to choose among the e-splits. Thus
we approximate our table by �nite subsets �i and consider trees T that at level i branch
according to the elements of �i. We also have an associated decomposition of our given

137

138 CHAPTER 10. LATTICE INITIAL SEGMENTS OF D

lattice L = [Li. Now if one ignores the meet operation and the required interpolants it
is easy to get a �nite lattice table for a �nite lattice. We call these upper semilattice
(usl) tables. We postpone the meet interpolants for Li to �i+1. While this is not strictly
necessary, it makes the construction of the tables much easier. Moreover, we need a new
type of interpolant to make the embeddings constructed be onto initial segments of D
and we do not know if these could be incorporated as well into a �nite lattice table for
Li.
These new interpolants are called homogeneity interpolants. The idea here is that if

we intend to force �Ge �T Gx for some x 2 L then using Gx we cannot distinguish among
all the nodes � in the tree at a given level n as many have the same �x (be congruent
modulo x). This suggests that we want our trees to have some kind of homogeneity
guaranteeing that what happens above one such � is congruent to what happens above
any other � �x �. Of course, we need this property for every x 2 L.
With the above as a brief motivation, we now formally de�ne the lattice tables that

we use and the associated trees.

uslrepdef De�nition 10.1.1 Let � be a set of maps from an usl L with least element 0 and greatest
element 1 into N. For �; � 2 � and x 2 L, we write � �x � (� is congruent to � modulo
x) if �(x) = �(x). We write � �x;y � to indicate that � is congruent to � modulo both x
and y. Such a � is an usl table for L if it contains the function that is 0 on every input
(which we, by an abuse of notation, denote by 0) and for every �; � 2 � and x; y; z 2 L
the following properties hold:

1. �(0) = 0.

2. (Di¤erentiation) If x � y then there are ; � 2 � such that �y � but 6�x �.

3. (Order) If x � y and � �y � then � �x �.

4. (Join) If x _ y = z and � �x;y � then � �z �.

restriction Notation 10.1.2 If � is an usl representation for L and L̂ � L then we denote the
restriction of � to L̂ by � � L̂ = f� � L̂j� 2 �g. We also say that � is an extension of
� � L̂. Note that as all our (upper or lower semi)lattices contain 1, the order property
guarantees that if � � L̂ = � � L̂ then � = �. Thus when we extend an usl representation
�̂ for L̂ to one � for L (as in the constructions for Proposition

extend
10.3.4 we can use the

same � 2 �̂ to denote its unique extension in �.

homo De�nition 10.1.3 If �0 and � are usl representations for L0 and L, respectively, L̂ �
L0 � L and f : �0 ! �, then f is an L̂-homomorphism if, for all �; � 2 �0 and x 2 L̂,
� �x �) f(�) �x f(�).

Theorem 10.1.4 (see Theorem
repthm
10.3.1) If L is a countable lattice, then there is an

usl table � for L along with a nested sequence of �nite sublower semilattices, slsls, Li
starting with L0 = f0; 1g with union L and a nested sequence of �nite subsets �i with
union � with both sequences recursive in L with the following properties:

10.1. LATTICE TABLES, TREES AND THE NOTION OF FORCING 139

1. For each i; �i � Li is an usl table for Li.

2. There are meet interpolants for �i in �i+1, i.e. if � �z �, x^ y = z (with �; � 2 �i
and x; y; z 2 Li) then there are 0; 1; 2 2 �i+1 such that � �x 0 �y 1 �x 2 �y
�.

3. For every sublowersemilattice L̂ of Li, L̂ �lsl Li; there are homogeneity interpolants
for �i with respect to L̂ in �i+1, i.e. for every �0; �1; �0; �1 2 �i such that 8w 2
L̂(�0 �w �1 ! �0 �w �1), there are 0; 1 2 �i+1 and L̂-homomorphisms f; g; h :
�i ! �i+1 such that f : �0; �1 7! �0; 1, g : �0; �1 7! 0; 1 and h : �0; �1 7! 0; �1,
i.e. f(�0) = �0, f(�1) = 1 etc.

We prove this theorem in §
lattablesec
10.3. Our goal in this and the next section is to prove that

we have initial segment embeddings for all recursive lattices.

reclatticeiso Theorem 10.1.5 Every recursive lattice L is isomorphic to an initial segment of D.

For the rest of this section and all of the next we �x a recursive lattice L and a
sequence hLi;�ii for it as speci�ed in Theorem

repthm
10.3.1. We now move on to the de�nition

of the trees that are the conditions in our forcing relation.

latticetree De�nition 10.1.6 A tree T (for the sequence hLi;�ii), which we call simply a tree in
this chapter ,is a recursive function such that for some k 2 ! its domain is the empty

string ; and all strings in the Cartesian product
n=mQ
n=0

�k+n for each m 2 !. We denote

this number k by k(T). For each � 2 domT , T (�) 2
n=qQ
n=0

�n for some q � j�j � 1.
Moreover, T has the following properties for all �; � 2 domT :

1. (Order) � � �) T (�) � T (�).

2. (Nonorder) �j�) T (�)jT (�). In fact, we speci�cally require that, for every � 2
n=mQ
n=0

�k+n and � 2 �k+m+1, T (�^�) � T (�)^�.

3. (Uniformity) For every �xed length l there is, for each � 2 �k+l, a string �l;� so
that, for a given l, all the �l;� are of the same length independently of � and if
j�j = l then T (�^�) = T (�)^�l;�. Note that by the nonorder property (2), for �xed
l and � 6= �, �l;� 6= �l;�, in fact, by our speci�c requirement, �l;�(0) = �.

Thus our trees T have branchings of width j�k(T)+nj at level n and satisfy order and
nonorder properties as for Spector forcing. In addition, they enjoy a strong uniformity
property that plays a crucial role in our veri�cations.

subtree De�nition 10.1.7 We say that a tree S is a subtree of a tree T , S � T , if k(S) � k(T)
and (8� 2 domS)(9� 2 domT)[S(�) = T (�)].

140 CHAPTER 10. LATTICE INITIAL SEGMENTS OF D

We note three useful facts that illuminate the structure of subtrees. The �rst says
that the branchings on S follow those on T .

Lemma 10.1.8 If S is a subtree of T then
1. S(�) = T (�)! (8� 2 �k(S)+j�j)(S(�^�) � T (�^�)
2. 8l9�l;�8�; �(j�j = l & S(�) = T (�) ! S(�^�) = T (�^�l;�) for � 2 �k(S)+l and
3. [S] � [T].

Proof. The �rst fact follows immediately from our speci�c implementation of the
nonorder property for trees (De�nition

latticetree
10.1.6(2)). The second follows from the uni-

formity requirements (3) of De�nition
latticetree
10.1.6 for S and T as well as property (2). the last

is immediate from the de�nition.
Transitivity of the subtree relation should be clear but an even stronger claim is

proven in Proposition
trans
10.1.11. We mention some speci�c operations on trees that we use

later.

fulldef De�nition 10.1.9 If T is a tree and � 2 domT then Fu(T; �) or T� is de�ned by
T�(�) = T (�^�). Clearly, k(T�) = k(T) + j�j and T� � T . Note that for � 2 domT
and � 2 domT�, (T�)� = T�^� . For a string � 2

n=qQ
n=0

�n with q � jT (;)j � 1, we let

T � (the transfer tree of T over �) be the tree such that, for every � 2 domT , T �(�)
is the string gotten from T (�) by replacing its initial segment of length q + 1 (which is
contained in T (;)) by �. We write T �� for (T�)�. Finally, if T is a tree with k(T) = k
and � 2 domT then we let T �� = T� � domT . Clearly, k(T ��) = k(T) and T �� � T . Note
that for � 2 domT and � 2 domT �� , (T ��)�� = T ��^� .

A crucial notion for our constructions is that of preserving the congruences of speci�ed
slsls of our given lattice L.

prescong De�nition 10.1.10 If L̂ is a �nite slsl of L we say that a subtree S of T preserves the
congruences of L̂, S �L̂ T , if L̂ � Lk(T) and, whenever x 2 L̂, S(�) = T (�), � �x �,
S(�^�) = T (�^�) and S(�^�) = T (�^�), then � �x �. Here � and � are members of the
appropriate �i and � and � are sequences (necessarily of the same length m) of elements
from the appropriate �j�s. We say that such sequences � and � are congruent modulo x,
� �x �, if �(j) �x �(j) for each j < m.

trans Proposition 10.1.11 If R �L1 S �L2 T and then R �L1\L2 T .

Proof. To see that R � T note �rst that k(R) � k(S) � k(T). Next suppose that
� 2 domR and � 2 �k(R)+j�j. As R � S we have a � such that R(�) = S(�) and
R(�^�) � S(�^�). As S � T we have a � such that S(�) = T (�) and S(�^�) � T (�^�).
Thus R(�) = T (�) and R(�^�) � T (�^�) as required. As for the preservation of L1 \L2
congruences, suppose R(�) = S(�) = T (�), x 2 L1\L2, �0; �1 2 �k(R)+j�j and �0 �x �1.
Let R(�^�i) = S(�^�i) = T (�^�i). As x 2 L1 and R �L1 S, �0 �x �1. As x 2 L2 and

10.1. LATTICE TABLES, TREES AND THE NOTION OF FORCING 141

S �L2 T it then follows by induction on the (by uniformity, necessarily common) length
of �i that �0 �x �1 as required.
The details of this induction follow. Write �i = �0i ^ � � � ^�si where S(�^�i(0) � � � ^�i(t)) =

T (�^�0i ^
���^�ti). Then inductively �0(j) �x �1(j) gives �

j
0 �x �

j
1. For j = 0 this follows

directly from De�nition
prescong
10.1.10. For the inductive step, consider, without loss of gener-

ality, the case j = 1. We have S(�^�0(0)^�0(1)) = T (�^�00^�
1
0) and S(�^�1(0)^�1(1)) =

T (�^�01^�
1
1). Consider S(�^�0(0)^�1(1)) = T (�^�00^�) for some �. By the uniformity

clause (3) of De�nition
latticetree
10.1.6, there is a � such that S(�^�0(0)^�1(1)) = S(�^�0(0))^�

and S(�^�1(0)^�1(1)) = S(�^�1(0))^�. Thus T (�^�
0
0^�) = T (�^�00)^� and T (�^�

0
1^�

1
1) =

T (�^�01)^�. Again, by the uniformity clause and the uniqueness of the �l;� there (iterated
j�j times), � = �11. Finally, by De�nition

prescong
10.1.10 again, � �x �10 as �1(1) �x �0(1) and

so �11 �x �10 as required.
We now present the notion of forcing for constructing our embedding of L as an initial

segment of D.

defforcing De�nition 10.1.12 The forcing conditions P our notion of forcing P are trees T (for
hLi;�ii). We say T1 �P T0;if T1 �K(T0) T0 where, as often, we denote Lk(T) by K(T).
We let V (T) = T (;). The top element of P consists of the identity tree Id (which has
k(Id) = 0).

fulllem Lemma 10.1.13 If T is a tree, � 2 domT and L̂ � Lk(T), then T� �L̂ T . If �; � 2
domT are of the same length and S �P T� then ST (�) �P T� . We also have that
T
T (�)
� = T� .

Proof. The �rst assertions follow directly from the de�nitions. The last two follow from
the uniformity assumption on our trees.
It is easy to see that sets Cn = fP j jV (P)j > n & k(P) > ng are dense. Just extend

to some P�. We assume that any generic �lter G we consider meets these sets. It then
determines a generic function G 2

1Q
n=0

�n , i.e. a function on ! with G(n) 2 �n. On
this basis we could naively try to de�ne our embedding of K into D as we did in §

latembsec
6.3:

For x 2 K � L we let Gx : ! ! ! be de�ned by Gx(n) = G(n)(x). The desired image
of x would then be deg(Gx). Now the order and join properties of usl representations
guarantee that this embedding preserves order and join (on all of L even). If x � y then
by the order property we can (recursively in the table h�ii) calculate Gx(m) from Gy(m)
by �nding any � 2 �m with �(y) = Gy(m) and declaring that Gx(m) = �(x). (Such an
� exists since G(m) is one.) Similarly if x _ y = z then, by the join property, we can
calculate Gz(m) from Gx(m) and Gy(m) by �nding any � 2 �m such that �(x) = Gx(m)
and �(y) = Gy(m) and declaring that Gz(m) = �(z). (Again G(m) is such an �.)
Were congruences modulo x always preserved for every x, we could directly carry

out the diagonalization and other requirements as well for this de�nition of Gx. In
actuality, however, not all congruences are preserved as we re�ne to various subtrees in
our construction. Thus we must modify the de�nition of the images in D and provide
nice representations of the degree corresponding to x.

142 CHAPTER 10. LATTICE INITIAL SEGMENTS OF D

De�nition 10.1.14 If G is a generic �lter meeting the dense sets Cn, G the correspond-
ing generic element of

1Q
n=0

�n, P 2 G and x 2 K(P) then GP is the sequence h�njn 2 !i

where P (h�njn < mi) � G for every m. (Thus h�ni is the path that G follows in the
domain of P . In particular, G = GId. It is obvious from the de�nitions that G is a path
on (i.e. in the range of) Q for every Q 2 G.) We de�ne GPx (n) as �n(x).

The crucial point is that the degree of GPx does not depend on P once x 2 K(P).

Lemma 10.1.15 If x 2 K(P); K(Q) for P;Q in a generic G, then GPx�TGQx .

Proof. As there is an R �P P;Q in G by the compatibility of all conditions in a generic
�lter, it su¢ ces to consider the case that Q �P P . Let GP = h�ni and GQ = h�ni.
By the de�nition of subtree there is for each n an m(n) such that Q(h�sjs < ni) =
P (h�sjs < m(n)i) and we can compute the function m recursively in the trees. (By the
uniformity of the trees, there is, for each n, a unique m(n) such that jQ(�)j = jP (�)j for
every � of length n and every � of length m(n).) Moreover, by our de�nition of subtree,
�n = �m(n). Thus GQx (n) = �n(x) = �m(n)(x) = GPx (m(n)) and so G

Q
x �h GPx . The other

direction depends on the congruence preservations for x implied by Q �K(P) P .
Suppose that we have, by recursion, determined GPx (i) = �i(x) for i � m(n).

The next step followed by G in Q is �n+1 = �m(n)+1. It corresponds to the sequence
h�ijm(n) + 1 � i < m(n+ 1)i. The de�nition of�K(P) implies that h�i(x)jm(n) + 1 � i < m(n+ 1)i
is uniquely determined by �n+1(x) to continue the recursion.
Thus given a generic G we can de�ne a map from L into D by sending x 2 L to

deg(GPx) for any P 2 G with x 2 K(P). Our proof plans above as in §
latembsec
6.3 for the

preservation of order and join now work here as well simply by applying them to GP on
P (in place of G on Id) for any P 2 G with x; y; z 2 K(P). Thus we only need to verify
the preservation of nonorder and that our map is onto an initial segment of D. (Note
that meet is preserved once we know that the mapping is an order isomorphism of the
lattice L onto an initial segment of D as meet is de�nable from order. Of course, this
argument would apply to join as well but no new work is needed to note that join is
preserved. It is also worth commenting that we use the join structure in the usl tables as
well as the meet interpolants in the proof that the embedding is onto an initial segment
of D.)

10.2 Initial segment conditions

To assure that our embedding preserves nonorder we want to show, for any x � y in K,
condition P with x; y 2 K(P) and �e, that there is a Q �P P such that for any G 2 [Q]
�
GPy
e 6= GPx and a Q �P P and x 2 K(Q) such that for any G 2 [Q] for which �Ge is
total, �Ge �T GQx . These two results would then �nish the proof of our theorem. We
begin with the analog of total subtrees of De�nition

totdef
9.2.22 and the corresponding dense

sets that make our task simpler.

10.2. INITIAL SEGMENT CONDITIONS 143

totldef De�nition 10.2.1 Let T be a condition in P. If for every � 2 domT and every x there
is a � � � such that �T (�)e (x) # then we de�ne a subtree S = Totl(T; e) with the same
domain by recursion on the length of � 2 domT . We begin with S(;) = T (;). Suppose
for every �i 2 domT of length n there is a � i such that we have de�ned S(�i) = T (� i)
for i < m. We now list the � such that we must de�ne S(�i^�) to get the next level of
S as h�jjj < si. We proceed to de�ne �l for each l = hi; ji with i < m and j < s. (For
convenience we assume these are the l < r = m � s.) For l = 0 = h0; 0i we search for the
�rst � � such that �T (�0^�0^�)e (j�j) #. One exists by our assumption. We then set � = �0.
If we have de�ned �l for l � q and �q = �0^ : : : ^�q then we let �q+1 where q + 1 = ĥ{; |̂i
be the �rst � such that �

T (� {̂^�|̂^�q^�)
e (j�j) #. We now let � be the concatenation of the �l

for l < r and set S(�i^�j) = T (� i^�j^�).

De�nition 10.2.2 If T is a tree and (8�)(8x < j�j)(�T (�)e (x) #, we say that T is e-total
and we denote �T (�)e (n) for n < j�j by qT (n; �).

Lemma 10.2.3 If T and Totl(T) = S is de�ned then S �P T and S is e-total.

Proof. The second claim is immediate from the de�nition of Totl(T). As for the �rst,
it is immediate that domS = domT and that, since T is a tree, that S is a subtree of T .
As the de�nition of S has S(�i^�j) = T (� i^�j^�) for a single � over all the nodes �i^�j
of level n+ 1, it is also clear that S preserves all the congruences of K(T).

totl Lemma 10.2.4 The sets Be = fP j9x8�(�P (�)e (x) ") or P is e-totalg are dense in P.

Proof. Suppose we are given P and e. If there is an x and a � such that �P (�)e (x) "
for every � � �, then clearly P� (or P ��) satis�es the �rst clause in the de�nition of Be.
Otherwise, Totl(P; e) satis�es the second clause by the last Lemma.

diag Proposition 10.2.5 (Diagonalization) For any x � y in L, e 2 N and condition P
with x; y 2 K(P), there is an Q � P such that 8G 2 [Q], if �Ge is total then �

GPy
e 6= GPx .

Proof. There is clearly an j such that �
GPy
e = �Gj . By Lemma

totl
10.2.4 we may assume

that P is j-total. We then choose any �0; �1 2 �k(P) such that �0 �y �1 but �0 6�x �1.
Such �0 and �1 exist by the di¤erentiation property of usl tables. Let �i = (�i)

j�j; i.e.
the concatenation of j�j many copies of �i for i 2 f0; 1g. Consider then the conditions
P�i and any Gi 2 [P�i]. Of course, (Gi)Px (j�j) = �i(x) while �

P�i (;)
i (j�j) # for i = 0; 1 by

Lemma
totl
10.2.4. As the �i, for i = 0; 1, are congruent modulo y and y 2 K(P), the initial

segments of GPy that P�i(;) determine are equal. Thus the �
P�i (;)
i (j�j) = �

GPy
e (j�j) are

convergent and equal. So for one i 2 f0; 1g, �P�i (;)i (j�j) 6= �i(x). For that i, P�i is the Q
required in the Lemma.

144 CHAPTER 10. LATTICE INITIAL SEGMENTS OF D

We turn now to the requirement that the image of K under our embedding form an
initial segment of D. This argument is somewhat more complicated than those above
and uses both the meet and homogeneity interpolants.
We begin with the notion of an e-splitting appropriate to our trees and a lemma about

such splittings.

defsplit De�nition 10.2.6 Given a �e and an e-total tree Q. we say that � and � with j�j = j� j
are an e-splitting or e-split on Q (modulo w) if (� �w � and) there is an n < j�j such that
qT (n; �) 6= qT (n; �). If R � Q;R(�) = Q(�); R(�) = Q(�) and � and � e-split (modulo
w) on Q then we also say that � and � e-split on R (modulo w).

meetsplit Lemma 10.2.7 Given an e-total condition Q, there is a � 2 domQ such that the set
Sp(�) = fw 2 K(Q)j there are no �; � that e-split on Q�� modulo wg is maximal. More-
over, this maximal set is closed under meet and so has a least element z.

Proof. Let k = k(Q) and K̂ = K(Q). As K̂ is �nite there is clearly a � such that Sp(�) is
maximal. Note that then Sp(�) = Sp(�) for any � � � with �n� 2 domQ�� as Q�� �K̂ Q��.
Consider any x; y 2 Sp(�) with x ^ y = w. As K̂ �lsl L, w 2 K̂. To show that Sp(�)
is closed under meet it su¢ ces (by the maximality of Sp(�)) to show that there is no e-
splitting on Q��^0 modulo w. Remember that, by de�nition, k = k(Q��^0) = k(Q��) = k(Q).
Suppose there were such a split �� and ��, each of length m. By our de�nition of Q��^0,

��; �� 2
n=mQ
n=0

�k+n . In Q�� at the corresponding levels, however, there are branchings for

all elements of �k+n+1. (That is there are, for example, successors of Q��(0^� � n + 1)
for every element of �k+n+1 while in Q��(� � n + 1) there are ones only for the elements
of �k+n.) Thus, by the existence of meet interpolants for �k+n in �k+n+1, there are

�0; �1; �2 2
n=mQ
n=0

�k+n+1 such that for each j � m, the �i(j) for i 2 f0; 1; 2g are meet

interpolants for ��(j) and ��(j), i.e. �� �x �0 �y �1 �x �2 �y ��. As �� and �� form a
e-splitting on Q��^0 so do one of the successive pairs such as 0^�0, 0^�1 on Q

�
�. But then

0^�0 and 0^�1 would be an e-split on Q
�
� congruent modulo y for a contradiction. (The

situations for the other pairs are the same but perhaps with x in place of y.)
We now build the analog of the e-splitting subtrees of De�nition

esplittree
9.2.17.

splittree Proposition 10.2.8 Given an e-total Q with k(Q) = k and K(Q) = K̂ with � and z
as in Lemma

meetsplit
10.2.7, there is a condition S � Q�� with k(S) = k such that any �; � 2

domS(= domQ) with � 6�z � e-split on S. (Of course, by the choice of � and z there are
no e-splits on Q�� which are congruent modulo z.) Such a tree S is called a z� e-splitting
tree.

Proof. We de�ne S(�) (with k(S) = k) by induction on j�j beginning, of course, with
S(;) = Q��(;). Suppose we have de�ned S(�) = Q��(��) for all � of length n. We
must de�ne S(�^�) for all such � and appropriate � as extensions Q��(��^�) of Q

�
�(��^�)

10.2. INITIAL SEGMENT CONDITIONS 145

obeying all the congruences in K̂, i.e. if x 2 K̂ and � �x � then ��^� �x ��^�. We

list the � of length n + 1 as �i^�i for i < m = j
j=nQ
j=0

�k+jj and de�ne by induction on

r < l = m(m+1)=2 (the number of pairs fi; jg with i; j < m) strings �i;r simultaneously
for all i < m. At the end of our induction we set ��i^�i = ��i^�i^�i;0^ : : : ^�i;l�1. For this
to succeed it su¢ ces to maintain uniformity and guarantee, for every i; j < m and w 2 K̂,
that �i �w �j) �i;r �w �j;r for every r < l and that if �i 6�z �j then ��i^�i^�i;0^ : : : ^�i;r
and ��j^�j^�j;0^ : : : ^�j;r e-split on Q

�
� where r < l is (the code for) fi; jg.

By induction on r < l we suppose we have ��i^�i;0^ : : : ^�i;r�1 = �i for all i < m and
that fp; qg is pair number r. If �p �z �q there is no requirement to satisfy and we let
�i;r = ; for every i. Otherwise, let w be the largest y 2 Lk+n such that �p �y �q. (To
see that there is a largest such y, �rst note that Lk+n is a lattice as it is a �nite lsl. As
�k+n is an usl table for Lk+n, if �p �u;v �q for u; v 2 Lk+n then �p �t �q where t is
the least element of Lk+n above both u and v (their join from the viewpoint of Lk+n).
Thus, there is a largest y as desired.) Of course, z � w. By our choice of z there are

�; � 2
t=cQ
t=0

�k+t such that �p extended by � and � form an e-splitting congruent modulo w

on Q��. (We can �nd such a split on Q
�
�p by the de�nition of � and z and our assumption

on w. It translates into such � and � .) Consider �q^� . It must form an e-splitting on Q��
with one of �p^� and �p^� by the basic properties of Q. If it splits with the latter string
then we can set �i;r+1 = � and clearly ful�ll the requirements for this pair fp; qg both
for congruence modulo w (as all new extensions are identical) and e-splitting. Of course,
uniformity is maintained as the �i;r+1 are the same for all i. Thus we assume that �p^�
and �q^� e-split on Q��. We now use our homogeneity interpolants.
We know that w is the largest y 2 Ln+k such that �p �y �q and that � �w � .

Thus for any x 2 K̂ � Lk+n if �p �x �q then x � w and so � �x � . By Theoremrepthm
10.3.1(3) we can now �nd homogeneity interpolants 0(s); 1(s) in �k+s+1 and associated
K̂-homomorphisms fs; gs; hs : �k+s ! �k+s+1 such that fs : �p; �q 7! �(s); 1(s), gs :
�p; �q 7! 0(s); 1(s) and hs : �p; �q 7! 0(s); �(s) for each s < j�j = j� j. (We let
�0 = �p, �1 = �q, �0 = �(s), �1 = �(s), L̂ = K̂ and i = k + s in the Theorem.) Note
that the branchings in Q�� are at some levels up from the corresponding ones in Q��p
or Q��q on which we chose � and � . Thus these homogeneity interpolants are available
within the branchings in Q��. As �p^� and �q^� e-split on Q

�
� one of the pairs �p^�; �q^�1;

�p^�0; �q^�1 and �p^�0; �q^� must also e-split onQ
�
�. Suppose, for the sake of de�niteness,

it is the second pair �p^�0; �q^�1. In this case, we let �i;r+1(s) = gs(�i) for every i
and s. Note that uniformity is maintained as �i;r+1(s) depends only on �i. We use fs
or hs in place of gs if the e-splitting pairs are �p^�; �q^�1 or �p^�0; �q^� , respectively.
By the homomorphism properties of the interpolants these extensions preserve all the
congruences in K̂ between any �i and �j as required to complete the induction and our
construction of an e-splitting tree .
We now conclude the proof that our embedding maps onto an initial segment of D.

by showing that for G 2 [S] with S a z � e-splitting tree, �Ge �T GSz . The proof is

146 CHAPTER 10. LATTICE INITIAL SEGMENTS OF D

analogous to that of the Computation Lemma (
complemma
9.2.19).

comp Lemma 10.2.9 If S is a z � e-splitting tree and G 2 [S] then �Ge �T GSz .

Proof. We �rst show that �Ge �T GSz . Consider any n. Using GSz we can �nd all the
� 2 domS of length n such that �(l) = GSz (l) for every l � n. All of these � are congruent
modulo z and so all S� force the same value for �Ge at n. As S(�) is an initial segment of
G for one of these �, this value must be �Ge (n). We next argue that G

S
z �T �Ge . Consider

all �; � 2 domS of length n. If � 6�z � then S� and S� force di¤erent values for �Ge
at some l < n. Thus using �Ge � n we can �nd the unique congruence class modulo z
consisting of those � such that S(�) is not ruled out as a possible initial segment of G.
For one � in this class, S(�) is an initial segment of G and as all the � in this class are
congruent modulo z, they all determine the same values of GSz � n which must then be
the correct value.
We have now completed the proof that any generic �lter G (deciding all sentences and

meeting the dense sets provided by Lemma
totl
10.2.4 and Propositions

diag
10.2.5 and

splittree
10.2.8)

provides an embedding of L onto an initial segment of D that sends x to deg(GPx) (for
any P 2 G with x 2 K(P)). This establishes Theorem

reclatticeiso
10.1.5 given our lattice table

theorem whose proof we provide in §
lattablesec
10.3. We now indicate how to modify Theorem

reclatiso
??

so as to apply to any sublattice K of a recursive lattice.

subreclatticeiso Theorem 10.2.10 If K is a sublattice of a recursive lattice L then K is isomorphic to
an initial segment of D.

Proof. The changes needed to the proof of Theorem
reclatticeiso
10.1.5 are mostly notational. The

forcing conditions are now pairs hT; K̂i where T is a tree (for hLi;�ii) and K̂ is a �nite
slsl of K \ Lk(T). We say that hT1;K1i �P hT0;K0i if T1 �K0 T0 and K1 � K0. We
let V (hT; K̂i) = T (;). If P = hT; K̂i is a condition we let K(P) = K̂, Tr(P) = T and
k(P) = k(T). In following much of the original proof, one should often simply replace
a condition P by Tr(P) when K(P) is �xed. Along these lines, for example, we use
P�, P �� , P

� and P �� to stand for hTr(P)�; K(P)i, hTr(P)��; K(P)i, hTr(P)� ; K(P)i and
hTr(P)��; K(P)i, respectively. The top element of P consists of the identity tree Id
(which has k(Id) = 0) and the slsl L0 = f0; 1g.
The basic dense sets Cn that we assume are met by any generic are now extended to

include, for each x 2 K the sets fP jx 2 K(P)g. to see that these are dense, consider any
Q 2 P and x 2 K. Let K0 be the slsl of K generated by K(Q) and x and let i � k(Q)
be such that K0 � Li. De�ne S with k(S) = i by S(�) = Tr(Q)(0i�k(Q)^�). Clearly,
hS;K0i �P Q and is in the required set.
The de�nition of the embedding, now from K, into D is the same as before noting

that K(P) is now the second coordinate of P rather than simply Lk(P). The operations
on trees and proofs used to verify the diagonalization (for x; y 2 K) and initial segment
properties (with �Ge = GPz for z 2 K(Q) � K) are now essentially the same. Just keep in
mind that they are applied to Tr(P) and K(P) does not change.

10.3. CONSTRUCTING LATTICE TABLES 147

This version of the theorem provides initial segment embeddings for many nonrecur-
sive lattices. As an example we have the following corollary.

Corollary 10.2.11 Every countable distributive lattice is isomorphic to an initial seg-
ment of D.

Proof. There is a recursive universal countable distributive lattice. In fact, every count-
able distributive lattice can be embedded into the atomless Boolean algebra.??

Exercise 10.2.12 Prove that the embedding of our recursive lattice L can be taken to
be into D(�000) and, indeed that the generic G constructed has double jump 000. For
embeddings of a sublattice K of L determine where the embedding lies and what can be
said about G00.

Exercise 10.2.13 Prove that the embedding of our recursive lattice L is onto an initial
segment of both the tt and wtt degrees. (Hint: recall Exercise

0domtt
8.1.2.)

Exercise 10.2.14 Theorem
reclatticeiso
10.1.5 relativizes to any degree a and so every countable

lattice L (with 0 and 1) is isomorphic to a segment of D, i.e. to [a;b] = fxja � x � bg
for some b where a is the degree of L. Indeed, we may take b00 = a00.

10.3 Constructing lattice tableslattablesec

repthm Theorem 10.3.1 If L is a countable lattice then there is an usl table � of L along with
a nested sequence of �nite slsls Li starting with L0 = f0; 1g with union L and a nested
sequence of �nite subsets �i with union � with both sequences recursive in L with the
following properties:

1. For each i; �i � Li is an usl table of Li.

2. There are meet interpolants for �i in �i+1, i.e. if � �z �, x^y = z (in �i and Li,
respectively) then there are 0; 1; 2 2 �i+1 such that � �x 0 �y 1 �x 2 �y �.

3. For every L̂ �lsl Li there are homogeneity interpolants for �i with respect to L̂ in
�i+1, i.e. for every �0; �1; �0; �1 2 �i such that 8w 2 L̂(�0 �w �1 ! �0 �w �1),
there are 0; 1 2 �i+1 and L̂-homomorphisms f; g; h : �i ! �i+1 such that f :
�0; �1 7! �0; 1, g : �0; �1 7! 0; 1 and h : �0; �1 7! 0; �1.

Proof. We �rst de�ne the sequence Li of slsls of L beginning with L0 which consists
of the 0 and 1 of L. We let the other elements of L be xn for n � 1 and Ln be
the (necessarily �nite) slsl of L generated by f0; 1; x1; : : : ; xng. As for �, we choose a
countable set �i and stipulate that � = f�iji 2 !g. We begin de�ning the (values of)
the �i by setting �0(x) = 0 for all x 2 L and �(0) = 0 for all � 2 �. We now de�ne

148 CHAPTER 10. LATTICE INITIAL SEGMENTS OF D

�n and the values of � 2 �n (other than �0) on the elements of Ln (other than 0)
by recursion. For �0 we choose a new element � of � and let �0 = f�0; �g and set
�(1) = 1. Given �n and the values for its elements on Ln we wish to enlarge �n to �n+1
and de�ne the values of �(x) for � 2 �n+1 and x 2 Ln+1 so that the requirements of
the Theorem are satis�ed. To do this we prove a number of general extension theorems
for usl representations in the Propositions below that show that we can make simple
extensions to satisfy any particular meet or homogeneity requirement and also extend
usl representations from smaller to larger slsls of L. To be more speci�c, we �rst apply
Proposition

meetinterp
10.3.5 successively for each choice of x ^ y = z in Ln and �; � 2 �n with

� �z � choosing new elements of � to form �0n extending �n and de�ning them on Ln
so that �0n � Ln is an usl table for Ln containing �n and the required meet interpolants
for every such x; y; z; � and �. We then apply Proposition

hominterp
10.3.6 successively for each

L̂ �lsl Ln and each �0; �1; �0; �1 2 �n such that 8w 2 L̂(�0 �w �1 ! �0 �w �1) to get
larger subset �00n of � which we also de�ne on Ln so as to have an usl table �00n � Ln
for Ln that has the required homogeneity interpolants and L̂-homomorphisms from �n
into �00n for every such �0; �1; �0; �1 2 �n. Finally, we apply Proposition

extend
10.3.4 to de�ne

the elements of �00n on Ln+1 and further enlarge it to our desired �nite �n+1 � � with
all its new elements also de�ned on Ln+1 so as to have an usl table of Ln+1 with all the
properties required by the Theorem. It is now immediate from the de�nitions that the
union � of the �n is an usl table of L.

Notation 10.3.2 If a �nite L̂ is a slsl of L, L̂ �lsl L, and x 2 L then we let x̂ denote
the least element of L̂ above x. The desired element of L̂ exists because L̂ is a slsl of L
and so the meet (in L̂ or, equivalently, in L) of fu 2 L̂jx � ug is in L̂ and is the desired
x̂. As L̂ is �nite it is also a lattice but join in L̂ may not agree with that in L. We denote
them by _L̂ and _L respectively when it is necessary to make this distinction.

basichat Lemma 10.3.3 With the notation as above, x̂ = x for x 2 L̂ and so it is an idempotent
operation. If x � y are in L then x̂ � ŷ. If x _L y = z are in L then ẑ = x̂ _L̂ ŷ.

Proof. The �rst two assertions follow immediately from the de�nition of x̂. The third is
only slightly less immediate: x; y � x _L y = z and so by the second assertion, x̂; ŷ � ẑ
and so x̂ _L̂ ŷ � ẑ. For the other direction, note that as x � x̂, y � ŷ, we have that
z = x _L y � x̂ _L ŷ � x̂ _L̂ ŷ 2 L̂ and so ẑ � x̂ _L̂ ŷ.

extend Proposition 10.3.4 If � is a �nite usl table for L̂ �lsl L (�nite) then there are exten-
sions for each � 2 � to maps with domain L and �nitely many further functions � with
domain L such that adding them on to our extensions of the � 2 � provides an usl table
�0 of L with � � �0 � L̂. Moreover, these extensions can be found uniformly recursively
in the given data (�, L̂ and L).

Proof. For � 2 � and x 2 L set �(x) = �(x̂). We �rst check that we have maintained
the order and join properties required of an usl representation. If x � y are in L, �; � 2 �

10.3. CONSTRUCTING LATTICE TABLES 149

and � �y � then by de�nition � �ŷ � and so � �x̂ � as x̂ � ŷ by Lemma
basichat
10.3.3 and ��s

being an usl table of L̂. Thus, by de�nition, � �x � as required.
Next, if x _L y = z are in L and � �x;y � we wish to show that � �z �. Again by

de�nition � �x̂;ŷ �. By Lemma
basichat
10.3.3, x̂ _L̂ ŷ = ẑ, so by � being an usl table for L̂,

� �ẑ � and so by de�nition, � �z �.
All that remains is to show that we can add on new maps with domain L that provide

witnesses for the di¤erentiation property for elements of L�L̂ while preserving the order
and join properties. This is a standard construction. For each pair x � y (in L but
not both in L̂) in turn we add on new elements �x;y and �x;y with all new and distinct
values at each z 2 L except that they agree on all z � x (and at 0, of course, have value
0). These new elements obviously provide the witnesses required for the di¤erentiation
property for an usl representation. It is easy to see that they also cause no damage to the
order or join properties. There are no new nontrivial instances of congruences between
them and the old ones in � (extended to L). Among the new elements the only instances
to consider are ones between �x;y and �x;y for the same pair x; y and for lattice elements
z less than or equal to x. As �x;y �z �x;y for all z � x, the order and join properties are
immediate.

meetinterp Proposition 10.3.5 If �; � 2 �, an usl table for a �nite lattice L, � �z � and x^y = z
in L then there are 0; 1; 2 such that � �x 0 �y 1 �x 2 �y � and �[f0; 1; 2g is
still an usl table for L. Moreover, these extensions can be found uniformly recursively in
the given data.

Proof. If x � y, there is nothing to be proved. Otherwise, the interpolants can be
de�ned by letting 0(w) be �(w) for w � x and new values for w � x; 1(w) = 0(w) for
w � y and new values otherwise; and 2(w) = �(w) for w � y, 2(w) = 1(w) if w � x
but w � y and new otherwise.

hominterp Proposition 10.3.6 If L̂ �lsl L, a �nite lattice, and � is an usl table for L with
�0; �1; �0; �1 2 � such that 8w 2 L̂(�0 �w �1 ! �0 �w �1), then there is an usl
table ~� � � for L with 0; 1 2 ~� and L̂ homomorphisms f; g; h : � ! ~� such that
f : �0; �1 7! �0; 1, g : �0; �1 7! 0; 1 and h : �0; �1 7! 0; �1. Moreover, these
extensions can be found uniformly recursively in the given data.

Proof. For each � 2 � and x 2 L we set f(�)(x) = �0(x) if � �x̂ �0 and otherwise we
let it be a new number that depends only on �(x̂), e.g. �(x̂)�. Note that which case of
the de�nition applies for f(�)(x) depends only on �(x̂) and it can be an �old�value (i.e.
one of some � 2 �) only in the �rst case. Thus, for �; � 2 �,

(a) � �x̂ � , f(�) �x f(�) and (b) f(�) �x �) � �x̂ �0) f(�) �x �0. (10.1) 1

Let �1 = �[f [�]. We claim that �1 is an usl table for L and f is an L̂-homomorphism
from � into �1. That f is an L̂-homomorphism is immediate from the �rst clause in

150 CHAPTER 10. LATTICE INITIAL SEGMENTS OF D

(
1
10.1) and the fact (Lemma

basichat
10.3.3) that x̂ = x for x 2 L̂. We next check that �1 satis�es

the properties required of an usl representation. Of course, f(�)(0) = 0 by de�nition for
every � and di¤erentiation is automatic as it extends �.
First, to check the order property for �1 we consider any x � y in L. As � is already

an usl table for L, it su¢ ces to consider two cases for the pair of elements of �1 which are
given as congruent modulo y and show that in these two cases they are also congruent
modulo x. The two cases are that (a) both are in f [�] and that (b) one is in f [�] and
the other in �. Thus it su¢ ces to consider any �; � 2 �, assume that (a) f(�) �y f(�)
or (b) f(�) �y � and prove that (a) f(�) �x f(�) and (b) f(�) �x �, respectively. For
(a), we have by (

1
10.1) that � �ŷ � and so by the order property for �, � �x̂ �. Thus

f(�) �x f(�) by de�nition as required. As for (b), (
1
10.1) tells us here that � �ŷ �0 and

� �y f(�) �y �0 (and therefore � �x �0). Now by Lemma
basichat
10.3.3 � �x̂ �0 so f(�) �x �0

and so f(�) �x � as required.
Next we verify the join property for x _ y = z in L and two elements of �1 (not

both in �) in the same two cases. For (a) we have that f(�) �x;y f(�) and so as above
� �x̂;ŷ �. Now by the join property in � and Lemma

basichat
10.3.3, � �ẑ � and so f(�) �z f(�)

as required. For (b) using (
1
10.1b) and Lemma

basichat
10.3.3 again we have that f(�) �x;y �)

� �x̂;ŷ �0) � �ẑ �0) f(�) �z �0 while it also tells us that � �x;y f(�) �x;y �0 as
required. Note that clearly f(�0) = �0. We let 1 = f(�1) and so have the �rst function
and (partial) extension of � required in the Proposition.
We now de�ne h on �1 as we did f on � using �1 and �1 in place of �0 and �0,

respectively: h(�)(x) = �1(x) if � �x̂ �1 and otherwise we let it be a new number that
depends only on �(x̂), e.g. �(x̂)��. Let �2 = �1 [h[�1]. As above, �2 is an usl table
for L and h is an L̂-homomorphism from �1 (and so �) into �2 taking �1 to �1. We let
0 = h(�0) and so have the third function and (partial) extension of � required in the
Proposition. As above in (

1
10.1), we have for any �; � 2 �1 and x 2 L,

(a) � �x̂ � , h(�) �x h(�) and (b) h(�) �x �) � �x̂ �1) h(�) �x �1. (10.2) 2

Applying the second clause to 0 = h(�0) and �rst to any � 2 �1 and then, in particular
to 1 we have

(a) 0 �x �) �0 �x̂ �1) f(�1) = 1 �x �0 and (b) 0 �x 1 , �0 �x̂ �1. (10.3) 3

To see the right to left direction of the second clause, note that �0 �x̂ �1 implies that
0 �x �1 and 1 �x �0 by the de�nitions of h and f , respectively, while it also implies
that �0 �x̂ �1 by the basic assumption of the Proposition. Thus, as � is an usl table of
L and x � x̂, �0 �x �1 and 0 �x 1.
Finally, we de�ne g on � 2 �2 by setting g(�)(x) = 0(x) if � �x̂ �0. If � 6�x̂ �0 but

� �x̂ �1 then g(�)(x) = 1(x). Otherwise, we let g(�)(x) be a new number that depends
only on �(x̂), e.g. �(x̂)���. Note that if � �x̂ �1 then we always have g(�) �x 1 as if
� �x̂ �0 as well then, by (

3
10.3b), 0 �x 1. Thus g(�0) = 0 and g(�1) = 1 as required.

It is also obvious that g is an L̂-homomorphism of �2 (and so �) into �3 = �2 [g[�2]

10.4. DECIDABILITY OF TWO QUANTIFIER THEORY 151

as by de�nition and Lemma
basichat
10.3.3, � �x̂ �) g(�) �x̂ g(�) for any x 2 L. Indeed, for

any �; � 2 �2 and x 2 L
� �x̂ � , g(�) �x g(�). (10.4) 4

To see the right to left direction here, note that if either of g(�) or g(�) is new for g
at x (i.e. of the form �(ŷ)���) then clearly both are. In this case, � �x̂ � by de�nition.
Otherwise, either they are both congruent to �0 or both to �1 and so congruent to each
other mod x̂. The point here is that if one is congruent to �0 and the other to �1 but
not �0 at x̂ then by de�nition 0 �x 1 and so by (

3
10.3b), �0 �x̂ �1 for a contradiction.

Thus we only need to verify that �3 is an usl table of L. We consider any �; � 2 �2
and divide the veri�cations into cases (a) and (b) as before with the former considering
g(�) and g(�) and the latter g(�) and �. These cases may then be further subdivided.
We begin with the order property and so x � y in L.
(a) If g(�) �y g(�) then, by (

4
10.4), � �ŷ � and so � �x̂ � as x̂ � ŷ (Lemma

basichat
10.3.3)

and �2 is an usl table of L. Thus, again by (
4
10.4) g(�) �x g(�) as required.

(b) If g(�) �y � then by de�nition they are congruent modulo y to i (for some
i 2 f0; 1g) and � is congruent to �i at ŷ. Thus � �x̂ �i as x̂ � ŷ and �2 is an usl table
so g(�) �x i by de�nition. Similarly, as x � y, � �x i as well.
Now for the join property for x _ y = z in L.
(a) If g(�) �x;y g(�) then, as above, � �x̂;ŷ �. As x̂_ ŷ = ẑ by Lemma

basichat
10.3.3 and �2

is an usl representation, � �ẑ � and so by (
4
10.4) g(�) �z g(�) as required.

(b) If g(�) �x;y � then again � �x̂ �i and � �ŷ �j for some i; j 2 f0; 1g and
g(�) �x � �x i while g(�) �y � �y j. If i = j then � �x̂;ŷ �i and so � �ẑ �i and
g(�) �z i �z � as required.
On the other hand, suppose, without loss of generality, that (�) � �x̂ �0 and so

� �x g(�) �x̂;x 0 = h(�0) while �0 6�ŷ � �ŷ �1 and so � �y g(�) �ŷ;y 1 = f(�1). If
� 2 �1 then by (

4
10.4a) �0 �x̂ �1 and so � �x̂ �1. As our assumption is that � �ŷ �1

we have (by the join property in �2) that � �ẑ �1 and so g(�) �z 1. As �0 �x̂ �1
(
3
10.3b) tells us that 0 �x 1. Our assumptions then say that � �x;y 1 and so � �z 1
as required. Thus we may assume that � = h(�) for some � 2 �1.
We now have h(�) = � �x g(�) �x 0 = h(�0) 2 �1 and so by (

2
10.2a) applied to

h(�) �x h(�0) with � for � and �0 for � we see that � �x̂ �0. We also have h(�) = � �y
g(�) �ŷ;y 1 = f(�1). Applying (

2
10.2b) to h(�) �y 1 with � for � and 1 2 �1 for �, we

see that � �ŷ �1and h(�) �y �1 and so �1 �y 1 = f(�1). Now applying (
1
10.1b) with �1

for � and �1 2 � for �, we have that �1 �ŷ �0. As this contradicts (�), we are done.

10.4 Decidability of two quanti�er theory2qtth

10.5 Undecidability of three quanti�er theory.3qtth

Also two quanti�er with _ and ^.?

152 CHAPTER 10. LATTICE INITIAL SEGMENTS OF D

Other results establishing borderlines in other languages e.g. with jump? If so in
di¤erent chapter/section?
comments on what known below 00

Chapter 11

�01 Classes

11.1 Binary trees

We now return to the basic our basic notion of a tree as a downward closed subset of N<!.
In this context we use T� to denote the subtree of T consisting of all strings � compatible
with �: T� = f�j� � � or � � �g. Recall that the sets of paths in such trees are the
closed sets in Baire space NN. In this chapter we are primarily concerned with in�nite
binary trees, i.e. the in�nite downward closed subsets T of 2<!. We endow each binary
tree with a left to right partial order as well as the order of extension. It is speci�ed by
the lexicographic order on strings so � is to the left of � , � <L � if �(n) < �(n) for the
least n such that �(n) 6= �(n) if there is one. (This order extends in the obvious way to
one of 2N which we also call the left to right or lexicographic order.) The sets of paths
[T] = fA 2 2N : 8n(A � n 2 T)g through these trees are precisely the nonempty closed
subsets of Cantor space, 2N.

Exercise 11.1.1 For any binary tree T , [T] is a closed set in Cantor space.

??Prove??
To see that every closed subset of 2N is of the form [T] for some tree T , consider

the open sets in 2N. They are all unions of basic (cl)open sets of the form [�] = ff 2
2Nj� � fg for � 2 2<!. So given any closed set C its complement �C is a union of such
neighborhoods. Let T = f�j[�] " �Cg = f�j[�] \ C 6= ;g. It is clear that T is downward
closed. If f 2 C and � � f then clearly � 2 T and so f 2 [T]. On the other hand if
f 2 [T] and � � f then � 2 T and so the closed set [�] \ C 6= ;. As Cantor space is
compact \f[�] \ Cj� � fg is nonempty and only f can be in it so f 2 C as required.
Note that, by König�s lemma (Lemma

KL
4.2.4), C is nonempty if and only if T is in�nite.

??Move this material to Trees section and recall here??
In this chapter we want to investigate the recursive versions of these two notions.

De�nition 11.1.2 A class C � 2N is e¤ectively closed if it is of the form [T] for a
recursive binary tree T .

153

154 CHAPTER 11. �01 CLASSES

We can also characterize the e¤ectively closed sets in terms of the complexity of their
de�nition. We use the same notation based on the arithmetic hierarchy for classes of
sets or functions as we did for individual sets and functions.??say more now or before
Go back and check de�nitions for �An especially �0 and how interpret for � in place of A
...bounded quanti�ers??

De�nition 11.1.3 A class C � 2N of sets is �n (�n) if there is a �n (�n) formula
'(X) with one free set variable X such that C = fAjN �'(A)g. Similarly for classes
F � NN of functions and formulas with one free function variable.

The primary connection with trees is the following Proposition.

pi01trees Proposition 11.1.4 The �01 classes of sets are precisely the sets of paths through recur-
sive binary trees. Again, the nonempty classes correspond to the in�nite recursive binary
trees. Moreover, there is a recursive procedure that takes an index for a �01 formula to
one for a recursive tree T such that [T] is the corresponding �01 class.

Proof. If T is a recursive binary tree then [T] = fA 2 2N : 8n(A � n 2 T)g is clearly
a �01 class. If T is in�nite, [T] is nonempty by König�s lemma while if T is �nite [T] is
clearly empty. For the other direction consider any �01 class P = fA : 8xR(A; x)g for
a �A0 relation R. Let T = f� 2 2<!j:(9x < j�j):R(�; x)g where we understand that
we are thinking of � as representing an initial segment of A: Formally we replace t 2 A
by �(t) = 1 and declare the formula R(�; x) false if some term t > j�j occurs in it as
described in ??. It is then immediate that P = [T] and that an index for T as recursive
function is given uniformly in the index for R as a �A0 formula. If P is nonempty, T has
an in�nite path and so is itself in�nite. Otherwise, T is �nite.

Exercise 11.1.5 The �01 classes of functions are precisely the sets of paths through re-
cursive trees (on N<!).

We can now index the �01 classes (of sets) by either the indices of the �
0
1 formulas or

of the trees derived from them as in the proof of Proposition
pi01trees
11.1.4 as partial recursive

functions which are actually total. A natural question then is how hard is to tell if a
recursive tree is in�nite or a �01 class is nonempty. It might seem at �rst that these
properties are �02 and so only recursive in 0

00. If we know that the tree is recursive as we
do for the trees derived uniformly from �01 classes, however, then the question is actually
uniformly (on indices) recursive in 00. This observation depends on the compactness of
Cantor space and plays a crucial role in almost every argument in the rest of this chapter.

fin0� Lemma 11.1.6 If T is a recursive binary tree (say with index i so T = �i) then T being
�nite is a �1 property (of i). Thus we can decide if T is �nite or in�nite recursively in
00. Indeed, T is �nite if and only if there is an n such that � =2 T for every � of length n.

11.1. BINARY TREES 155

Proof. Clearly, T is �nite if and only if there is an n such that � =2 T for every � of
length n. Clearly this is a �1 property for any recursive binary tree and the associated
�1 formula is given uniformly in a recursive index for T .
While deciding if a given recursive binary tree is in�nite or a �01 class nonempty

requires 00, we can actually make a recursive list of the nonempty �01 classes and so one
of corresponding in�nite recursive binary trees (up to the set of paths on T).

recindpi01 Exercise 11.1.7 There is a uniformly recursive list of the nonempty �01 classes in the
sense that there is a recursive set Q such that, for each e 2 Q, �e is (the characteristic
function of) an in�nite binary tree Te and for every nonempty �01 class C there is an e
such that C = [�e] = [Te]. Hint: For each e consider the r.e. set We viewing its elements
as binary strings �. We now form a recursive tree Te by putting in the empty string at
stage 0 and then at stage s > 0 exactly those strings � of length s with no � � � in We;s

unless there are none (equivalently [f[�]j� 2 We;sg = 2N), in which case we declare all
immediate successors of strings in Te of length s � 1 to be in Te as well. Note that Te
is uniformly recursive. For one direction prove that each Te is in�nite (and so [Te] is a
nonempty �01 class). For the other direction, if C is a nonempty �01 class then the set
f�j[�] \ C = ;g is r.e. and so equal to some We. Now show that [Te] = C.

We now present some important �01 classes.

Example 11.1.8 DNR2 = ff 2 2N : f is DNRg. Recall that DNR means f(e) 6=
�e(e). In other words, 8e8s:(f(e) = �e;s(e)). Thus, DNR2 is a �01 class.

Example 11.1.9 Let H be any recursively axiomatizable consistent theory. The class
CH=ff 2 2N : f is a complete extension of Hg is a �01 class. By the assertion that f �is
a complete extension of H�we mean that we have a recursive coding (Gödel numbering)
'n of the sentences of H such that Tf = f'njf(n) = 1g is deductively closed, contains all
the axioms of H and is consistent in the sense that there is no ' such that f assigns 1
(true) to both ' and :'. The only point to make about this being a �01 class is perhaps the
requirement that Tf be deductively closed. This says that for all �nite sets � of sentences
and each sentence 'k and proof p, if p is a proof that � ` ' and f(n) = 1 for every
'n 2 � then f(k) = 1.

Example 11.1.10 If A;B are disjoint r.e. sets, then the class S(A;B) = fC : C �
A & C \ B = ;g of separating sets C (for the pair (A;B)) is a �01 class as is obvious
from its de�nition: S = fC : 8n(n 2 A! n 2 C & n 2 B ! n =2 C)g. Since A;B 2 �1
this is a �01 formula.

We can view a �01 class as the solution set to the problem of �nding an f that
satis�es the de�ning condition for the class. Equivalently, the problem is �nding a path f
through the corresponding tree T . For the above examples the problems are to construct
a DNR2 function, a complete consistent extension of H and a separating set for A

156 CHAPTER 11. �01 CLASSES

and B, respectively. If we choose our theory H and our disjoint r.e. sets A and B
correctly then the three problems and so the �01 classes (and the [T] for the corresponding
trees) are equivalent in the sense that a solution to (path through) any one of them
computes a solution for (path in) each of the others. Suitable choices for H and (A;B)
are Peano arithmetic, PA, ??de�ne before?? and (V0; V1) where V0 = fe : �e(e) = 0g and
V1 = fe : �e(e) = 1g. For these choices, the problems are also universal in the sense that
a solution to any one of them computes a path through any in�nite recursive binary tree
and hence a solution to any problem speci�ed by a nonempty �01 class.

Theorem 11.1.11 If T is an in�nite recursive binary tree and f is a member of any of
the three �01 classes DNR2, CPA or S(V0; V1) described above then there is a path g 2 [T]
with g �T f .

Proof. We �rst prove the theorem for S(V0; V1). Suppose T is an in�nite recursive
binary tree. We begin by de�ning disjoint r.e. sets A and B such that any f 2 S(A;B)
computes a path in T: We then show how to compute a path in (any) S(A;B) from one
in S(V0; V1).
We know that f�jT� is �niteg is r.e. so suppose it isWe. We letA0 = f�j9s(�^0 2 We;s

& �^1 2 We;sg (the � such that we �see�that T�^0 is �nite before we �see�that T�^1 is
�nite) and A1 = f�j9s(�^1 2 We;s & �^0 2 We;sg (the � such that we �see�that T�^1 is
�nite before we �see�that T�^0 is �nite). It is clear that A0 \A1 = ;. Let C 2 S(A0; A1)
and de�ne D a path in T by recursion. We begin with ; 2 D. If � 2 D then we put
�^C(�) into D. We now argue by induction that if � 2 D then T� is in�nite: If T� is
in�nite then at least one of T�^0 and T�^1 is in�nite. If both are in�nite there is nothing
to prove so suppose that T�^0 is �nite but T�^1 is in�nite. In this case, it is clear from the
de�nition that � 2 A0 and so C(�) = 1 and we put �^1 into D to verify the induction
hypothesis. In the other case, � 2 A1, C(�) = 0 and we put �^0 into D with T�^0 in�nite
as required.
Now we see how to compute a C 2 S(A0; A1) from anyD 2 S(V0; V1). By the s�m�n

theorem ?? there is a recursive functions h such that 8n(n 2 Ai , h(n) 2 Vi). We now
let C(n) = D(h(n). It is easy to see that C 2 S(A0; A1) as required. Thus S(V0; V1) is
universal in the desired sense.
We now only have to prove that we can compute a member of S(V0; V1) from any

DNR2 function f and from any complete extension P of PA. For the �rst, simply note
that if f 2 DNR2 then f 2 S(V0; V1): If e 2 V0 then �e(e) = 0 and so f(e) = 1 as
required. On the other hand, e 2 V1 then �e(e) = 1 and so f(e) = 0 as required.
Finally, suppose P is complete extension of PA. De�ne C(n) = 1 if P declares the

sentence 9s(n 2 V0;s & 8t < s(n =2 V1;s)) to be true and 0 otherwise. Note that if
n 2 V0 then there is a least s 2 N such that n 2 V0;s. This fact is then provable in PA
(computation is essentially a proof). Similarly, for each t < s, n =2 V1;t since n 2 V0
and so C(n) = 1 as required. On the other hand, if n 2 V1 then there is a least s 2 N
such that n 2 V1;s and for each t < s, n =2 V0;t since n 2 V1 and so PA proves that

11.1. BINARY TREES 157

9s(n 2 V1;s & 8t < s(n =2 V0;s)). As P is a consistent extension of PA, it cannot then
prove that 9s(n 2 V0;s & 8t < s(n =2 V1;s)) and so C(n) = 0 as required.

Exercise 11.1.12 Show that the degree classes DNR2, CPA and S(V0;V1) consisting
of the degrees in each of the corresponding �01 classes are all the same.

As every DNR function is obviously nonrecursive (Proposition
dnrnotrec
3.0.19), none of these

three classes have recursive members. So in particular there are no recursive complete
extension of PA and there is no recursive separating set for (V0; V1).
Thinking of �01 classes as problems that ask for solutions, the natural question is

how complicated must solutions be or how simple can they be. In the (in some sense
uninteresting) case that there is only one path in T (or only �nitely many) we can say
everything about their degrees.

Proposition 11.1.13 If a recursive binary tree T has single path that path is recursive.
In fact, any isolated path ??de�ne?? on a recursive tree is recursive.

In general for arbitrary T one easy answer to the question is that there are always
solutions recursive in 00.

rec0� Exercise 11.1.14 Show that every nonempty �01 class has a member recursive in 0
0.

Hint: it is immediate for the separating classes.

It is not hard to say a bit more.

redegree Proposition 11.1.15 Every in�nite recursive binary tree T has a path of r.e. degree.
In fact, the leftmost path P in T has r.e. degree.

We, in fact, can signi�cantly improve the result of Exercise
rec0�
11.1.14. The Low Basis

Theorem below (Theorem
lowb
11.1.18) gives the best answer with the notion of simplicity

of the desired solution measured by its jump class. It is called a basis theorem as we
say that a class C is a basis for a collection of problems (sets) if every problem (set) in
the collection has a solution (member) in C. Theorem

0�domb
11.1.19 gives another basis result

in terms of domination properties and Theorem
pi01coneav
11.1.21 one in terms of solutions not

computing given (nonrecursive) sets.
To prove each of these theorems we use the notion of forcing P whose conditions

are basically in�nite recursive binary trees T with usual notion of subtree as extension
(simply a subset). To make the de�nition of our required function V recursive, we
explicitly specify a stem � for each tree such that every � 2 T is compatible with �.
Thus our conditions p are pairs (T; �) with T an in�nite recursive binary tree and � 2 T
such that (8� 2 T)(� � � or � � �). We say that (T; �) �P (S; �) if T � S and � � �.
Of course, V ((T; �)) = � . If p = (T; �) and � � � , we use p� to denote the condition
(T�; �).

158 CHAPTER 11. �01 CLASSES

The complexity of this notion of forcing depends on the representation or indexing
used for the in�nite recursive binary trees. While,at one end we could use the recursive
listing of Exercise

recindpi01
11.1.7, it would then be more di¢ cult to describe various operations

on trees that determine subtrees in the natural sense but do not obviously produce an
index of the type required. In this case we would also want to de�ne the subtree relation
T � S in terms of [T] � [S] which would then be a �02 relation (Exercise

subtreepaths
11.1.16) and so

only recursive in 000.

subtreepaths Exercise 11.1.16 If e and i are indices for in�nite binary recursive trees T and S then
the relation [T] � [S] is �02, and, in fact,it is �02 complete.

At the other end, we can simply use indices for recursive functions that de�ne in�nite
binary trees. While this set is only recursive in 000 (because it takes 000 to decide if an
index is one for a recursive tree), operations on trees become easy to implement on the
indices. On this set of indices, the standard subtree relation T � S is then �01 and so
recursive in 00. We adopt this representation of trees for our notion of forcing. In fact,
while the notion of forcing is then only 000-recursive, some of what we want to do can be
done recursively in 00 by analyzing the required density functions. As an example, we
have the following Lemma.

Lemma 11.1.17 There is a density function f for the class Vn = f(T; �)j j� j � ng of
dense sets in P which is recursive in 00.

Proof. Given p = (T; �) 2 P and n 2 N, Lemma
fin0�
11.1.6 tells us that we can �nd a

� 2 T (� � �) of length m � n such that T� is in�nite. Clearly p� = (T�; �) 2 P and
V (p�) � n.

lowb Theorem 11.1.18 (Low Basis Theorem) If T is a recursive in�nite binary tree then
it has a low path, i.e. there is a G 2 [T] with G0 �T 00. Equivalently, if C is a nonempty
�01 class, then it has a low member. Moreover, we can compute such a path uniformly
recursively in 00 and the index for T or the class.

Proof. As usual we want to show that the sets of conditions deciding the jump (Dn =

fpj�V (p)n (n) # or (8q �P p)(�V (q)n (n) ")g) are dense and provide a density function f �T 00
that also tells us in which way f(p; n) is in Dn. By Lemma

meetdense
6.1.25 starting with condition

p0 = (T; ;) we can meet these sets as well as the Vn by a generic sequence recursive in 00
and so construct a G 2 [T] with G0 �T 00 as required.
Given an p = (T; �) 2 P and an n, we cannot use our usual strategy of asking for a

� 2 T (� � �) such that ��n(n) # and then taking say p� as f(p; n) because T� may be
�nite. Instead we ask if T̂ = f� 2 T j��n(n) "g is in�nite. This question can be answered
by 00 by Lemma

fin0�
11.1.6. If so, we let f(p; n) = (T̂ ; �) and note that we have satis�ed

the second clause of the de�nition of Dn as well as guaranteed that �Gn (n) " for every
G 2 [T̂] including, of course, the generic G we are constructing. If not, then clearly there

11.1. BINARY TREES 159

is a k � j� j such that ��n(n) # for every � 2 T of length k. T� must be in�nite for one
of these � as T is in�nite. Again by Lemma

fin0�
11.1.6, 00 can �nd such a � and we then

set f(p; n) = p�. In this case, it is clear that we have satis�ed the �rst clause of Dn and
�Gn (n) # for every G 2 [T�].
The assertion about members of the corresponding �01 classes as well as the uniformity

claim in the theorem are now immediate.
Note that we cannot make a similar improvement to Proposition

redegree
11.1.15. Any element

of DNR2, CPA or S(V0; V1) of r.e. degree has degree 00.??
We next give a di¤erent answer to how simple a path we can construct on an arbi-

trary in�nite recursive binary tree. Now the notion of simplicity is speci�ed in terms of
domination properties.

0�domb Theorem 11.1.19 (00-dominated Basis Theorem) If T is an in�nite recursive bi-
nary tree, then there is an G 2 [T] such that every f �T G is dominated by some
recursive function.

Proof. We use the same notion of forcing with new dense sets. In place of the Dn

we have En = f(T; �)j(9x)(8� 2 T)(��n(x) " or (8x)(9k)(8� 2 T)j�j=k(�
�
n(x) #)g. To

see that the En are dense consider any condition p = (T; �). If there is an x such that
S = f� 2 T j��n(x) "g is in�nite then choose such an x and S. The desired extension of p
in En is then (S; �). Note that in this case, �Gn (x) " for any G 2 [S]. If there is no such
x, then, by Lemma

fin0�
11.1.6, p = (T; �) satis�es the second clause in En and is itself the

witness to density. Note that in this case �Gn is total for any generic G. Indeed, we can
now also de�ne a recursive function h which dominates �Ge for any G 2 [T]: To compute
h(x) �nd a k such that (8� 2 T)j�j=k(�

�
n(x) #. This is a recursive procedure since by

our case assumption there is always such a k. Now set h(x) = maxf��n(x)j� 2 T and
j�j = kg+ 1. This function clearly dominates �Gn for any G 2 [T].

Exercise 11.1.20 Show that we may �nd a G as in Theorem
0�domb
11.1.19 with G00 �T 000.

We next turn to �nding paths in trees which are simple in the sense that they do
not compute some given (nonrecursive) set C or, more generally, any of some countable
collection Ci of nonrecursive sets.

pi01coneav Theorem 11.1.21 (Cone Avoidance) If T is an in�nite recursive binary tree and
fCig is a sequence of nonrecursive sets, there is an A 2 [T] such that Ci �T A for
all i.

Proof. We modify the proof of density of the En of Theorem
0�domb
11.1.19 to get En;m that

guarantee that �Gn 6= Cm. We let En;m = f(T; �)j(9x)(8� 2 T)(��n(x) " or (9x)(��n(x) #6=
Cm(x)) or (8x)(9k)(8�0; �1 2 T)j�0j=k=j�1j(�

�0
n (x) #= ��1n (x) #)g . Given any condition

(T; �) we �rst extend it to q = (S; �) 2 En. If we satisfy the �rst clause of En we
satisfy the same clause in En;m. Otherwise, we satisfy the second clause of En. We

160 CHAPTER 11. �01 CLASSES

now ask if there are �0,�1 2 S with �i � � and an x such that the S�i are in�nite and
�
�0
n (x) #6= ��1n (x) #. If so, we choose i 2 f0; 1g such that ��in (x) 6= Cm(x) and take q�i as
our extension of q (and so of p) which gets into En;m by satisfying the second clause. If
not, we claim that q itself satis�es the third clause of En;m and that there is a recursive
function h such that �Gn = h for every G 2 [S]. As for q satisfying the third clause of
En;m, consider any x and note that it already satis�es the second clause of En. If there
were in�nitely many k such there are �0; �1 2 T of length k with ��0n (x) #6= ��1n (x) #
then we would have been in the previous case as there would then be in�nitely many
� 2 T with ��n(x) #6= Cm(x). Thus we may de�ne h(x) by �nding a k as in the third
clause of En;m and setting h(x) = ��n(x) for any � in S of length k. We then have that
�Gn = h for every G 2 [S]. As Cm is not recursive,�Gn 6= Cm for any G 2 [S] and so we
also satisfy the requirements of the theorem.

Exercise 11.1.22 Show that we may construct a G as required in Theorem
pi01coneav
11.1.21 such

that G �T 000 � (�iCi) and indeed uniformly.

Exercise 11.1.23 For one nonrecursive C instead of a countable set of Ci show that we
may construct a G as required in Theorem

pi01coneav
11.1.21 such that G �T 000 (but without the

uniformity). Hint: use the following exercise.

Exercise 11.1.24 Prove that for any in�nite recursive binary tree T there are G0; G1 2
[T] such that any C �T G0; G1 is recursive. Moreover, we may �nd such Gi with G00i �T
000.

Exercise 11.1.25 Nonempty �01 classes such as DNR2 that have no recursive member
are called special �01 classes. Prove that any such class has 2

@0 many members.

Exercise 11.1.26 Strengthen some of previous theorems producing a path in T with
some property to producing 2@0 many if T is special.

11.2 Finitely branching trees

Also trees recursive in A (f). Relativizations.

Finitely branching trees, f -bounded, (recursively bounded) essentially the same as
binary (recursive) binary trees relativize results to f .
Given a recursive recursively bounded tree can get recursive binary tree which has

same paths up to degree by padding.
The sets of paths through in�nitely branching trees T � N<! correspond to closed

sets in Baire space. Even for recursive trees �nding paths is much more complicated in
this setting. Whether such trees even have paths is a �11 complete question. As for a
basis theorem, one says that if there is a path then there is one recursive in the complete
�11 set O.??

11.2. FINITELY BRANCHING TREES 161

Reference for low basis theorem
lowb
11.1.18 and Theorem

pi01coneav
11.1.21: Jockusch, Soare �

Degrees of Members of �01 Classes�Paci�c J. Math 40(1972) 605-616
Pseudo jump operators: Jockusch, Shore � Pseudo jump operators I: the r.e. case�
Trans. Amer. Math. Soc. 275 (1983) 599-609; � Pseudo-jump operators II: Trans�nite
iterations, hierarchies, and minimal covers�JSL 49 (1984) 1205-1236

??Check what need for de�nition jump, relativization to 0(n), �0n classes.??

162 CHAPTER 11. �01 CLASSES

Chapter 12

Pseudo-Jump Operators: De�ning A

In this chapter we consider some generalizations of the Turing jump and its iterates
(the REA operators). In §

REAcomp
12.1 , we prove the analog of the Friedberg completeness

theorem
frcomp
5.3.1 for these operators. We will also see (Theorem

rereaop
12.2.4) that they include

the n-r.e .and !-r.e. operators (De�nition
reop
12.2.1) derived from the n-r.e. and !-r.e. sets

of De�nitions
nre
?? and

omegare
4.3.12. The primary application that drives our interest here is

to the operator given by the Sacks minimal degree construction (Theorem
Sacksmin
9.3.1) which

constructs a set A of minimal degree with A �wtt 00 (Corollary
minwtt
??). As sets X �wtt 00 are

!-r.e. (Exercise
wtt0�
4.3.15), relativization gives an operator M taking any set C to M(C) a

minimal cover of C which is !-r.e. in C (Exercises
Smincover
??). Thus this operator will fall into

our new hierarchy of operators. In particular, our version of the completeness theorem
(Theorem

omegacomp
??) will prove, for example, that every degree above 0(!) is a minimal cover.

We will also prove in §
join
12.3 an analog of the Posner-Robinson join theorem (Theorem

pr
12.3.2) for 1-REA operators (Theorem

1join
12.3.1) and the operators that correspond to !-

r.e. operations such as the Sacks minimal cover (Theorem
omegajoin
12.3.4). This will provide our

major application of these operators: a natural de�nition in D of A = fxj9n(x � 0(n)g,
the degrees of sets de�nable in arithmetic (Theorem

defarith
12.4.1). Our constructions here can

be seen as variations on Cohen forcing with special attention paid to the precise collection
of dense sets that are to be met so as to make them more e¤ective in various ways.
Our de�nition of A provides (Theorem

nothom
12.4.3) a proof of the failure of the Homogene-

ity Conjecture (
homconj
??) for D along the lines of the refutation of the Homogeneity Conjecture

for D0 in Theorem
jhomc
6.3.14. Combined with Theorem

thjumpideal
7.2.5, it also provides a refutation

for the elementary equivalence version of the homogeneity conjecture (
eehomconj
??). In particular,

we describe a sentence ' in the language of partial orderings such that D(� 0(!)) � '
but D � :' in Theorem

nothomee
12.4.4.

We close this chapter with the introduction in §
KS
12.5 of a new type of forcing (Kumabe-

Slaman). We use it to prove versions of the join theorem for other REA operators. One
such join theorem then plays a crucial role in the de�nition of the Turing jump operator
in D in Chapter

defjump
4.1.1.

163

164 CHAPTER 12. PSEUDO-JUMP OPERATORS: DEFINING A

REA De�nition 12.0.1 For each e 2 !, we de�ne the pseudojump operator Je on sets A:
Je(A) = A � WA

e . Such operators are also called 1-REA because the image is r.e. in
and above A. The n-REA operators are given by iterations of (in general distinct)
pseudojump operators. For � = hm0;m1; : : : ;mn�1i we de�ne the n-REA operator J�
by J�(A) = Jmn�1(Jmn�2(: : : (Jm0(A) : : :). The !-REA operators are each given by a
recursive function f such that Jf (A) = �n2!Jf�n(A).

Example 12.0.2 If �(i) is an index for the usual Turing jump for every i < n = j�j,
then J�(A) �T A(n). Similarly, if f(n) is an index for usual Turing jump operator for
every n, then Jf (A) �T A(!).

Notation 12.0.3 For uniformity in decoding, we use both X � Y and hX; Y i to denote
f0g�X[f1g�Y . Similarly we code hX0; : : : ; Xni and X0�� � ��Xn as [ffig�Xiji � ng.
This matches the de�nition of, e.g. �n2!Xn as

S
ffng�Xngjn 2 !g as in Notation

genjoin
??.

12.1 Completeness Theorems for REA operatorsREAcomp

We now prove the completeness theorem for pseudojump, i.e. 1-REA, operators along
the lines of the proof of the Friedberg completeness theorem (Theorem

frcomp
5.3.1). Let us

recall the recursive (in a given C �T 00) procedure for that construction of a set A with
A0 �T C. It proceeded by constructing �nite approximations �n to A. At step n, it �rst
decided A0(n) by asking 00 �T C if there is an extension � of the approximation �n that
forces ��n(n) to converge. If there is one, we let � be the �rst such. If not we let � be
�n. In either case we have decided the jump of A at n. Then we code C(n) into A by
setting �n+1 = �^C(n).
Here, in addition to replacing the Turing jump with an arbitrary pseudojump operator

Je we do the construction inside any given tree T . (In this chapter trees are binary
function trees as in De�nition

binfunctree
9.2.1.) That is, we construct a subtree S of T by, at

each node, looking for an extension on T which decides the next value of Je on the path
being built in T . We also code T 0 into the path. The path S[C] in S (corresponding
to a given C �T 00) is then our desired inversion for Je, i.e. Je(S[C]) �T C. We also
make explicit the results of applying the operator Je to any path S[C] on the tree by a
labeling U assigning � (and so S(�)) to a �nite sequence U(�) which is intended to be
the initial segment of W S[C]

e that we have already decided for any C � �. (The formal
notion generalizing the labeling we do in this construction is given in De�nition

nlabel
12.1.5

below.) We make these additions to the simple proof of Theorem
frcomp
5.3.1 to lead up to our

versions of the completeness theorems �rst for n-REA operators and then !-REA ones.

tree1comp Proposition 12.1.1 Given an index e 2 ! and a tree T we construct a subtree S =
Se(T) of T and a labeling U = Ue(T) of S such that, for every set C

1. S; U �T T 0.

12.1. COMPLETENESS THEOREMS FOR REA OPERATORS 165

2. Je(S[C]) = S[C]� U [C].

3. For each �, Je(S[C]) � j�j is the same for all C � �.

4. Je(S[C])� T �T C � T 0 �T S[C]� T 0.

5. S � U � T �T T 0.

Proof. Construction: We de�ne S(�) and U(�) by recursion beginning with S(;) =
T (;) and U(;) = ;. Suppose we have de�ned them both for � of length n � 0 with
S(�) = T (�). We de�ne them at �^i (for i 2 f0; 1g) as follows. Ask T 0 if there is a � � �

such that �T (�)e (n) #. If so let � be the �rst such extension found in a standard search
recursive in T . (In this case, we have forced n 2 WA

e , or equivalently h1; ni 2 Je(A),
for any A 2 [T] with T (�) � A or equivalently for A = T [D] for any D � �). If not
let � = � . (In this case, we have forced n =2 WA

e , or equivalently h1; ni =2 Je(A), for
any A 2 [T] extending T (�).) We now set S(�^i) = T (�^T 0(n)^i). In the �rst case (we
forced n 2 WA

e), we set U(�^i) = U(�)^1. In the second case (we forced n =2 WA
e), we

set U(�^i) = U(�)^0.
Veri�cations:

1. It is clear from the construction that S and U are recursive in T 0.

2. It is also clear from the construction that [��CU(�) = U [C] = W
S[C]
e . Thus

Je(S[C]) = S[C]� U [C].

3. Indeed, by construction, U [C] =W
S[C]
e is determined up to j�j for all C � � while

S[C] � j�j is, of course, determined for C � � by �.

4. By (1), it is clear that for any set C, C � T 0 �T S[C] � T 0. By (1) and (2),
Je(S[C]) � T �T C � T 0 �T S[C] � T 0. To see that Je(S[C]) � T �T C � T 0,
we show, by induction on the length n of �, that we can determine the initial
segments � of C, the � such S(�) = T (�) and T 0(n � 1). Suppose we have the �
of length n such that � � C and � such that T (�) = S(�). We �rst ask Je(S[C])
for the value of W S[C]

e (n). If it is 1 then we �nd (recursively in T) the �rst � � �

such that T (�)e (n) #. If not, we let � = � . In either case, the construction makes
S(�^i) = T (�^T 0(n)^i).

Now for j = 0 and j = 1 the strings T (�^j) are incompatible and so exactly one is
an initial segment of S[C]. Thus S[C] � T can determine which one is contained
in S[C] and so the value of T 0(n): Next, we can, in the same way, determine the
i such that T (�^T 0(n)^i) = S(�^i) is an initial segment of S[C] and so �^i � C.
The corresponding node on T is �^T 0(n)^i. This completes the induction and our
proof of the Proposition.

5. One direction of the equivalence is (1) above. For the other, combine (2) and (4)
with C = ;.

166 CHAPTER 12. PSEUDO-JUMP OPERATORS: DEFINING A

This completes the proof of the Proposition.

1comp Theorem 12.1.2 (Completeness Theorem for 1-REA operators) If C �T 00 and
e 2 !, then there is an A such that Je(A) �T C �T A� 00.

Proof. In Proposition
tree1comp
12.1.1, let T = I, the identity tree (T (�) = �), and consider the

corresponding tree S and labeling U . As I is recursive and C �T 00, Proposition
tree1comp
12.1.1(4)

says that Je(S[C]) �T C �T S[C]� 00 so A = S[C] is as required in the Theorem.

Exercise 12.1.3 For a tree T de�ne T so as to make our informal usage of forcing
and deciding formulas on T agree with our usual de�nitions of forcing. Hint: There are
several possibilities. One takes the conditions to be pairs h�; T (�)i for � 2 2<! with the
valuation given by projection on the second coordinate.

Exercise 12.1.4 Prove that with the notation as in Proposition
tree1comp
12.1.1, S � T �T T 0.

We now wish to extend the completeness theorem to n-REA operators and then to
!-REA operators. The idea of taking the result one more step from the Se(T) and Ue(T)
provided in Proposition

tree1comp
12.1.1 for Je to something similar for Je1 �Je is to thin out Ue(T)

so as to decide Je1 applied to paths on Ue(T) as we decided Je on T before. This then
induces a subtree Se1e(T) of Se(T) and a labeling Ue1e(T) of it satisfying the analogous
properties for paths on Se1e(T) that the previous theorem produced for ones on Se(T).
We �rst give a general de�nition of labelings and then state a general proposition for
working relative to a given tree T and labeling V .

nlabel De�nition 12.1.5 An n-labeling of a tree T is a function V : 2<! ! (2<!)n+1 such that
for every �, the �rst coordinate of V (�) which we denote, as usual by V (�)0, is T (�)
and, for every � � � , V (�) � V (�) by which we mean that V (�) extends V (�) in each
coordinate, i.e. for each i � n, V (�)i � V (�)i. (There is an obvious identi�cation of a
tree T and a 1�labeling of T by the identity function, i.e. V (�) = hT (�)i.)

� For an n-labeling V and C 2 2N, V [C] denotes the (n + 1)-tuple of sets hV [C]ii
where V [C]i = [�2CV (�)i.

� If V is an n-labeling of a tree T and U an m-labeling of a tree S for m > n, we say
that (S; U) extends (T; V), (S; U) � (T; V), if S � T and, for every � and � such
that S(�) = T (�), U(�)i = V (�)i for every i � n. So, in particular, if S[C] = T [D]
then V [D] = hU [C]iji � ni.

FuLabel Notation 12.1.6 Recall De�nition
FuTree
9.2.13 of full subtrees of T above �: Fu(T; �)(�) =

T (�^�):We extend this in the obvious way to n-labelings V of T : Fu(V; �)(�) = V (�^�))
to get the natural n-labeling of Fu(T; �). We denote the pair (Fu(T; �); Fu(V; �)) by
Fu((T; V); �).

12.1. COMPLETENESS THEOREMS FOR REA OPERATORS 167

The idea behind the de�nition of n-labelings is that, given an index � for an n-REA
operator, we are expecting to build a tree T with an n-labeling V such that for every set
C, V [C] = J�(T [C]) by making V [C]0 = T [C] and V [C]i+1 = W

hV [C]j jj�ii
�(i) for i < n. The

tree and labeling are to be designed so that, for every C �T 0(n), V [C] �T C and so our
desired inversion of J� is V [C]0 = T [C]. Before stating and proving the Proposition that
provides the inductive step of this argument we point out some simple but useful facts
about the relation between trees and paths on them.

indforcomp Proposition 12.1.7 Let e 2 ! and V be an n-labeling of a tree T and X = T � V .
There is then an extension (S; U) of (T; V) with U an (n+1)-labeling of S such that, for
any sets C and D with S[C] = T [D]

1. S; U �T X 0.

2. Je(V [D]) = U [C].

3. Je(V [D]) � j�j = U [C] � j�j is the same for all C � � (and all D � � where
T (�) = S(�)).

4. Je(V [D])�X �T C �X 0.

5. U �X �T X 0.

Proof. The construction and veri�cations are similar to those of Proposition
tree1comp
12.1.1.

Construction: We begin with S(;) = T (;) and U(;) = V (;)^ h;i. Suppose we have
de�ned S(�) and U(�) for � of length m. We ask V 0 �T X 0 if there is a � � � such
that �V (�)e (m) # . If so, we choose (recursively in V �T X) the �rst such �. If not we let
� = �. We now set S(�^i) = T (�^X 0(m)^i) and U(�^i) = V (�^X 0(m)^i)^ hU(�)n+1^1i
in the �rst case and U(�^i) = V (�^X 0(m)^i)^ hU(�)n+1^0i in the second.
Veri�cations: Consider any sets C and D such that S[C] = T [D].

1. As in Proposition
tree1comp
12.1.1, it is clear from the construction that S; U �T X 0.

2. It is again clear from the construction that W V [D]
e = U [C]n+1 and so Je(V [D]) =

U [C].

3. The actual step by step analysis for the previous conclusion shows again that
Je(V [D]) � j�j = U [C] � j�j is decided by each � and so is the same for all C � �
(and all D � � where T (�) = S(�)).

4. That Je(V [D])�X �T C�X 0 follows from (1) and (2). For the other direction, we
verify that Je(V [D])�X �T C �X 0 essentially as before. We show, by induction
on the length m of �, that we can determine the initial segments � of C, the � such
S(�) = T (�) and X 0(m� 1). Suppose we have the � of length m such that � � C

and � such that T (�) = S(�). We �rst ask Je(V [D]) for the value ofW
V [D]
e (m). If it

168 CHAPTER 12. PSEUDO-JUMP OPERATORS: DEFINING A

is 1 then we �nd (recursively in V �T X) the �rst � � � such that that �V (�)e (n) #.
If not, we let � = � . In either case, the construction makes S(�^i) = T (�^X 0(n)^i).

Now for j = 0 and j = 1 the strings T (�^j) are incompatible and so exactly one
is an initial segment of T [D] = S[C]. Thus S[C] � T can determine which one
is contained in S[C] and so the value of X 0(m). Next, we can, in the same way,
determine the i such that T (�^X 0(n)^i) = S(�^i) is an initial segment of S[C] and
so �^i � C and the corresponding node on T is �^X 0(n)^i. This completes the
induction and our proof of (4).

5. That U �T X 0 is (1). Let D be such that V [D] = U [;] �T U . Now apply (2) and
(4) to see that U [;]�X �T X 0.

This completes the proof of this Proposition.

ncompunif Remark 12.1.8 The proof of Proposition
indforcomp
12.1.7 shows that its conclusions hold with all

possible uniformities. To specify some of them precisely, we note that there are recursive
functions g; h; k; k̂; l such that for every e 2 ! and every tree T with n-labeling V and
X = T � V .

1. �X
0

g(e) = Se(X), �X
0

h(e) = Ue(X) which is an (n + 1)-labeling of the tree Se(X) and
(Se(X);Ue(X)) is an extension of (T; V).

2. For every sets C andD with Se(X)[C] = T [D], Je(V [D]) = Ue(X)[C], �Je(V [D])�Xk(e) =

C �X 0 and �C�X
0

k̂(e)
= Je(V [D])�X.

3. Given �, the value of Je(Se(X)[C])(z) = Ue(X)(z) for any z < j�j is the same for
all C � � and is given by �X

0
l (z; �).

4. �Ue(X)�Xf(e) = X 0.

Also note that the trees S and U of Proposition
tree1comp
12.1.1 are just the Se(X) and (Ue(X))1

of this Proposition with V = T .

We now prove a version of Proposition
indforcomp
12.1.7 for n-REA operators by induction using

that Proposition as the inductive step along with the uniformities provided by Remark
ncompunif
12.1.8.

treenreacomp Proposition 12.1.9 For any n-REA operator J� and tree T there is a tree Tn with an
n-labeling Vn with the following properties:

1. Both Tn and Vn are, given �, uniformly recursive in T (n).

2. For every set C, C � T (n) �T Tn[C]� T (n) �T J�(Tn[C])� T = Vn[C]� T with all
the reductions given uniformly.

12.1. COMPLETENESS THEOREMS FOR REA OPERATORS 169

3. For each � and x < j�j, the value of J�(Tn[C]) = Vn[C] at x is the same for all
C � �.

4. Vn � T �T T (n).

Proof. Let J� be an n-REA operator with � = hm0;m1; : : : ;mn�1i. We de�ne by
induction trees Ti with i-labelings Vi for i � n. We let V0 = T0 = T . Given Ti and Vi we
set Xi = Ti � Vi. Let Ti+1 = Smi

(Xi) and Vi+1 = Umi
(X). We claim that Tn and Vn are

as required in the Proposition.
Let Cn = C and let Ci for i < n be such that Ti+1[Ci+1] = Ti[Ci]. Note that as

T0 = V0, Tn[Cn] = T0[C0] = V0[C0].

1. It is immediate from Proposition
indforcomp
12.1.7(1) that Ti and Vi are uniformly recursive

in T (i) by induction with the desired uniformity (relative to � � i) given by Remark
ncompunif
12.1.8(1). Here, we just need the case i = n.

2. By (1), C � T (n) �T Tn[C] � T (n). By Proposition
indforcomp
12.1.7(2) and induction on i

we see that J��i(T0[C0]) = J��i(Ti[Ci]) = Vi[Ci] and so, in particular, J�(Tn[C]) =
Vn[Cn] = Vn[C]. Finally, (4) of this Proposition (proved independently below)
together with Proposition

indforcomp
12.1.7(2) and (4) show by induction that J��i+1(Ti[Ci])�

T = Vi+1[Ci+1] � T �T Ci+1 � T (i+1) and so (for i = n � 1), Vn[Cn] � T �T
Cn � T (n) = C � T (n) as required.

3. Let � = �n and choose �i such that Ti(�i) = Tn(�n). Applying Proposition
indforcomp
12.1.7(3) inductively (and the fact established in (2) here that J��i(T0[C0]) =
J��i(Ti[Ci]) = Vi[Ci]) we see that Vi[Ci] � j�ij is the same for all C � �i. Again the
case that i = n is what we require here.

4. That Vi � T �T T (i) follows immediately from Proposition
indforcomp
12.1.7(5) by induction.

The uniformities desired here hold for all the Ti and Vi (given as indices relative to
T (i)) by induction using those in Remark

ncompunif
12.1.8.

The completeness theorem for n-REA operators is now a special case of Proposition
treenreacomp
12.1.9. The one for !-REA operators is given by another induction using Proposition
indforcomp
12.1.7 directly.

nreacomp Theorem 12.1.10 (Completeness Theorem for n-REA operators) If J is an n-
REA operator and C � 0(n), then there is an A such that J(A) �T C �T A� 0(n).

Proof. Let T = I in Proposition
treenreacomp
12.1.9. Thus T (n) �T 0(n) and Tn[C] is the desired set

A by Proposition
treenreacomp
12.1.9(2).

omegareacomp Theorem 12.1.11 (Completeness Theorem for !-REA operators) If J is an !-
REA operator and C � 0(!), then there is an A such that C �T A� 0(!) �T J(A).

170 CHAPTER 12. PSEUDO-JUMP OPERATORS: DEFINING A

Proof. Construction: Let J = Jf be an !-REA operator and C �T 0(!). We construct
a sequence of trees Ti with i-labelings Vi such that (Ti+1; Vi+1) extends (Ti; Vi) so that
[Ti(;) is our desired A. We begin with T0 = V0 = I. Suppose we have (Ti; Vi). We code
in the next number in C by moving �rst to Fu((T̂i; V̂i); C(i)). We next apply Propositionindforcomp
12.1.7 to this pair for Jf(i) to get (Ti+1; Vi+1). We now let A = [Ti(;).
Veri�cations: Note that A is on every Ti and choose Ci such that Ti[Ci] = A. We

also point out that Ci(0) = C(i) as by the construction here and in Proposition
indforcomp
12.1.7

A � Ti+1(;) = T̂i(;) = Ti(C(i)).
We now prove various facts about the construction primarily by applying Proposition

indforcomp
12.1.7 inductively and exploiting the uniformities described in Remark

ncompunif
12.1.8.

1. We begin working toward the �rst equivalence of the Theorem. We want to show
that Ti and Vi are recursive in 0(i) with indices given uniformly in each ofA�0(!) and
C: We begin with T0 = V0 = I. Suppose we have (Ti; Vi) with indices computed
as required from C and A � 0(!). The next step in the construction is to form
T̂i and V̂i. It is clear from the construction that indices for them relative to 0(i)

can be computed from C (indeed we only need C(i)). To see that A � 0(!) also
su¢ ces, note that Ti(0) and Ti(1) are incompatible extensions of Ti(;) which are
computable from 0(i) and then A can decide which of them is an initial segment of
A and so compute indices for T̂i and V̂i relative to 0(i). Now Proposition

indforcomp
12.1.7(1)

and Remark
ncompunif
12.1.8(1) tell us that we can recursively compute indices for Ti+1 and

Vi+1 from 0(i+1) from the ones for T̂i and V̂i from 0(i) and f(i) while f is a �xed
recursive function.

The uniform computation of these indices from C shows that A = [Ti(;) �T C as
0(!) �T C. On the other hand, the uniform computations from A� 0(!) show that
Ti (and Vi) are uniformly computable from A � 0(!). So too then are the Ci. As
C(i) = Ci(0), C �T A � 0(!) for the �rst of the two Turing equivalences asserted
by the Theorem.

2. We next note that applying Proposition
indforcomp
12.1.7(2) inductively starting with A =

T0[C0] = V0[C0] shows us that Jf�i(A) = Vi[Ci] for i � 1. By (1) here we have that Vi
and Ti and hence Ci are uniformly recursive in A�0(!) as, then are Jf�i(A) = Vi[Ci].
Thus Jf (A) �T A � 0(!) for one direction of the second Turing equivalence of the
Theorem.

3. Finally, as by (2) and Proposition
indforcomp
12.1.7(4), Jf�i(A) = Vi[Ci] �T Ci � 0(i), 0(i) �T

Jf�i(A). The required uniformity follows from Remark
ncompunif
12.1.8(3). Thus A�0(!) �T

Jf (A).

This completes the proof of the !-REA completeness theorem.

Exercise 12.1.12 Prove a tree version of Theorem
omegareacomp
12.1.11, i.e. given an !-REA oper-

ator J build a tree T such that, for every set C �T 0(!), T [C] has the properties required
of A in the Theorem.

12.2. RE OPERATORS AND MINIMAL COVERS 171

Exercise 12.1.13 The previous exercise allows extending the completeness theorem into
the trans�nite. Formulate the de�nition and completeness theorem for ! + 1-REA oper-
ators and prove the theorem.

12.2 RE Operators and Minimal Covers

In this section, we generalize the n-r.e. and !-r.e. sets of De�nitions
nre
?? and

omegare
4.3.12 to

corresponding operators. We then show that these operators are, up to degree, all n-REA
and !-REA operators, respectively. As a corollary, we conclude that every degree above
0(!) is a minimal cover.

reop De�nition 12.2.1 An operator J : 2N ! 2N is an n-r.e. operator if there is an index
e 2 ! such that for every A 2 2N, �Ae (x; s) is total; for every x, �Ae (x; 0) = 0 and there are
at most n numbers s such that �Ae (x; s) 6= �Ae (x; s+1) and and A� lims�

A
e (x; s) = J(A).

The operator J is !-r.e. if, instead of �Ae (x; s) changing at most n times for each x, there
is a recursive function g such that, for every x, there are at most g(x) many numbers s
such that �Ae (x; s) 6= �Ae (x; s+ 1).

1re1rea Exercise 12.2.2 Up to degree, the 1-REA and 1-r.e. operators are the same, i.e. for
each 1-REA operator J there is a 1-r.e. operator Ĵ such that J(A) �T Ĵ(A) for every A
vice versa. Indeed this result is uniform in the indices. For n > 1; however, there are
n-REA operators which are not n-r.e. ones even up to degree.

For future notational simpli�cations, we note that, up to degree, the function g in the
de�nition of !-r.e. operators can be taken to be the identity function.

idfunc Proposition 12.2.3 For every !-r.e. operator Ĵ with witness a recursive g there is (uni-
formly in the indices for Ĵ and g) another one J with the identity function as its witness
such that, for every A 2 !, Ĵ(A) �T J(A).

Proof. Clearly we may assume that g is increasing by replacing it with n 7�! �i�ng(n).
Suppose now that Ĵ is determined by index ê. We de�ne J with index e such that, for
every A; x and s, �Ae (x; s) = 0 for x 2 [0; g(0)) and for i > 0 and x 2 [g(i); g(i + 1),
�Ae (x; s) = �

A
ê (i; s). As �

A
ê (i; s) changes at most g(i) many times, it is clear that �

A
e (x; s)

changes at most x many times for each x as required for J to be !-r.e. It is also clear
that for x > g(0), J(A)(h1; xi) = lims�

A
e (x; s) = lims�

A
ê (i; s) = Ĵ(h1; ii) where is i such

that x 2 [g(i); g(i + 1)). As g is recursive, J(A) �T Ĵ(A) as well. (As J(A)(x) = 0
for x < g(0), it is also clear that the reductions between the two operators are given
uniformly in the indices for Ĵ and g.)
As we are only interested in !-r.e. operators up to degree, we assume from now on

that the witness function g required in the de�nition is always the identity function.

172 CHAPTER 12. PSEUDO-JUMP OPERATORS: DEFINING A

rereaop Theorem 12.2.4 For every n-r.e. or !-r.e. operator Ĵ there is an n-REA or !-REA
one J , respectively, such that, for every A 2 2N, Ĵ(A) �T J(A) and indeed the indices for
the REA operator and the required Turing reductions can be found (uniformly) recursively
in the ones for the r.e. operator. Moreover, in the n-r.e. case we have h1; xi 2 Ĵ(A) ,
hn; hx; 0ii =2 J(A) and in the !-r.e. case we have h1; xi 2 Ĵ(A) , hx; hx; 0ii =2 Jf�x(A)

where f is as in the de�nition of an !-REA operator. (Of course, h0; xi 2 Ĵ(A) , x 2
A, h0; xi 2 J(A).)

Proof. Suppose Ĵ is an n-r.e. operator with index ê. For i < n, We de�ne operators Ei:
Ei(A) = fhx; si j the approximation �Ae (x; t) has changed from its previous value for

the (n� i� 1)th time at s and �Ae (x; s) 6= Ĵ(A)(x)g.
It is clear that, for each i, Ei(A) �T Ĵ(A) (uniformly) as A = Ĵ(A)[0] by de�nition.
We next claim that, for i < n, Ei(A) is (uniformly) r.e. in Ei�1(A) (where E�1(A) =

A). For i = 0, note that as �Ae (x; t) changes at most n times, hx; si 2 E0(A) , the
approximation �Ae (x; t) has changed from its previous value for the (n � 1)th time at s
& 9u > s(�Ae (x; u) 6= �Ae (x; s)). For 0 < i < n, proceed by induction and note that
hx; si 2 Ei , the approximation �Ae (x; t) has changed from its previous value for the
(n � i � 1)th time at s & (9u > s)(the approximation �Ae (x; t) has changed from its
previous value for the (n� i)th time at u and hx; ui =2 Ei�1).
Thus there is an n-REA operator J� where we de�ne �(i) for i < n by induction

starting with J�(0)(A) = A � En�1(A) and progressing by making J�(i)(J��i(A)) =

J��i(A) � En�i�1(A). All that remains is to show that Ĵ(A) �T J�(A). In fact,
x 2 Ĵ(A) , hx; 0i =2 EAn�1 as �

A
ê (x; 0) = 0 and 0 is the n � (n � 1) � 1(= 0)th time

�Aê (x; s) has changed for every x. Thus x 2 Ĵ(A), hhx; 0i ; ni =2 J�(A).
It is clear that all the required indices for the operators and Turing reductions are

given uniformly in ê by this construction and the proof of its correctness.
Now let Ĵ be an !-r.e. operator with index ê. We can now preform essentially the

same procedure for all n. Let Ei(A) = fhn; si j the approximation �Ae (n; t) has changed
from its previous value for the (n�i�1)th time at s and �Ae (n; s) 6= Ĵ(A)(n)g. The same
arguments as above show that, for i � 0, Ei+1(A) is uniformly r.e. in Ei(A) and recursive
in Ĵ(A). Moreover, n 2 Ĵ(A), hn; 0i =2 En(A). Thus we may de�ne an !-REA operator
J as in De�nition

REA
12.0.1 given by the recursive f such that Jf(0)(A) = A�E0(A) and for

n > 0, Jf(n)(Jf�n(A)) = Jf�n � En(A). The arguments above show that J(A) �T Ĵ(A)
and, moreover, x 2 Ĵ(A), hx; hx; 0ii =2 Jf�x(A) for every A and x, as required.

Corollary 12.2.5 Every c �T 0(!) is minimal cover.

Proof. As noted at the beginning of this Chapter, there is an !-r.e. operatorM such that
for every A, M(A) is a minimal cover of A. (This follows from the uniformities present
in the proofs of Theorem

Sacksmin
9.3.1, Corollary

minwtt
?? and Exercise

wtt0�
4.3.15. Theorem

rereaop
12.2.4 says

that, up to degree, there is an !-REA operator J which also produces minimal covers for
every A. Theorem

omegareacomp
12.1.11 then provides, for any given C �T 0(!), an A for whose degree

that of C is a minimal cover.??More details here or when do Sacks minimal cover??

12.3. THE JOIN THEOREM FOR !-R.E. OPERATORS 173

12.3 The Join Theorem for !-r.e. Operatorsjoin

We begin with the join theorem for 1-REA operators (or equivalently for 1-r.e. operators
by Exercise

1re1rea
12.2.2) which will serve as the basic model for our proof of the analogous

theorem for !-r.e. operators.

1join Theorem 12.3.1 For every 1-REA operator Je and nonrecursive set X, there is a set
A such that Je(A) �T X � 00 �T A�X.

Proof. As in Theorem
SW
??, we may assume that X has no in�nite r.e. subsets. (Replace

X by the set of all binary strings � such that � � X. Any in�nite r.e. subset contains
an in�nite recursive subset which would then compute X for a contradiction.)
We now de�ne initial segments �n of our desired set A by recursion using Z = X�00.

Assume we have de�ned �n. Consider the set Cn = fmj(9� � �n^0
m^1)(��e(0) #g. This

set is r.e. and so, if in�nite, contains an m =2 X. If it is �nite, there is certainly an
m 2 X with m =2 Cn. Recursively in Z we can thus search for and �nd an m such that
m 2 Cn , m =2 X. If m 2 Cn let � be the �rst extension of �n^0m^1 such that ��e(0) #.
If m =2 Cn, let � be �n^0m^1. In either case, set �n+1 = �^Z(n). Thus h�ni �T Z and
so A and A�X are also computable from Z. As we also decided if n 2 WA

e at step n (if
and only if ��n+1e (n) #), Je(A) �T Z.
We now prove that the sequence �n can be computed from each of Je(A) and A�X.

Suppose we have �n. As A �T J(A); A � X, we can �nd m such that �n^0m^1 � A.
Now each of X and Je(A) can tell us if there is a � � �n^0

m^1 such that ��e(n) #
(, m =2 X , h1; ni 2 Je(A)). Given this information we can recursively �nd the
� � �n^0

m^1 used at this point of the construction such that � � A. We then know that
�n+1 = �^Z(n) and, of course, A (and hence Je(A) and A �X) can compute this �nal
digit in �n+1. Thus each of Je(A), A�X can compute �n+1 as required. As Z(n) is the
last digit of �n+1, both Je(A) and A�X compute Z.

pr Corollary 12.3.2 (Posner-Robinson join theorem) If 0 <T X �T 00 then there is
an A such that 00 �T A0 �T A�X.

Proof. Take Je to be the jump operator in the Theorem.

Exercise 12.3.3 Prove that for every e 2 !, nonrecursive X and C �T X � 00, there is
an A such that Je(A) �T C �T A�X.

We now wish to combine the plan of the proof of Theorem
1join
12.3.1 with the construc-

tions in Proposition
treenreacomp
12.1.9.

omegajoin Theorem 12.3.4 (Join Theorem for !-r.e. Operators) If Ĵ is an !-r.e. operator,
X �T 0(n) for every n and Z �T 0(!) �X, then there is an A such that Ĵ(A) �T Z �T
A�X.

174 CHAPTER 12. PSEUDO-JUMP OPERATORS: DEFINING A

Proof. As in Theorem
1join
12.3.1, we may assume that X contains no in�nite arithmetic

sets. As Ĵ is an !-r.e. operator, membership of n in Ĵ(A) is determined uniformly by
n-r.e. operators Ĵn(A) given by �Aen(x; s) = �

A
ê (n; s) for every x so that Ĵn(A)(hi; xi) =

Ĵ(A)(h1; ni) for every x and 0 < i � n. By Theorem
rereaop
12.2.4, we (uniformly) have n-REA

operators J�n such that the J�n(A) are uniformly of the same degree as Ĵn(A). So the
J�n(A) are uniformly recursive in A and Ĵ(A)(h1; ni) for every A. Also note that, as
stated in Theorem

rereaop
12.2.4, h1; ni 2 Ĵ(A), hn; hn; 0ii =2 J�n(A) for every n and A.

Let s0 = 0 and sn = �i<n(i+ 1) = 1
2
n(n+ 1) for n > 0.

Construction. Recursively in Z we build a nested sequence of trees Tn such that
A = [Tn(;) will be our desired set. We begin with T0 = I. Suppose we have Tn �T 0(sn).
Let Tn;m = Fu(Tn; Z(n)^0

m^1) which is also recursive in 0(sn) with index computed from
that of Tn uniformly in Z(n) and m. Let Sn;m be the result of applying Proposition
treenreacomp
12.1.9 to Tn;m and J�n. By Proposition

treenreacomp
12.1.9(1), Sn;m �T (0(sn))(n) = 0(sn+1) �T Z.

Let kn = hn; hn; 0ii + 1 and T̂n;m = Fu(Sn;m; 0
kn) �T 0(sn+1). By Proposition

treenreacomp
12.1.9(3),

J�n(T̂n;m[C])(hn; hn; 0ii) = Ĵ(T̂n;m[C])(h1; ni is the same for all C � 0kn. Let this value
be jn;m By Remark

ncompunif
12.1.8(3) jn;m can be computed uniformly in 0(sn+1) and m. Thus by

our assumption on X, there is an m such that jn;m = 1 , m =2 X. We choose such an
m and let Tn+1 be T̂n;m.
Veri�cations: Clearly the Tn are nested and A is a path on each of them. As the

whole construction is recursive in Z, A �T Z and so A�X �T Z. As the construction
also shows that Ĵ(A)(n) is jn;m for the m such that Tn+1 = T̂n;m, we see that Ĵ(A) �T Z
as well.
For the other directions, we show by induction that Z(n), Tn, and the indices for the

reductions required to show that Tn �T 0(sn) �T Fu(Tn; �) are uniformly recursive in
� and each of Ĵ(A) and A � X. If we know that Tn �T Ĵ(A); A � X, then using the
fact that A lies on Tn we can determine the j and m such that Tn(j^0m^1) is an initial
segment of A. This determines Z(n) = j and the m such that T̂n;m = Tn+1. For n = 0,
T0 = I and s0 = 0 so both T0 and 0(s0) are recursive. Thus we only have to show that
given that we have computed Z(n), m, Tn and the reductions showing (given �) that
Tn �T 0(sn) �T Fu(Tn; �) both Ĵ(A) and A � X can compute T̂n;m and the reductions
showing (given �) that it is of the same degree as 0(sn+1) and Fu(T̂n;m; �). With what
we are assuming, we certainly have computed Tn;m = Fu(Tn; Z(n)^0

m^1) �T 0(sn) and
so T̂n;m = Fu(Sn;m; 0

kn) �T Sn;m �T (0(sn))(n) = 0(sn+1) with the last reduction given by
Proposition

treenreacomp
12.1.9(1). Now we already know that J�n(T̂n;m[W]) is (uniformly) recursive in

T̂n;m[W] and Ĵ(T̂n;m[W])(n) = jn;m for everyW . Thus by Proposition
treenreacomp
12.1.9(2), T̂n;m[W]

�jn;m � 0(sn) computes (0sn)(n) = 0(sn+1) uniformly for every W . If we take W = ;,
T̂n;m[W] �T T̂n;m and so T̂n;m �T 0(sn+1) as required. For the uniformity needed in our
induction, note that A 2 [T̂n;m] and both Ĵ(A) and A � X have computed A and jn;m
uniformly and so compute 0(sn+1) uniformly by Proposition

treenreacomp
12.1.9(2).

Thus we have the required computations of Z(n) and T̂n:m = Tn+1 �T 0(sn+1) from
each of Ĵ(A) and A�X.

12.4. THE DEFINABILITY OF A AND THE FAILURE OF HOMOGENEITY 175

12.4 The De�nability of A and the Failure of Homo-
geneity

By Theorem
jierarchy
??, the sets de�nable in arithmetic are precisely those recursive in 0(n) for

some n. We now give a �rst order de�nition in D of the class A of the degrees of these
sets. We then use this de�nability result to produce failures of the both the Homogeneity
Conjecture

homconj
?? and its elementary equivalence version (

homconjee
??).

defarith Theorem 12.4.1 The class A of Turing degrees is de�nable in D. Indeed,

A = fyj(9x � y)(8w)(w _ x is not a minimal cover of w)g.

Proof. Let C = fyj(9x � y)(8w)(w _ x is not a minimal cover of w)g. That C � A
follows from Theorem

omegajoin
12.3.4: If y =2A and x � y then, of course, x =2A. Let w be the

degree of the A of Theorem
omegajoin
12.3.4 applied to X 2 x and Z = X � 0(!) and J the !-r.e.

operator such that J(A) is a minimal cover of A for every A. By the theorem, w _ x is
the degree of J(A) and so a minimal cover of w = deg(A). Thus y =2C as required.
For the other direction, consider any y 2A. There is then an n such that y �T 0(n)

(which will serve as the x required in the de�nition). So it su¢ ces to show that w _ 0(n)
is not a minimal cover of w for any w and n. Fix w and proceed by induction on n.
Clearly w _ 0 is not a minimal cover of w. Suppose that there is a least n > 0 such that
w _ 0(n) is a minimal cover of of w. By the minimality of n, w _ 0(n�1) 2 [w,w _ 0(n)] is
not a minimal cover of w. Thus w _ 0(n�1) = w. Now note that 0(n) is r.e. in 0(n�1) and
so also in w = w _ 0(n�1). We now have a contradiction to Corollary

recohen
8.2.8 relativized to

w as it shows that no nonrecursive r.e. degree is minimal.
Relativizing Theorem

defarith
12.4.1 to an arbitrary degree x gives the de�nability of the

relation x is arithmetic in y (De�nition
defarihtin
??), i.e. x �T y(n) for some n.

defarithin Corollary 12.4.2 For every c, the class Ac = fy � cj(9x � y)(8w � c)(w _ x is not a
minimal cover of z)g is the class of degrees arithmetic in and above c. Thus the relation
x �ay, x is arithmetic in y, is de�nable in D.

Proof. The �rst assertion is just the relativization of the Theorem to c. Now clearly
x �ay, 9u(u 2Ay & x � u) which, as a relation on x and y, is de�nable by the �rst
assertion.

nothom Theorem 12.4.3 The homogeneity conjecture fails. Indeed, for any degrees u and v, if
D(� u) �= D(� v) then u �av.

Proof. Suppose u is not arithmetic in v and choose a set U 2 u not arithmetic in
any V 2 v. As in De�nition

effsuc
??, let LU be an e¤ective successor structure generated by

�nitely many elements with two additional elements g0, g1 such that n 2 U , dn � g0; g1.
Note that it is clear from its de�nition that U is arithmetic in the any presentation

176 CHAPTER 12. PSEUDO-JUMP OPERATORS: DEFINING A

of LU as a partial lattice. Now as LU is recursive in U , Theorem
parlatemb
6.3.7 says that we

can embed it (as a partial lattice) in [u;u00] and so in Au, the degrees arithmetic in
and above u. By Corollary

defarithin
12.4.2, Au is precisely the class of degrees y such that

D(� u) � (9x � y)(8w)(w _ x is not a minimal cover of w). If D(� u) and D(� v)
were isomorphic, then the isomorphism must take Au to Av because they have a common
de�nition. Thus LU would also be embeddable in Av. This image is then arithmetic in
the image of the generators and so arithmetic in V for the desired contradiction. The
argument that v is arithmetic in u is symmetric.
While this Theorem shows that the homogeneity conjecture fails in the sense that

there is a c (e.g. 0(!)) such that D is not isomorphic to D(� c), it does not supply an
elementary di¤erence. We can provide one by by using Theorem

thjumpideal
7.2.5.

nothomee Theorem 12.4.4 D 6� D(� 0(!)), i.e. there is a sentence ' in the language of partial
orderings such that D(� 0(!)) � ' but D � :'.

Proof. As A and A0(!) are de�ned in D and D(� 0(!)) by the same formula (Corollary
defarithin
12.4.2), it su¢ ces to show that they are not elementarily equivalent. By Theorem

thjumpideal
7.2.5,

it then su¢ ces to show that the structures M and N of second order arithmetic with
set quanti�ers ranging over the sets with degrees in A and A0(!) , respectively, are not
elementarily equivalent. This follows from the implicit de�nability of 0(!): There is a
formula (X) of �rst order arithmetic with one free set variable X such that the only
set X satisfying it is 0(!). Thus N � 9X (X) butM 2 9X (X). as required.
Thus we only need to specify (X). It says that X [0] = ; and 8n(X [n+1] = (X [n])0.

As we can de�ne Z 0 in arithmetic uniformly in Z, this formula is clearly equivalent to an
arithmetic one with parameter X as required.

Remark 12.4.5 The proof of Theorem
nothomee
12.4.4 shows that A 6� A(0!). This theorem

does not relativize. Indeed, by Borel determinacy (a theorem of ZFC) there is a c such
that (8d � c)(Ac � Ad). Projective determinacy implies that there is a c such that
(8d � c)(D(� c) � D(� d)). Explanations.

12.5 The Join Theorem for REA operatorsKS

Chapter 13

Global Results

homogeneity, de�nability, automorphisms

177

178 CHAPTER 13. GLOBAL RESULTS

Chapter 14

De�ning the Turing Jump

179

180 CHAPTER 14. DEFINING THE TURING JUMP

Chapter 15

Appendicesappendix

15.1 Trees, Cantor and Baire space; topology; per-
fect setstopology

trees of sequences from alphabet (formally identify with subset of N)
binary trees, n-ary trees, �nitely branching, f -branching
paths
Cantor space, Baire space
topology, open, closed, perfect sets
perfect trees
function trees
size of continuum Cantor�s theorem, j2Nj = jNNj = j[T]j for any perfect binary tree.
To text: A nonrecursive construction in mathematics. WKL_0 trees, paths, tree s.t.

any path is DNR. forward ref to recursively inseparable sets. completions of PA.

15.2 Structures, Orders and Latticesstr

structure, structure recursive if
p.o., linear, well
lattice, sublattice, usl, lsl, susl, sls
distributive
Boolean algebras
universality issues Q as example back and forth

locally �nite?
partial lattices??

181

182 CHAPTER 15. APPENDICES

15.3 Interpreting Structures and Theoriesinterpretations

�rst and second order logic

Chapter 16

Bibliographybib

Abraham, U. and Shore, R. A. [1986], Initial segments of the Turing degrees of size @1,
Israel J. Math. 55, 1-51.
Cai, M. [2012], Array nonrecursiveness and relative recursive enumerability, J. of

Symb. Logic, to appear.
Cai, M. and Shore, R. A. [2012], Domination, forcing, array nonrecursiveness and

relative recursive enumerability, J. of Symb. Logic, to appear.
Cooper, S. B. [1989], Degrees of unsolvability complementary between recursively

enumerable degrees, Ann. Math. Logic 4, 31-73.
Dekker, J. C. E. [1954], A theorem on hypersimple sets, Proc. Am. Math. Soc. 5,

791-796.
Feferman, S. [1965] Some applications of the notions of forcing and generic sets, Fund.

Math. 56, 325�345.
Feiner, L. [1970], The strong homogeneity conjecture, J. Symb. Logic 35, 375-377.
Friedberg, R. M. [1957], A criterion for completeness of degrees of unsolvability, J.

Symbolic Logic 22, 159-160.
Greenberg, N. and Montalbán, A. [2004], Embedding and coding below a 1-generic

degree, Notre Dame J. Formal Logic 44, 200-216.
Groszek, M. S. and Slaman, T. A. [1983], Independence results on the global structure

of the Turing degrees, Trans. Am. Math. Soc. 277, 579-588.
Hinman, P. G. [1969] Some applications of forcing to hierarchy problems in arithmetic,

Z. Math. Logik Grundlagen Math. 15, 341�352.
Jockusch, C. G. jr. [1980], Degrees of generic sets, in Recursion theory: its generali-

sation and applications (Proc. Logic Colloq., Univ. Leeds, Leeds, 1979), London Math.
Soc. Lecture Note Ser., 45, Cambridge Univ. Press, Cambridge-New York, 110�139.
Jockusch, C. G., Jr. and Posner, D. B. [1978], Double jumps of minimal degrees. J.

Symbolic Logic 43 , 715�724.
Kleene, S. C. and Post, E. L. [1954] The upper semi-lattice of degrees of recursive

unsolvability, Ann. of Math. (2) 59, 379�407.
Kurtz, S. A. [1983], Notions of weak genericity, J. Symbolic Logic 48 , 764�770.

183

184 CHAPTER 16. BIBLIOGRAPHY

Lerman, M. [1971], Initial segments of the degrees of unsolvability, Ann. of Math.
(2) 93, 365-389.
Lerman, M. [1972], On suborderings of the �-recursively enumerable �-degrees, Ann.

Math. Logic 4, 369-392.
Lerman, M. [1983], Degrees of Unsolvability, Springer-Verlag, Berlin.
Martin, D. A. [1966], Classes of recursively enumerable sets and degrees of unsolv-

ability, Z. Math. Logik Grundlagen Math. 12, 295�310.
Miller, W. and Martin, D. A. [1968], The degrees of hyperimmune sets. Z. Math.

Logik Grundlagen Math. 14, 159�166.
Nerode, A. and Shore, R. A. [1980], Second order logic and �rst order theories of

reducibility orderings in The Kleene Symposium, J. Barwise, H. J. Keisler and K. Kunen,
eds., North-Holland, Amsterdam, 181-200.
Nerode, A. and Shore, R. A. [1980a], Reducibility orderings: theories, de�nability

and automorphisms, Ann. of Math. Logic 18, 61-89.
Nies, A., Shore, R. A. and Slaman, T. [1998], Interpretability and de�nability in the

recursively enumerable degrees, Proceedings of the London Mathematical Society (3) 77,
241-291.
Odifreddi, P. [1989] and [1999] Classical recursion theory. Vols. I and II. Studies in

Logic and the Foundations of Mathematics 125 and 143. North-Holland Publishing Co.,
Amsterdam.
Odifreddi, P. and Shore, R. A. [1991], Global properties of local degree structures,

Bul. U. Mat. Ital. 7, 97-120.
Rogers, H. Jr. [1987], Theory of recursive functions and e¤ective computability. Sec-

ond edition. MIT Press, Cambridge, MA.
Sacks, G. E. [1961], On suborderings of degrees of recursive unsolvability, Z. Math.

Logik Grundlagen Math. 7, 46-56.
Sacks, G. E. [1963], Recursive enumerability and the jump operator, Trans. Am.

Math. Soc. 108, 223-239.
Shoen�eld, J. R. [1959], On degrees of unsolvability, Ann. Math. (2) 69, 644-653.
Shoen�eld, J. R. [1960], An uncountable set of incomparable degrees, Proc. Am.

Math. Soc. 11, 61-62.
Shore, R. A. [1981], The theory of the degrees below 00, J. London Math. Soc. (3)

24 (1981), 1-14.
Shore, R. A. [1982], Finitely generated codings and the degrees r.e. in a degree d,

Proc. Am. Math. Soc. 84, 256-263.
Shore, R. A. [1982a], On homogeneity and de�nability in the �rst order theory of the

Turing degrees, J. Symb. Logic 47, 8-16.
Shore, R. A. [1988], De�ning jump classes in the degrees below 00, Proc. Am. Math.

Soc. 104, 287-292.
Shore, R. A. [2007], Direct and local de�nitions of the Turing jump, J. Math. Logic

7, 229-262.

185

Shore, R. A. [2014], Biinterpretability up to double jump in the degrees below 00,
Proc. of the Am. Math.Soc. 142, 351-360.
Shore, R. A. and Slaman, T. A. [1999], De�ning the Turing jump, Math. Research

Letters 6, 711-722
Simpson, S. G. [1977], First order theory of the degrees of recursive unsolvability,

Ann. Math. (2), 105, 121-139.
Slaman, T. A. [1991], Degree structures, in Proc. Int. Cong. Math., Kyoto 1990,

Springer-Verlag, Tokyo, 303-316.
Slaman, T. A.. [2008], Global properties of the Turing degrees and the Turing jump

in Computational prospects of in�nity. Part I. Tutorials, Lect. Notes Ser. Inst. Math.
Sci. Natl. Univ. Singap. 14, World Sci. Publ., Hackensack, NJ, 83�101.
Slaman, T. A. and Steel, J. R. [1989], J. of Symb. Logic 54, 160-176.
Slaman, T. A. and Woodin, H. W. [1986], De�nability in the Turing degrees, Illinois

J. Math. 30, 320-334
Soare, R. I. [1987], Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin.
Spector, C. [1956], On degrees of recursive unsolvability, Ann. Math. (2) 64, 581-592
Thomason, S. K. [1970], Sublattices and initial segments of the degrees of unsolvabil-

ity, Can. J. Math. 3, 569-581.
Sacks [1966]??

