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Introduction

The introduction
Reference Style to Chapters Chapter n Sections §n.m??

0.1 Notation

N Cl,b,C,d, e,i,j,k,l,m,n,r,s,t,u,v,w,m,y,z
N—Nf,g,h
N —2sets A, B,C,U, VW, XY, Z
f ambiguous
partial functions ¢, ¢, ...
Functionals ®, ¥, ... (continuous)

0.2 Pairing and ordered sequences

Choice. Uniformity.

specific pairing polynomial %(mQ + 22y +1y* + 3z +vy) then n-tuples by recursion. then
picture for listing the elements of a countable family of countable sets.

Pairing functions: desiderata for (x,y).

273Y; 2(2? + 2zy + y* 4 3z + y)

(,y,2) = (z,(y,2)) etc.

(1, . xp) = (N, (21, (T2...)))

Uniformity over length n.

[Tp5t" —1 for (zy,...2,)

pairing for functions f ® g, @, f;

DA; afi &{Al..i...}

strings «, 3,7,9,p,0,T

String notation functional form if ¢ = (z1,...x,) then (i) = x;41 (perhaps prefer
(o, ...%n-1)); dom(o) = n = |o| length of o; order by initial segments o C 7; restriction
for m < |o|, 0 | m C o and |o [ m| = m. Apply to functions on all of N as well: o C f;
f | m. so strings as finite sequences

X



X INTRODUCTION

Notation: set of all finite sequences of elements of S denoted by S<“ set of sequences
of length n by S™

binary strings {0, 1} {0, 1}<¢

Identify {0,1} with 2 and more generally {0,1,...,n — 1} with n and so write 2",
2<w N |

Also pairing for strings...



overview

Chapter 1

An Overview

1.1 History, intuition, undecidability, formalization,

1.2 Formal definitions, models of computation

Turing machines (multitape with input, output and others)

n-ary functions formally view as given by input an n-tuple x4, ..., x, coded on same
input tape e.g. as B1**B1*2... B1*"B ...

?70r in some nice way e.g. machine (e, n) ... or just realize can mimic such functions
...and use notation of n-ary inputs as shorthand.?

Also allow multiple oracles fi,... f, ...

Other notions: prim recursive + p (search); register machines; equation calcu-

lus?..

1.3 Relative computability: Turing machines with
oracles

define Turing machines, input (note how to deal with n-tuples as input coded on same
on tape) above, output, computation also for oracles (functions) , Turing reducibility <r

define formally

do for explicitly for unary functions

can do n-ary in same way or by coding n-tuples as numbers

also oracles - could have tuple of oracles or view as code by function pairing

ref specific coding procedures in .

Church-Turing Thesis

equality for partial functions ® = W for if either are defined at x then both are defined
and their values are equal.
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use here example

Proposition 1.3.1 Turing reducibility is reflexive and transitive.

Recursive. (continuous) Functionals; oracles as inputs

1.4 Degrees, types of questions

We have seen that Turing reducibility, <r, is a reflexive and transitive relation and so
we can consider the equivalence classes for this relation, i.e. the classes of the form
{9lg <r f & f <r g} for any function d]; sz]chese classes are called the Turing degrees,
or simply the degrees. As, by Exercise h?%.‘l,_every Turing degree contains a set (i.e. a
characteristic function) and so we may, without any loss consider just the degrees of sets
or the classes {B|B <r A & A <p B}. We denote the collection of all degrees by D. We
typically denote the degree containing f or A by f or a. The class D i 31{)31"}1&1 order
under the induced relation < defined by f < g < f < g. (See Exerc1seil7l_2_§’

Exercise 1.4.1 For every function f € NN there is a set A € 2V of the same Turing
degree, i.e. f<p A and A <r f.

Exercise 1.4.2 The relation < defined above is well defined, reflexive and transitive on
the degrees and so makes them into a partial order.

Notation 1.4.3 For functions f,g € NN, we write f|rg to denote that f and g are
Turing incomparable, i.e. f £r g and g %1 f. Similarly, we write f|g when £ £ g and

g&f.

outline book

algebraic, local...

second order, global: definability, automorphisms, theory
mention appendices



Chapter 2

The Basics

2.1 Coding Turing machines with oracles

To aid in o gefmcr})%l sis of Turing machines with oracles and relative computability as
described in [I.3; we introduce a master (universal) recursive function in two forms. First
we have

o(f.e,r,8)=y.

Here the variables are f a function, e a number (index), z a number (input), s a number
(steps) and the expression means that the Turing machine with index e and oracle j
given input x and run for s many steps converges and outputs y. Secondly we have an
approximation version

SO(J7 6’ x? S) = y

where the variables are ¢ a string (so an initial segment of a function), e a number
(index), x a number (input), s a number (steps, use); and the expression means that the
Turing machine with index e and oracle restricted to ¢ given input  and run for s many
steps converges and outputs y. We say that ¢(f, e, z,s) or p(o, e, x,s) converges, if there
is such a y. The standard notation for this is p(f, e, x,s) | or ¢(o,e,x,s) |.

?7(In later chapters it will at times be convenient to allow o to be more generally
a finite partial function from N to N rather than restricting its domain to be an initial
segment of N. This makes essentially no difference in our discussions here.)??

The specific formal definition of ¢ is not important. We now make explicit some
properties that we want it to have. The properties should be obvious natural ones based
on our descriptions of the action of Turing machines with oracles.

??redo following as definitions etc.??

PrOpertieS Of (o, e x,s).

(i) Use: If 0 C 7 and ¢(0,¢,2,s) |=1y then p(1,e,2,5) =y

(ii) Permanence: If s <t and ¢(0,e,x,s) |=y then p(o,e,2,t) |=y

3



4 CHAPTER 2. THE BASICS

(iv) Computable Domain: The domain of ¢ is computable, in other words there
is a procedure to decide whether ¢ converges on any given tuple (o, e, x,s). This
procedure simply runs the machine with index e on input x and oracle o. If the
machine arrives at an output by step s, then answer yes (and otherwise, answer
1no).

We next adopt some conventions.

Conventions: We convert these partial functions into total ones by adopting the
convention that, if, during the run of the machine with index e and oracle f or o on
input z, the computation does not halt in s steps we output * (some designated reserved
symbol). In the case of a finite oracle o, we also output * if we ask a question of the
oracle for a number outside the domain of . For later convenience we also adopt the
conventions that the output is * if the input = or the expected output y is greater than
S.

These conventions can be thought of as saying that, in s many steps, we cannot
compute anything about any x > s (so roughly we have to read the input first) and that
we cannot ask any oracle questions about z > s either (so roughly new must be able to
write the number z down before asking about the value of f(z)) and cannot compute an
output y > s (so roughly we have write the output on the tape).

Finally,

We next note that ¢ is universal in the sense that it allows us to uniformly capture
all the partial Turing functions with oracles.

Proposition 2.1.1 For any function f and natural number e, ®/(x) = y if and only if
Jo C f3s[p(o,e,z,5) |=y|. Thus f <r g if and only if Je(®I = f).

Definition 2.1.2 We define the use of the computation of ®/(z) = y as the least n
such that o(f [ n+ 1,e,x,5) =y. We also say that o0 = f | n is the axiom (about the
oracle f) that gives this computation. Note that if f is changed at or below the use then
this axiom no longer applies to the changed function and while there may be a convergent
computation from the new function, it is not the same computation giving the output y.
?%have to define the computation ...77

Definition 2.1.3 <I>£7S(m) = y means that if we run ®X on x for s steps we get y as our
result in the sense that x and o(f | s,e,x,s) = y. Similarly, we use ®I(z) =y to mean
that © < |o| and (o, e, x,|o|) = y. So that the additional convention here is that when
the oracle is a finite string o we run the machine for |o| many steps. Thus we use ®7(z)
to denote what we might also write as @gj‘a‘(x). With this convention in mind we write

90(0-7 67 LC) fOT’ ()0(0-7 67 ZC, ’O-D

We collect our various notations in the following remark.
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Remark 2.1.4 &/(z) =y < Jsp(f,e,x,5) =y < (Jo C [)3s)(®¢ (x) =y) &
(Jo C flplo,e,z,5) =y) & (Jo C [)(P(z) =y) &
(Ela - f)(go(a,e,x) = y)
®/(x) | Fsp(f,e,x,5) & (30 C f)(3s)(PL,(2) |) &
(Jo C fllplo,e,z,5) ) & (3o C [)(PI(z) |) &
(Jo C f)(plo,e,2) |)
[ <r g Je(P!=f).

Definition 2.1.5 We use ®, to denote ®° the eth Turning machine with oracle the empty
set (constant function 0). This is equivalent (explain) to the list of Turing machines
without oracles and we often simply identify these two versions.

Remark 2.1.6 (Multivariable Functions) Just as we extended unary functions Given
by basic Turing machines (with or without oracles) to multivariable functions in %Twe
can extend the universal partial recursive functions and predicates to their analogs for
multiple inputs. Thus we have p,(f,e,T,s) =y, p,(0,6,%,8) =y, ¢,(f,e,%,s) | and
v, (0,e,z,8) | which are as above except that the input is now an n-tuple T in place of a
unary x.

Remark 2.1.7 (Relativization) As usual we can add extra function parameters h by
relativization and so define o, (f, h,e,%,5) =y, ¢, (0, h,e,Z,5) =y, 0, (f, h,e,Z,s) | and
@, (0, h,e,T,s)| which are as above except that the functions and predicates are recursive
in f ®h, h, f ®h and h, respectively.

Theorem 2.1.8 Turing reducibility is transitive, i.e. if f <7 g and g <t h then f <p h.

Proof. 77 =

We now state some classical theorems about basic manipulations of Turing machines
and their indices. They were originally presented with formal proofs based on various
formal definitions of computable functions. Now we tend to view them as “obvious”
based on our approach that assumes the Church-Turing thesis.

Theorem 2.1.9 (s-m-n Theorem) For each m,n € N, there is a one-one recursive
function s, of such that

‘v’f‘v’gj[fbg(ml, e T YLy ey Yn) = q)fﬁ(e,i)@ﬂ'

In fact, can view m and n as variables as well and so have a single recursive function s
such that .?7?Decide on approach to n-ary functions in previous Chapter??

Informal Proof. =
Notion of uniformity here or before
typically formally given by s-m-n theorem
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Example 2.1.10 (Uniformity of Join) There is a recursive function p such that,for
every f, e and i, ®f & & = @ﬁ(ei).

Example 2.1.11 (Uniformity of Transitivity) There is a recursive function t such

f
that,for every f, e and i, de' = Q){(e i

M Theorem 2.1.12 Padding Lemma: Ye3®i f(®f = ®/).

Proof. Exercise: Informal argument and formal one using s-m-n Theorem. m
Idea that s-m-n gives more: uniformity.

Theorem 2.1.13 Enumeration Theorem: List of partial recursive (in f) functions: ®1.

Theorem 2.1.14 (Recursion Theorem aka Fixed Point Theorem) If f is a re-
cursive function then there is an e such that for all g, ®9 = @?@(e).

Proof. =

This is Kleene’s essentially one-line seemingly magical proof of the Recursion The-
orem. A different perh Ds more reasonably seen as discoverable is given below as an
application of Theorem %.U. [9

Intuitively the recursion theorem implies that we can call a function h within the
definition of h itself. This may seem counterintuitive or simply false. But think of the
procedure that we envision defining h except that it has calls to h. Replace the calls to f
by calls to ®.. this gives us a computation procedure whose index (as a Turing machine)
is clearly recursive in e. Let f be the function computing the index of this procedure. By
the recursion theorem f has a fixed point e. Now argue that ®, is a function (at least a
partial function) as desired for h.

The Recursion Theorem is also used when we talk about approximation procedures.

Generalizations, relativizations?

Relativization in general and specifically here e.g. for universal ¢ and conventions
(need for forcing language)

Issue of multiple inputs and oracles. formally via pairing informally write out as
sequence?



Chapter 3

The Turing Degrees

We have defined the basic notion of relative complexity of computation on functions,
f <7 gin 7?7. We saw that it is a transitive relation and so we defined the equivalence
classes as the Turing degrees, f = {g|f <r g & g <7 f}. We then have the partial order
< on D, the set of Turing degrees, induced by <;. We now want to present some simple
but important facts about the structure of D that can be deduced from what we know
already.

Facts about the Turing Degrees:

1. D is a partial order under <r.
2. D has a least element, 0, which is the degree containing all computable sets.

3. D is an uppersemilattice, i.e. there is a join operation V on degrees such that, for
every pair of degrees f, g, f V g is their least upper bound. It is the degree of f @ g:

4. There are elements of D other than 0. There are two types of proofs of this
fact. One is a counting argument: There are 2% sets (subsets of N). By Cantor’s
theorem 2%° > N i.e. there are uncountably many sets. Moreover, since there are
only countably many Turing machines, each degree is at most countable as a set.
(In fact, as f =r f + ¢ any constant function ¢, each degree contains ) and has at
most countably many predecessors. So, not only are there degrees other than 0,
there are 2% many degrees. Other specific ones given later (e.g. DNR functions
and the Halting Problem to start refs??.)

e There is no largest degree because for each degree x, can find a DNR relative to x
and it is not below it. Relativization

e D is an upper semi-lattice.
We can define a join operator V on D: On sets/functions it is defined by

f&g(2n) = f(n) f&g9(2n+1) = g(n);



8 CHAPTER 3. THE TURING DEGREES

or (fdg)((n,0)) =..

this is inherited by the degrees f V g = degree of(f @ g). Note that we can use the
join operator to produce a degree strictly above each degree because can take join
of a member of the degree with some DNR relative to it. Also by counting: take
any ¢ not recursive in f (only countably many) and consider f & g.

Note that we denote degrees in boldface, a or f and sets or functions in lightface, A

or f.

We summarize these facts as follows.

Theorem 3.0.15 D is an uppersemilattice with 0 of size 280 with the countable prede-
cessor property.

In (7?) we see that every countable partial order and even uppersemilattice can be
embedded in D. This also holds for ones of size X; (77). Indeed each is isomorphic to an
initial segment (downward closed subset) of D. For these results N; is as far as we can
go. There are models of ZFC in which 2% > R, with uppersemilattices (partial orders)
of size Ny that cannot be embedded in (as initial segments of) D. 77

Exercise 3.0.16 There is a cofinal sequence of degrees if and only if CH (continuum
hypothesis) holds in which case the sequence can be chosen to have order type W .

Exercise 3.0.17 Every degree contains a set (i.e. characteristic function). (Graph(f))

So can use sets or functions indiscriminately as oracles when defining degrees...sometimes
technical advantages to working with one or the other...

?77Note that we identify sets with their characteristic functions so when we talk about
functions f, g ... we include the possibility that they are sets. 77

Some more questions about D: how tall is it? how wide is it? is it a lattice?
Answers coming up.....

How do we “build” a nonrecursive function. We can “implement” the idea of the
proof of Cantor’s theorem that there are more functions on N than elements of N, i.e.
2% > Wy. This idea is a really a procedure called a diagonal argument.

We extract the crucial property in our setting in the following definition.

Definition 3.0.18 (DNR) A function h is DNR (diagonally non-recursive) if Yn(h(n) #
®,(n)).

Proposition 3.0.19 If h is DNR then h is not recursive.

Proof. By the diagonal argument... m
Relativize definition and proposition
We can now prove the recursion theorem.



Proof of Recursion theorem. Suppose not, i.e. Ve(®, # (). [Such an f is called
fix point free (FPF).] We try to build a recursive DNR h for the desired contradiction.

Since ®.(e) # Py() for every e, we only need to make @) = P (@, (e)) to get h(e) #
®.(e). “Obviously” (by the s—m—n theorem), there is such a recursive h: given e find the
index of the machine which first computes ®.(¢) and if it converges then computes f of
the value and begins mimicking the machine with that index. This gives the description
a machine that computes ® s, ()) and so an index, h(e) for it. Going from e to h(e) is an
intuitively computable procure. Formally, the s-m-n theorem shows that it is a recursive
function. On the other hand, our assumption (that f is FPF) implies (as above) that h
is DNR for the desired contradiction. m

Now to recover the standard constructive version of the theorem that actually com-
putes the fixed point (with the usual uniformity), note that the index & for h can be found
recursively in that of f (again by the s —m —n theorem). Now @) = P, () = P (o, ()
and so if we let e = k then h(k) = @ (k) is the desired fixed point: ®p) = Po, k) =
D (@i (k)-
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Chapter 4

R.E. Sets and the Turing Jump

4.1 The Jump Operator
Definition 4.1.1 On functions, define the jump as ' = {e : ®I(e) |}.

Proposition 4.1.2 f <p g implies that f' <r ¢ and so the jump operator is well-
defined on the degrees.

Proof. Since f <r g, there is i such that f = ®J. So
cef e al(e) o) ]

g
The s-m-n theorem gives a recursive one-one function k& such that @Z(e H = CIDS ‘. In
particular,
c€ f e d, ) e kei)ed

and so f' <r ¢’. Thus if f =¢ g then f’' =¢ ¢’ and the jump operator is well defined
onD. m

Proposition 4.1.3 f <p f’

Proof. We need to compute f(n) using f'?

If f is the characteristic function of a set A then we can decide whether n € A
using A’ by recursively finding an e such that ®4(e) |« n € A. Formally, we can
appeal to the s-m-n theorem to get a recursive one-one function k such that for each n,
@,f(n)(k(n)) |« n € A. This gives the desired reduction.

We can now appeal to Exercise 3.0.17 for the theorem for all functions f. Or we can
prove it directly. m

Exercise 4.1.4 Give a direct proof that f <r f' for all functions. Solution: Instead of
finding index of machine which asks whether n € A, find a machine such that

®f ) (2) 1 f(n) = m.

11



12 CHAPTER 4. R.E. SETS AND THE TURING JUMP

Then successively ask k(n,0) € f'?, k(n,1) € f'?, etc. until find k(n,m) € f" in which
case output f(n) = m. This procedure halts because of the assumption that f is a function,
hence total.

Proposition 4.1.5 f <p f’
Proof. It clearly suffices to find an h <7 f’ which is DNR/, i.e.

v (h(n) # @f(n))

We compute h from f’ as follows: Given n, ask if ®/(n) | (in other words, if n € f’). If
s0, let y = ®/(n) and put h(n) =y + 1. If not, set h(n) =0. m

Conclusion: The jump is a strictly increasing, order preserving operator on the de-
grees.

The jump of the empty set is, of course, (Y. By our identification of the Turing
machines without oracles with those with oracle (), it is identified with the usual halting
problem K = {e|®.(e) |}, the set of indices e of Turing machines which halt on input
e. One often wants to consider alternate versions such as Ky = {(z,y) |®,(y) |}. We
can consider this as an alternative version of K or of the jump in general because the
produce sets of the same degree.

Exercise 4.1.6 For every f, f' =r {{z,y)|®/(y) |}.

In fact, more is true as we shall see in 77 (1-1 equivalence) and 77 (recursive isomor-
phism).

4.2 Trees and Konig’s Lemma

So we have two ways of “getting” nonrecursive sets - diagonalization and the halting
problem. Have seen that the second computes an example of the first. What about
the other way? Does every DNR function compute K7 If not, what can we say about
the needed complexity (if there is any)? We take a side trip to an example of reverse
mathematics and a comparison of the “strength” of versions of a well known combinatorial
principle: Koénig’s Lemma.

While there are many mathematical definitions of a tree (and others are used later),
for now we take a simple representation. Remembering that we are in the world of the
natural numbers, it makes sense to use (for now at least) the following definitions.

Definition 4.2.1 A tree T is a subset of NN, the set of finite strings of natural numbers,
that is closed downward under the natural partial order o C 7: o is an initial segment of
7. (Or in the functional notation o(n) = 7(n) for every n < |o|. (We use |o| to denote
the length of the sequence o or in the functional notation its domain with the ordering on
N given by € on the usual set theoretic representations of the natural numbers.) The root
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of any of our trees is then the empty string (or set) . A binary tree is a tree of binary
sequences, i.e. a downward closed subset of 2<N. A finitely branching tree is a tree T
such that for every o € T there are only finitely many 7 € T with 7 D o and |7| = |o|+1.
If T is a tree we say that a subset P of T is a path on T if P is infinite, linearly ordered
and downward closed (with respect to C). The set of paths on T is denoted by [T]|. The
elements of a tree are often called nodes and ones with no successors in the tree, leaves

Exercise 4.2.2 If you know some general abstract definition of a (binary, finitely branch-
ing) tree, do all of ours satisfy the definition you know?

Exercise 4.2.3 (Thought Problem) Think about what a “converse” might mean. We
are restricted to countable sets (trees) but can we think of any countable tree as (“iso-
morphic to”) one of ours? In general, what does it mean to code mathematical structures
in N?

Lemma 4.2.4 (Ko6nig’s Lemma) IfT is an infinite, finitely branching tree then T has
an infinite path.

Proof. We “construct” a path P in T' by recursion. At each step ¢ we have a node o
in T of length ¢ with infinitely many successors on T. We begin, of course, with the root
() = o relying on the fact that 7" is infinite to satisfy our condition. If we have o, we
consider its immediate successors in 7. By assumption there are only finitely many and
so one of them say o;"x has itself infinitely many successors on 7. We let z be the least
such x and let 041 = 04" 2. It is clear that P = {oy|t e N} isapathinT. =

Lemma 4.2.5 (Weak Ko6nig’s Lemma) If T is an infinite binary tree then T' has an
infinite path.

Is this proof (of Kénig’s Lemma) constructive or effective? If not could there be one
that is? Is it “easier” to prove Weak Konig’s Lemma than the full one? Is it easier
to construct a path in an infinite, binary tree than an arbitrary finitely branching one?
What might these questions mean? Not every infinite tree has a path at all but what
about arbitrary trees with paths? How hard is to construct one?

We begin with the first question. One way of making the question precise is to ask
if every infinite finitely branching (or binary) recursive tree 7' has an infinite recursive
path. Or more generally if every infinite finitely branching (or binary tree) 7" has an
infinite path recursive in T". If so, we might also want there to be a uniformly effective
procedure that produces such a path, i.e. an e such that ®.(7) is an infinite path in T’
for every finitely branching or perhaps every binary tree. The answer is no for all the
versions and the proof is intimately connected to the notion of DNR functions. On the
other hand, we claim that Konig’s Lemma is more complicated than the weak version,
i.e. it really is weaker. The analysis here is intimately connected to the jump operator.

Theorem 4.2.6 There is an infinite recursive binary tree with no infinite recursive path.



nonrectree

14 CHAPTER 4. R.E. SETS AND THE TURING JUMP

Proof. We want an infinite binary tree 7" such that for every f € [T, f € DNR. If we
did not have to make 7" recursive, we could simply take all the binary strings o that satisfy
the definition of a DNR function on their domains; {7 € 2<N|(Vn < |o|)(a(n) # ®,(n))}.
However, this set is not recursive (Exercise%f’yj._Wé can however, eventually recognize
when a binary string o fails to be in this set by seeing at some stage s that ®,, s(n) |= o(n)
for some n < |o|. The picture for building the desired (or any) recursive tree is that we
are effectively going along deciding which strings are in 7T'. Say at stage s of our recursive
construction we must decide for every binary string of length s if it is in 7" or not. (This
makes 7" recursive.) We eliminate unwanted paths when we recognize that some o has
failed our test for being DNR. More precisely if at stage s we see that ®,, s(n) |= o(n)
for some n < |o| then no strings 7 O o are ever put into 7" at any stage ¢t > s. Formally,
T = {o € 2°N|(Vn < |o|)[=(®n,0)(n) |= o(n)]}. By our basic facts about our master
function ¢, T is clearly recursive. Consider now any f € [T]. If f ¢ DN R then there is
some n and s such that @, (n) |= f(n). By definition no ¢ C f with |o| > n, s can be
on T and so,of course, f ¢ [T] for the desired contradiction. m

Exercise 4.2.7 The tree S = {o € 2<N|(Vn < |o|)(c(n) # ®,(n))} is not recursive.

Theorem 4.2.8 There is an infinite recursive finitely branching tree T' such that every
path in T computes 0.

Proof. We want to code 0 into every infinite path f on a recursive tree T. Now T is
a subset of N<N the set of all finite strings. In analogy with the previous construction,
we might think of ourselves as beginning with the nonrecursive tree consisting of the
single path f such that f(n) = 0 if ®,(n) 7 and f(n) = s if s is the first stage ¢ such
that ®,,,(n) |. We now want to turn this into a recursive, finitely branching tree 7" such
that f is its only path. We follow the plan of keeping “bad” strings from extending to
paths of the last construction and set T' = {0 € NN|(Vn < |o|)(Dp0)(n) T = o(n) =
0& @, 5/(n) | = o(n) =s where &, (n) | but ®,,_1(n) T)}. Now 7" is easily seen to
be recursive from our basic facts about ¢. Moreover by definition for each n there are at
most two numbers 7 such that o(n) = r for any o € T (0 and the first stage ¢ such that
®,,+(n) |). Thus 7T is finitely branching.

T is also infinite as, by induction, for every o € T either 6”0 € T or 0" s € T for s the
first stage ¢ such that ®,,,(n) | (and perhaps both). We now claim that the f defined
above is the only path on 7. Suppose g € [T] and consider g(n) for any n. If ®,(n) T
then for every 7 € T with |7| > n, we must have 7(n) = 0 by the definition of 7. On the
other hand, if ®,(n) | then let s be the first stage ¢ such that ®,,(n) |. Again by the
definition of T, if 7 € T and |7| > n, s then 7(n) = s. As g | n+ s € T, we must have
g(n) = s as required. m

So solving the problem of finding a path in any infinite recursive finitely branching
tree provides a calculation of 0. Note that one might say that 7 is 2-branching but it is
not a binary tree under our current definitions. This is perhaps somewhat mysterious but
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an important distinction as well shall see. There are at most two immediate successors
of each o but we cannot recursively bound what they might be.

By relativization if we can find a path in every finitely branching tree, we can compute
the jump operator. What about binary trees? It is by no means obvious, and indeed
requires several ideas, to provide a proof but this is not the case for finding paths in infinite
binary trees. How can we make this precise. We can capture the idea that it is “possible”
to always be able to solve one problem (such as finding paths in infinite binary trees)
without being able to solve another (finding paths in infinite finitely branching trees) by
using the notion of a model. We understand ‘being able” to include the idea that if we
have some f then we have any g < f and similarly if we have both f and g then we have
f @ g. We make this precise by saying that there is a class C of functions closed under
<7 (and @) such that such that for every T" € C that is (the characteristic function of)
an infinite binary tree then there is an A € C which is a path in 7. So in C we can solve
the first problem. On the other hand, there is an infinite finitely branching tree T' € C
for which there is no path in C. Thus we have a “model” in which every infinite binary
tree has a path but not every infinite finitely branching tree has one. The proof of these
assertions are in 77.

In the other direction, as every binary tree is finitely branching, it is immediate that
if every infinite finitely branching tree in C has a path then so does every infinite binary
tree. Thus we can conclude that solving the problem of finding paths for infinite finitely
branching trees is strictly harder than the analogous problem for binary trees. T}?ES result
i Entimately related to a similar claim about how hard it is to prove Lemmas 4.2.4 and

.2.5 in the sense of what axioms are needed for the proof. This is the subject of reverse
mathematics. We will return to such issues at a few points in this book. Survey or
introductory articles include...????. The basic text is Simpson 77

Relations with finding a DNR function: DNRy; = FPF, DNR; but DNR weaker? An
example of reverse mathematics. Arbitrary trees much harder.

some exercises

Finding solutions for Konig’s Lemma, even for recursive trees, requires more than (.
This is an example where closure under solving two problems is equivalent but one can
not get by with a reduction that (effectively) transforms a problem of one type into one
of the so that any solution of the second computes one of the first.

Medvedev and Muchnik degrees. ...For later after do INF= 0""

Exercise 4.2.9 Show that every infinite, finitely branching tree T" has a path recursive
in T". Build a recursive tree such that any path computes 0”.

Exercise 4.2.10 Show that not every infinite tree has a path.

Exercise 4.2.11 Relation to compactness, topological and logical.
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4.3 Recursively Enumerable Sets

We began with the notion of what it means for a set or function to be computable
(recursive). We now want to consider a weaker notion. The idea is that, for a set A,
while we might not be able to decide if n € A, we might nonetheless be able to list its
elements. That is we might have a recursive function whose values are the elements of
A (assuming A # ). For such sets we have a recursive way of enumerating its elements:
f(0), f(1),..., f(n),.... Soif z € A we eventually find out by enumerating that fact
when we get to f(n) = x for some n. If z ¢ A we may never discover that fact. (If we
could, A would be recursive by 77

Some discussion that recursive enumerability is really about sets and not arbitrary
functions e.g. if try to enumerate a function f by enumerating its graph then actually f
is recursive not so for sets... So typically talk about sets A, B... when discussing notions
of recursive enumerability.

Definition 4.3.1 The following equivalent conditions define the statement “A C N is
recursively enumerable (r.e.) in B”:

e A is the domain of a partial recursive in B function. Notation: W2 = dom ®Z and
approximations W2, 77

e A is the range of a partial recursive in B function.
e A is either the range of a total recursive in B function or is empty.

e A is either the range of a 1-1 recursive in B function or is finite.
Proof. Argue that all equivalent. explain dovetailing. m
Theorem 4.3.2 A is recursive in B if and only if both A and A =N — A are r.e. in B.
Theorem 4.3.3 If A isr.e. in B and B <p C then A is r.e. in C.

Recall that A’ = {e : ®’}(e) |}. So, A’ is r.e. in A because it is the domain of the
function that on input e runs the eth machine with oracle A with input e. We want to
show that A’ is the most complicated set r.e. in A in various precise ways.

We say that a set A is reducible to one B if there is some procedure that allows us to
decide membership in A using membership in B. We have already met the most impor-
tant and fundamental such reducibility that of Turing: A <; B. We can compute the
membership of A by asking questions about the membership of elements in B during the
computation. It may adaptively determine which questions it asks based upon answers
to previous questions. We now define some other notions of reduction which are stronger
than that of Turing in the sense that they imply but are not, in general, implied by
Turing reducibility. These reductions are also primarily intended to apply to sets.
Definition.
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1. 1-1 reducibility(<1): A <; B if there exists a one-one recursive function f such
that Vo x € A if and only if f(z) € B.

2. m or many-one reducibility (<,,): Same as one-one reducibility except f is an
arbitrary (so possibly man-one) recursive function.

3. truth-table reducibility (<;): A <; B if there exists a recursive function f such
that f(x) is a propositional formula o in variables py, ..., py such that for all z = € A
if and only if B satisfies 0. EXPLAIN B E 0 < Ty E 0 where Ty the assignment
of truth values to propositional variables determined by setting assignment to v,
to be B(n).

4. weak truth-table reducibility (<, ): A <, B if there exists a recursive function
f and a Turing machine ®, such that ®Z = A and the use of computation in ®Z(x)
is at most f(z) for all . This is sometimes called bounded Turing reducibility
(<pr). EXPLAIN

5. bounded number of queries (so also for functions)
Note that we have the following:

A< B—- A<, B—=-A<m B—-A<,wB—-A<yB—A<rB.

Intuitively, we can think of the truth table reduction as giving a Boolean function which
when given the answer to the oracle queries, produce the final answer of the reduction.
Note that all time bounded complexity classes are tt reductions

The first three reducibilities are total procedures in the sense that applied to any set
they always produce a set as output. The final one is not. It is like a ¢t reduction but
may be partial on some sets. In fact ¢t reducibility is characterized by its being total on
all set inputs.

Theorem 4.3.4 (Nerode’s Theorem) A <, B if and only if there is e such that
A = ®8 and ®X is a total (characteristic) function for every X .

Proof. Since tt is total by definition, one direction is immediate. For the other direction,
say ®X is total for all X and ®Z = A. What happens when we run ®X(n) for some
unknown X? We can build a computation tree (explain ?7?) which branches (in two)
whenever the program asks a question m € X with the branches corresponding to the
possible answers 0 or 1 to this question. We terminate the tree when the Turing machine
halts (when it gets the answers supplied along the route followed so far). Since the
computation halts for every oracle X, all possible paths are are terminated so (using even
Weak Konig’s Lemma) the tree is finite. We can build a truth table that corresponds to
this reduction (propositional variables encode branch points and return outputs at end
of every path). This is effective and gives a truth table reduction from A to B. m
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Diagram

This theorem depends essentially on the fact that we restricted our attention to sets
rather than all functions. One way of looking at this is that 2" is a compact space (Cantor
space) but NV (Baire space) is not. (The paths through a binary tree form a closed (and
so compact) set in Cantor space. Each node at which we terminate the tree determine
an open set (all paths extending it). If they cover the space (no paths in the tree) then
by compactness some finite subset of these open sets cover the space and so the tree is
finite (all nodes are initial segments of one of the finitely many nodes determining the
open sets that form the cover of the whole space. Another (equivalent) one related to our
discussion in the last 7?7 section is that if we are dealing with binary trees (we branched
to 0 or 1 depending on whether some number is in our set) then if every path terminates,
the whole tree is finite. (The compactness of 2 is equivalent to WKL. (EXPLAIN). The
theorem is not true?? for arbitrary functions in the oracle. They would allow for infinite
branching in our computation tree and Koénig’s Lemma fails for arbitrary trees (NV is
not compact).

We now want to show that ()’ is the most complicated r.e. set. We could show that
A <7 ( for every r.e. set A but in view of these new reducibilities we have just defined
we can hope for more.

Definition 4.3.5 A set A is called an r-complete set for class C' if A is in C and for
every BeC, B <, A.

Proposition 4.3.6 A’ is 1-complete for the class of sets r.e. in A.

Proof. We already know that A’ is R.E. in A. So we only need to prove for all e,
WA <, A'. By definition, x € WA iff ®(x) |. So, the s-m-n theorem gives a recursive
one-one k such that ®/'(x) = CID?(EJ)(/@(@, z)). Hence, we have z € WA iff k(e,z) € A’. =
Proposition 4.3.7 If B <,, A’ then B is r.e. in A so for all A, B, B <,y A" if and
only if B is r.e. in A.

Proof. By definition of <,,, there is recursive f such that x € B implies f(z) € A’
A

implies ®%,,(f(z)) |. So, we can use the s-m-n theorem to get that z € B iff d4(z) |
for some i, hence B = W/. The rest of the assertion then follows from the previous
Proposition. m

Myhill isomorphism theorem and why this strongest equivalence from viewpoint of
recursion theory.

We have seen that A <7 B implies A’ <7 B’. Now we present a similar result that
links Turing-reduction with m(1)-reduction.

Proposition 4.3.8 A<r B A' <, B and A<r B& A' <, B.
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Proof. We first prove that A <r B = A’ <; B’. So, we want to determine whether
®4(z) | by asking a membership question in B’. We claim that ®2(z) | iff @f(m)(f(a:)) !
for some recursive 1-1 function f. Why? because for each z, we can produce a machine
with oracle B which ignores its input and computes ®4(z) by simulating the machine ®2
and whenever it asks a question about A, compute A from B as given by assumption.
This gives a recursive method for producing index f(x), which can be made 1-1 by the
Padding Lemma. (or use s-m-n)

Now we prove A’ <,, B’ = A <7 B. In contrast, it is not the case that A’ <r B’ =
A <p B. (see 77) mention and reference future results from Chapter 577

Recall that A <; A’ (hence A <,, A’) because A is r.e. in A (it is the domain
of procedure with oracle A which returns yes if x € A and loops forever otherwise).
Likewise, A <; A’, hence A <,, A’, because A is r.e. in A.

By earlier converse, A <,, A’ <,, B’ implies A is re. in Band A <,, A’ <,, B
implies A is r.e. in B. Since A is recursive in B iff A, A are both r.e. in B (Theorem ?77),
A is recursive in B. m

Theorem 4.3.9 (Shoenfield Limit Lemma) A <; B’ < 3f < B such thatVz(A(xz)
lim, .o f (2, 5)). Note that asserting that lim,_.o f(x, s) exists means that f(z,s) is even-
tually constant for fixed x.

7?7Slogan: Effective in the jump just in case have eventually correct recursive approx-

imation.
Proof. Say A <; B', in other words A = ®5 equating the set with the function means
that the characteristic function of A is ®7". We want f <; B such that lim,_, f(z,s) =
A(z). Certainly, A(z) = lim,_o ®Z;(z). This is recursive in B, but not in B. In order
to make it recursive in B, we want to approximate the oracle B’ recursively in B. Since
B = {e: ®J(e) |}, B, = {e: ®F (e) |} is an approximation for B’ recursive in B. In
fact, B’ = lim,_,», B, because approximation changes at most once for each e.

We can approximate any W/ similarly by W2 = {n : ®Z (n) |} and lim,_.., W, =
WEB. ?7Extract notation??

So, define f by A(x) = @eB;(x) = f(z,s) (with the convention that if ® has not
answered by time s, return “ no”). Then f <; B. It remains to verify that A(x) =
lim,_.o f(z,5). Since A = ®F'(x), there is s such that A(z) = ®F (z) = ®Z(x) for all
t > s. The computation of A only uses finite information about B, say ¢ C B. Moreover
there is s; such that Bj(n) = B'(n) for all n < |o| (aka Bj [ |o| = B' | |o]) for all t > sy,
because of permanence and the properties of limits.

Conversely, suppose there is f <r B and A = lim, ., f(z,s). We want to show
that A <r B’. To find A(z), we could start computing f(z,0), f(z, 1), f(x,2)... and we
know that eventually we get the right answer. But how do we know when to stop? By
definition

sVt > s(f(z,t) = f(z,s))
and for this s, A(x) = f(x,s). Define the following program recursive in B: @kB(s)(s) | iff
(3t > s)(f(z,s) # f(x,t)). Note that {s : @kB(s)(s) 1} <7 B’. We can apply the program
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iteratively: does f change after stage 07 If so, can find sy where it changes. Does it
change after so7 etc. This procedure halts because f is eventually constant (since it is a
limit). m

In applications of the Limit Lemma, without loss of generality we adopt the convention
that we consider only functions f for which Vz(f(z,0) = 0).

Theorem 4.3.10 A is r.e. in B iff there is f <p B such that for all z, A(x) =
lim, o f(x,s) and f(x,s) changes at most once (|{s : f(x,s) # f(z,s +1)}| < 1).2?
Standardize by starting with f(x,0) =0 97

Proof. If there is such an f, let ®7(x) be the program which searches for an s such that
f(z,s) =1, and halts if it finds one. Then A = dom ®% so A is r.e. in B. Conversely, if
Aisr.e. in B, then A = dom ®Z for some e. Let f be the function

ﬂL@:{1ﬁQ4@¢

0 otherwise.

Then f <r B, limy ., f(x,s) = A(x) and |{s: f(x,s) # f(z,s+1)}|<1. =

A is difference of sets r.e. in B if 3fVx f(x, s) changes at most twice. Then A = Cy—C}
both r.e. in B.

Continuing in this fashion, get the difference hierarchy (Putnam-Gold hierarchy).

Definition 4.3.11 A is an n-r.e. set if there is a recursive function f such that for all
x, Alz) = limg_oo f(z,8) = A(z) and [{s : f(z,s) # f(x,s+ 1)}| < n. 279 Standardize
by starting with f(x,0) =0 92

We can connect this definition with difference of r.e. sets: A is n-r.e. iff

A (Wey = Wey)UWe,) -+ ) — W, if n is even
(Wey = Wey)UWe,) -+ )UW,, if n is odd,

where W,,,..., W, arer.e. sets.

Definition 4.3.12 A is w-r.e. if there are recursive functions f,g such that A(z) =
limg .o f(x,s) and f(x,s) changes at most g(x) many times.

Exercise 4.3.13 Show that if A is w-r.e. then there is a B =1 A which is w-r.e. with
at most x many changes at x for each x.

Exercise 4.3.14 Show that, for each o < w, there are a-r.e. sets which are not -r.e.
for any f < «. Hint: list all n-r.e.(for fized n or the for all n uniformly) sets and
diagonalize making only n + 1 (finitely) many changes .

Exercise 4.3.15 Show X is w-r.e. iff X <4 0" iff X <, u 0.
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Note that in general, tt reducibility does not coincide with wtt reducibility. What do
we know so far about the reducibilities?

Proposition 4.3.16 <;#<,,, <r#<;

Proof. If X <,, A and X <,, A and A is r.e. then X is recursive. Why? X <,, A and
A r.e. implies that X isre; X <,, A & X <,, Aso X r.e. as well. However, 0/,0' <7 0,
and 0’ r.e. but not recursive. So <7#<,, and <7#<;. =

Exercise 4.3.17 Show that 1 — 1, m, tt,wtt, T are all distinct reducibilities. Hint: for
wtt and T make list of the reductions (applied to some finite oracle). How hard is it to
do this? Try for something recursive in 0 and then diagonalize. wtt but not tt is too
hard. again list total tt-functions but now build both A and B in stages. In A put in
only 0 except when might diagonalize. In B put in sequence of 1°s of length the next e
to diagonalize ending at a place where we diagonalize in A and then at least one 0. (Fill
in A with 0’s until this point.) Then fill in B with 0’s until force convergence so decide
what to put into A. So for x to be in A must have x € B and x+1 ¢ B then check B | x
to see how many 1’s in the list ending at x, say it is e, then compute how many 0’s need
to put into B to make ®.(z) | and find answer. A(x) is the opposite.??ref or move to or
repeat after finite extension method.

The Ershov hierarchy extends the difference hierarchy into the transfinite. If we
exhaust the recursive ordinals produce precisely all the sets recursive in 0'.

Recursively inseparable sets. Godel’s incompleteness theorem.

One-one equivalence same as recursive isomorphism. Explain, prove.

Index sets. Rice’s Theorem.

Closure operations for r.e. sets. Reduction and Separation on complementary class.
Uniformity issues. Point out easy ones. Argue somewhere for some not possible. Recur-
sion theorem applications. ref completeness results later.

Define r.e. degrees, REA use later

4.4 Arithmetic Hierarchy

Notion of language for first order arithmetic. Then for arithmetic. Tension between
expressiveness and simplicity. For our purposes want language to be recursive (and so all
typical syntactic properties are recursive) and each function and relation to be (uniformly)
recursive (and so all quantifier free relations are recursive). On the other hand want to
as much as possible to be expressible as “simply” as possible.

What at a minimum. Want say 0 then perhaps successor s(x) and/or addition z + y.
In what sense is addition definable from successor (by recursion; implicitly; second order)?
We want to restrict definability to first order formulas. Note that multiplication, x -y, is
not definable from addition.
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Presburger addition is decidable.

Peano arithmetic or even Robinson arithmetic is not. Godel’s incompleteness theorem.
(forward reference to proof). Idea of representation of recursive functions so decidability
would solve the Halting problem. So we need at least multiplication. Typically put in <
and 1 as well although they are definable from addition.

Exercise 4.4.1 Define < and 1 from +,0 in arithmetic.

May want to put in more to make all recursive functions easily definable. Want
quantifier free formulas to be uniformly recursive, however:

Exercise 4.4.2 With a recursive language (and interpretation as uniformly recursive
functions and predicates) it is not possible to define all recursive functions by quantifier
free formulas.

So we need to go to formulas with at least one quantifier. We can make life simple
by adding in one master recursive predicate for p(o, e, x,s) = y (so capturing the partial
function). It is then immediate that every recursive predicate and function is definable
by an existential formula, i.e. one of the form dx;dzs...dx,0 where 6 is quantifier
free. Or we can cite the theorem of Matijasevich (Davis, Putnam and Robinson) solving
Hilbert’s 10th problem negatively by showing that every r.e. set W is the solution set
for a polynomial (with many variables), i.e. there is a polynomial p(z,y) such that
W = {z|3y(p(z,y) = 0}.

The language of arithmetic has symbols +, X, <,0, 1, ¢(0, e, z,s). The ¥,,I1,, formu-
las of arithmetic are defined as follows:

e >4 = Iy are quantifier free formulas
o X, JT(F(x)) for F €11,
o Il,,1: VZ(F (7)) for F € 3,

An intermediate route puts bounded quantifiers into the language (3= < s, Va < s) as
well as a few select predicates or functions 3 for coding finite sequences (of variable length)
and the corresponding projection functions. (Explanation and/or thought exercise.) If
we do so, ¥y = Il have only bounded quantifiers. Note that the predicates defined by
such formulas remain recursive.

Prenex normal form. Collapse like quantifiers. Move bounded quantifiers past un-
bounded ones.

A relation is X, or II, if it is defined by a X, or II,, formula. A relation is in A, if it
is defined by both a »,, and a II,, formula. Note that the notion of A,, is semantic rather
than syntactic.

Example 4.4.3 &/ is total is a Hg property of e (uniformly in f)
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Example 4.4.4 &/ <; ®; is a 2§ relation of e and i (uniformly in f) as is ® =1 ®;.

Example 4.4.5 ®/ A &/ =; CI);-C is a Iy relation of e, i and j (uniformly in f) but
Y <I>Zf =r CI>§ is a X3 relation of e, i and j (uniformly in f). For the former simply
write out the relation. For the latter seems to be essentially the same situation. However,

atypically, here we can do bettﬁr th(m the natural first attempt. Using the recursive
function p defined in Example 2 T 70 we see that it is equivalent to CIDf( iy =T q)f and so,

by the previous Example, Eg.
Properties of ¥,,,11,,, A,, Relations:
e IfABecY,thn AUBeYX,, ANBeY,, Acll,.
o If Ac A, then A € A,,.
e Y, is closed under projection. That is, if A(x,y) € ,, then {y : Iz A(z,y)} € X,.
e Both ¥, and II,, are closed under bounded quantification. For F' € ¥,,,
dr < sF = Jz(F(z) Az < s),

and
Vo < sy F = Ely(y is an s-tuple A Vx < sF(x,wx(y))).

Note that this is sufficient because both checking tuple-hood and the projection
functions are recursive so can use master function ¢ to represent them in our
language.

e Uniformity.

We can relativize IT12, ¥4 A4 by adding a syntactic predicate A(x) to the language
and interpreting it in the semantics as the particular oracle set A. or multiple function pa-
rameters h .... see what need for defining forcing carry through for manipulations/normal
forms. also hierarchy theorem could have A,k

Proposition 4.4.6 When we add in extra unary predicates or function symbols, the
truth of 3o formulas (even with bounded quantifiers) depends only on the values of the
predicates (functions) below some value which can be computed recursively in the formula.

We now see that we can define the recursive predicates as simply as possible.
Proposition 4.4.7 B € X{ & B isr.e. in A.

Move proof here.

So the recursive predicates (sets) in A are precisely the ones that are Af.

Note that need bounded quantifiers for case with extra set or function symbols. Ask
Frank Stephan for statement and proof. So do not have analog of Matijasevich et al. in
relativized case.
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4.5 The Hierarchy Theorem

Theorem 4.5.1 (Hiearchy Theorem) 1. B € X2 | < B is RE in some 13} set.
2. AM s B4 m-complete for n > 0.
8. BeX4, < Bis RE in A™,
/. BEAL, & B <p AW,

Proof. We need to use induction. Let us start with base case for (3), i.e. B € # & B
is RE in A. Suppose z € B < JyF(x,y,A) where F' has only bounded quantifiers.
Note that a formula which only contains bounded quantifiers is recursive in A. Let
d4(x) |& JyF(x,y, A) be the function which checks each value of y in turn and return
“yes” answer if it finds one. So, B = W and is RE in A. Conversely, suppose B is RE
in A. Then B = WA. This means that z € B < ElaElyEls(go(J, e,x,s) No C A). 7?Note
that 0 C A is a bounded quantifier formula so we have a 2‘14 definition of B.??7

To prove (1): The base case is B € X1 & B is RE in some II{' set. Above we showed
that if B € X! then B is RE in A, which is II{!. Conversely, if B is RE in some other IT¢
set, C, then since C' is recursive in A, B is also RE in A so also use (3) to get B € 34\

For the induction, suppose B € ¥4, ,. So z € B < JyF(z,y) where F(z,y) € II2.

In particular, B is Zf(z’y) so is RE in F(z,y) by the base case. Hence, B is RE in the
14 set F(z,y). Conversely, if B is RE in Z € IIZ, by the base case, B is X}. So,
xr € B& do,y, s(go(a, e,x,8)=yANoC Z) which is a IT2 definition.

To prove (2): We've previously shown that A’ is the m-complete RE set. It remains to
do the induction step. A = (A(”))/, which by the n = 1 case is the m-complete ¥:"
set. By induction, A" € ¥4 so using (1) and that fact that being RE in X is the same
as being RE in X, we have that A+D) ¢ Eﬁﬂ. For completeness, suppose B € Eﬁﬂ.
Then by (1), B is RE in some 112 set C. So, B is RE in C' € ¥4. By the induction
hypothesis, A™ is ¥4 m-complete, so B is also RE in A™. But X’ is the 1-complete
RE set, so B <,, (A(”))/ = A1),

To prove the induction step of (3): B € ¥, if and only if B is RE in some II7 set,
C (by 1). This happens if and only if B is RE in C' € ¥4, which (by 2) happens if and
only if B is RE in A™.

For (4): Be A2, & BeXd NIIY, < BisRE in A™ and B is RE in A® &
B <r A(n) |

The hierarchy theorem tells us that one quantifier corresponds to one iteration of jump
operator. For example, we have that if F' is a predicate recursive in A, then JzF <p A’
and dzVyF <p A”.

Moreover, the hierarchy theorem also shows that the jump hierarchy is real: there are
new sets at each levels. In particular, A <7 A’ implies that we have a strict hierarchy
and A" € ¥, \ II,,. So we have II,, # ¥,, and
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Diagram

Sets X definable in arithmetic: X <7 0 some n
Relativize get arithmetic reducibility X <, Y and degrees corresponding to X defin-
able from Y

4.5.1 Index sets

Define and samples

Exercise 4.5.2 Prove that {e|W” = 0} is 1-complete for 15
Exercise 4.5.3 Prove that {e|W, is infinite} is 1-complete for 113
Exercise 4.5.4 Prove that {e|®, is total} is 1-complete for I14.
Exercise 4.5.5 Prove that {e|W, is cofinite} is 1-complete for 4.

Exercise 4.5.6 Prove that {e|W, is recursive} is 1-complete for $4. Hint: movable
marker argument to fix location for diagonalization if not cofinite.

4.6 Jump Hierarchies

We would like a sense of what it means for a set to be computationally simple, or near
0 in degree.

Definition 4.6.1 X is low if and only if X' = 0.

This is as close as you can get to measuring smallness using the jump. It says that the
jump of X is as small (low) as possible. In many ways, such low sets look like recursive
sets.

If we consider sets below (', it is easy to see what it means for its jump to be as big
as possible.

Definition 4.6.2 For X < 0': X is high if and only if X' =0".

Again, many constructions which can be done below 0/ can be done (more carefully)
below any high set. Can we extend these notions of smallness and largeness beyond the
degrees first jump?

Definition 4.6.3 X € Ly if and only if X" = 0"; for X < 0, X € Hy if and only if
X// — O///.
X € L, if and only if X =00 for X <0/, X € H, if and only if X = 0n+1),
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Now we generalize to degrees not necessarily below 0/ again trying to capture the idea
that the jump of a set is a small (low) or as large (high) as possible.

Definition 4.6.4 X € GL;y if and only if X' = X V0'; X € GHy if and only if X' =
(X V0.
X € GL, if and only if XY = (X v0')™; X € GH,, if and only if X™ = (X v )™,

??mention future uses and connections as for domination, rates of growth as well as
structural issues??
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Chapter 5

Embeddings into the Turing Degrees

5.1 Embedding Partial Orders in D

So far, all we know about the structure of D, the partial order of Turing degrees, is that
it is an uppersemilattice with least element and the countable predecessor property. It
also has an operator, the Turing jump, which is strictly increasing and closely related to
the quantifier complexity of the definitions of sets and functions in arithmetic. The only
specific degrees we know are 0 and the iterations of the jump beginning with 0’.

We now embark on our basic project of analyzing this structure beginning with the
simplest algebraic or first order questions. Are there degrees other than 0 and the iterates
of the jump operator? If so, where do they lie with respect to the ones we already know?
Is D a linear order? If not, how “wide” is it? How far away from being a linear order?
We start answering these questions by considering what is perhaps the simplest question
and showing that D is not a linear order by constructing two Turing incomparable sets
Ap|rA; (and so degrees aglay).

Theorem 5.1.1 (Kleene and Post) JA,, A;(Ao|rA:).

How can we approach such a result. We recast the desired properties of the sets we
want to construct (Turing incomparability) as a list of simpler ones R, called require-
ments. Then we choose an approximation procedure so that we can build a sequence of
(pairs of) approximations «;, “converging” to A; (for j = 0,1) such that the information
in one such approximation pair can be sufficient to guarantee that we satisfy one of the
requirements in the sense that R, is true of any pair of sets A; with 4; D «; ;.

This basic approach, due to Kleene and Post, will be used for most of our constructions
9£ lglceiglrees. It is a forerunner of the general method of forcing that we introduce in Chapter

Our plan is to define Ay and A; by constructing a sequence of approximations o
which are finite binary strings (and so initial segments of characteristic functions). The
intention is to make sure that a;, C o, for every s and, in the end, let A; = Usa; ;.

27
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(Thus our notion of convergence is here quite simple: A;(zx) = k < Is(a;s(x) = k) &
sVt > s(ay(x) = k).)

The requirements necessary to guarantee that the sets so defined satisfy the theorem
are:

for all e € N, j € {0,1}. It is clear that if the sets we construct satisfy each requirement
then the A; are Turing incomparable and so satisfy the demands of the theorem.

What actions can we take to satisfy such a requirement? Given o, (j = 0,1), we
want a; 41 2 ;s to guarantee that we satisfy R, ;. For definiteness, let j = 0. We want
ap D g, 1 2 aq such that for any Ay O ag, 41 D ay, <I>‘84° # A;. In other words,

Jr—(@10(2) = Ai(2)).

Now any x will do here but for the sake of definiteness and simplicity of the construction,
we choose z as the first place at which a; s is not defined (formally © = dom(ay 5) =
|1 5]). We next try to satisfy the requirement with this = as the witness for the desired
disagreement. We ask if oy O oy s (@30 () | ) If so, we can choose any such o as @ 541
and set oy s11 = a5 (1 — P20(x)) to diagonalize. Again for definiteness and simplicity
we choose the “least” such «y. To which ordering does “least” ggg%rn)fqere? We use
our master list of all (convergent) computations ¢(o, e, x,t) from §2.1, 1.e. {(o,e,x,t) :
o(o,e,x,t) |}. So “least ap” refers to the o in the least quadruple (o, e, z,s) in this
recursive set. From now on we, usually without comment, use “least” in this sense
of being the first object enumerated by some given search procedure (that we know
terminates). codeTH

By the standard properties of Turing machines given in §b._lﬁfA0 D ap = g s+1 and
Ay D ajeq1 then

O () = B (x) # 1 — P2 () = Au()

as desired.

What if no such o exists? We do nothing, i.e. we set a; 511 = ;s and hope for the
best.

Indeed, a general principle of our constructions is we do the best we can, and if we
cannot do anything useful, then we do nothing and hope for the best (i.e. that what
we can do is enough). In this case, it is enough as we will see i 11;he verification of the
construction below. We now give the formal proof of Theorem b.1.1 by describing the
construction and the verification that it succeeds.

Proof. We begin with the construction.

Construction: We start with a;o = 0 for j = 0,1 and proceed to inductively define
a; s at stages s of the construction. So suppose we have defined «;,. To define ;441
consider (e,i) = s and act to satisfy requirement R.; as follows. Let = = |a; s|. If there
is an a O «; s such that ®¢(z) | let a; s4+1 be the least such « (as described above) and
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extend a;_;, to ay_; 411 by setting ay_; o11(z) = 1 — &> (). If there is no such «, we

let oj 11 = aj for j =0, 1.

Verification: For any requirement R. ; consider stage s = (e, j) of the construction.
If Q1—j s+1 7é A1—is, (I)?j’SJrl (I) l?é Oél—j,s—l—l(l‘) with x :T Oél_j75|. As Q5 541 C Aj fOI'j = 07 1
by definition, the use property of computations (§E%arantees that . (x) |# Ai1_j(x)
and so we have satisfied R, ;. If not, we claim that B (z) T and so DL is certainly not
A,_; and we again satisfy R. ;. The point here is that if P2 (z) | then, again by the
basic properties of Turing computations, there is some finite initial segment & of A; such
that ®%(z) |. As a;5 C Aj, & and «; 4 are compatible, their union a would satisfy the
conditions forcing us to act to extend «a;_; at stage s of the construction contradicting
our case assumption. Thus ®7(z) 1 and so we have satisfied R. ;. ®

We next consider some questions about the construction and, in particular, about the
its complexity and that of the sets it constructs.

Question 5.1.2 (Nontermination) How do we know that this construction keeps go-
ing, i.e. that there is no point after which we always “do nothing”.

If the construction terminated in this way, then both Ay, A; would be finite, so cer-
tainly not Turing incomparable. So infinitely often we must extend the «;,. We could
include another set of requirements to guarantee this: Q;. : | 5| > e. These would,
of course, be easy to satisfy and would make it both obvious and part of the formal
verification that we extend the A; infinitely often aléﬂvever, we can see directly that this
happens automatically: By the Padding Lemma (Bﬂ?rs)gthere are infinitely many indices
e such that ®4(z) = 0 for every A and z and indeed one such that ®.(z) does not query
its oracle at all for any x. At the stage at which we deal with the requirement R, ; for
such an e, we automatically extend the approximation o;_;,. Hence, both strings are
extended infinitely often.

It is a common phenomenon that constructions in degree theory do more than one
expects. We now see some other examples.

Question 5.1.3 (Complexity of the Construction) The construction can be seen as
simply the (production of the) double sequence o s. Of course, the sets A; are recursive
in the construction: By nontermination, there is, for any x, an s such that a;(z) is
defined for j = 0,1. Thus, given the construction we can recursively find an s and k;
such that o s(x) = kj. Then A;(z) = o 4(z) = k.

As the sets A; are Turing incomparable they are not recursive and neither then is
the construction. How complicated is the construction and the sets Ay and A7 More
precisely, can we find a bound such as 0™ on their degrees? Such a boundht{)gyalgcglso
give definability properties such as A; being A1 by the Hierarchy Theorem b_57_¥

We answer this question by showing that we may take n = 1. Let us look back at the
construction. By recursion, we have o, with s = (e, 7). To calculate o s41, we asked
one question:

Ja D o (P2 (2) | )7
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This is a Y7 question so 0’ can answer it and tell us which case to implement. In the
second case of the construction, we recursively set o1 = ;. In the first case of the
construction, we can enumerate the master list {(o,e,z,t) : p(o,e,2,t) |} and check
recursively for an element with o O ;4. So, once 0’ has told us which case we are in,
everything else is recursive. Hence, the whole construction is recursive in 0/ as are Ag

and A;.

Question 5.1.4 (Complexity of the A;) Where do Ay, A; lie in the jump hierarchy?
Can we say more than just that they are recursive in 0'. For example, are they low (or

can we add something to the construction to make sure that they are low)? (Recall: A is
low iff A" <r 0.)

One approach to an answer to this question is to add new requirements:
N, : Make @2 (e) | if possible.

We make a new list P; of requirements including the old R, ; and the new N, ;. At stages
devoted to an R, j, i.e. P = R, ;, we act as before. Suppose that at stage s + 1 we are
acting for N, ;, i.e. P, = N, ;. We have o, ; and ask if

302 . (®2(e) 1)?

If the answer is yes, let o 11 be the least such a and let o411 = a1, On the other
hand, if the answer is no, then do nothing and so let o ;11 = o s This is called deciding
(or forcing) the jump (of A; at x).
Claim 1: The construction is still recursive in 0': Our actions for requirements R, ; are
the same as before. For N, ;, 0 can decide if 3o D ay; (P (e) | ). If there is such an a,
we can find the least one recursively and compute «;¢;1. If not, there is nothing to do
and Ojs = O syl
Claim 2: We can compute A} from 0. Since the whole construction is recursive in 0',
0’ can go along the construction until it gets to the stage s at which we act for N, ;. If
B2+ (¢) |, then clearly ®.7(e) |, ie. e € A’ Tf not then no extension of a of a; , makes
®%(e) | and so (as in the verific I’cliocl)ll_%ghf?fj(e) T,ie e¢ Al

As was the case for Question b.1.2, more happens in our original construction than is
evident. EPIS possible to prove that the A; gele) %t%]ructed by the original construction (for
Theorem b.1.1) are already low (Exercise E_I_%*

Question 5.1.5 (Relativization) What about incomparable degrees above any given x ?

This is just an exercise in relativization. 77Ref to earlier By relativizing, we mean
that at each part of the construction where we have as an oracle o, we instead use X o
as the oracle . At the end, we build X @& A;.77

Exercise 5.1.6 Prove that for every set X there are A;, j =0, 1, such that X & Ao|r X &
Ay and (X @ Aj) =r X' for j=0,1.
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Question 5.1.7 (A Generalization) Can we build more than two incomparables?

We can easily change the list of requirements to

Poji 1 j # k, @) # Ay

for e, j,k € N and handle them as we did the R, ; with j = 0,1. Thus, we can produce
countably many low pairwise incogo%zﬁag%es between 0 and (', indeed all with jumps

uniformly recursive in 0" (Exercise b.T.

KP
Exercise 5.1.8 Show that the sets A; of the original construction (for Theorem %T] 1)
are already low.

KP
Exercise 5.1.9 Add requirements to the construction of Theorem %3_.1 .1 to make the join
of the sets constructed low, i.e. (Ag® A1) =1 0.

We can strengthen the notion of lowness and prove a bit more:
Definition 5.1.10 A is superlow if A" <;; 0.
. . %B
Exercise 5.1.11 Prove that the sets constructed in Theorem [5.1.1 are superlow.

Exercise 5.1.12 Prove that there are sets A; <p 0/, fori € N, such that A;|A; fori # j.
Moreover all these sets can made be low as well.

Notation 5.1.13 ?7(earlier) Given any sequence (A;|i € I) of sets we let H{A;|i € I} =
{(i,z)|i € [ & x € A;}. Conversely, given any set A we let AU denote the set {x| (i, z) €
A}, Welet Al = o{A;li # j} = {{j,z)|i # j & x € A;}. We use the same notation for
binary strings o: oll(x) = o({(i,z)) and o ((j, 2)) = o({j, z)) forj # i and c((i,z)) = 0
for (i,x) € domo.?? Warning: changed definition of Al so that ® Al = A. Also made
ol and o into binary strings??

As a significant generalization of Theorem %Tpl.l and even of Exercise %%Hlff_rsvge can
try to embed arbitrary countable partial orders P in D or in D(< (') or in the low
degrees.

Consider any countable partial order P with domain {pg, p1, ...} and partial order <p.
We want to construct A; such that A; <; A, if and only if p; <p p;. To do so, we build
auxiliary sets C; and, in an attempt to mimic the order <p, welet A; = ®&{C; : p; <p p,}.

The first question is does this succeed to the extent that p; <p p,; implies that
A; <p A;? Well, (k,z) € A; & € CyApr <p p; by definition but, as p; <p p; (and the
ordering is transitive), this is the same (again by definition) as p, <p p; A (k,x) € A;.
So if <p is recursive, ¢ <p j implies that A; <r A;. We can use this fact to embed
recursive partial orders in the low degrees by using the constructions above to guarantee
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incomparability when needed and this simple argument for recursive P to guarantee
comparability when needed. If a partial order is not recursive, it is at least recursive in
some oracle so relativizing the proof for recursive partial orders gives an embedding into
D. Perhaps this is the best we can do — it is not intuitively obvious or even, perhaps
even plausible that D(< 0) is a universal countable partial order, i.e. every countable
partial order can be embedded in it. (See Appendix 77.)

We begin our proof that it is by constructing a recursive universal partial order. The
construction is an example of the method of finite approximations being used to build
sets with properties not necessarily expressed in terms of Turing degrees. The idea is
related to the proof that QQ is a countable universal 1i %ar order (Appendix 77). We then
embed it into D(<0') using the methods of Theorem b.1.1. We start with a Lemma that
will provide the basic steps of our construction.

Lemma 5.1.14 Given a partial order P, a suborder R and an extension of R to a partial
order R containing exactly one new element z (not in P ), there is an extension P of P
containing z as its only new element that also extends R.

Proof. We let P = P U {z}. To define the desired ordering <z on P, we must specify
when p <s 2z and when 2z <3 p for p € P — R and verify that we have defined a
partial order. We set p <z 2z < (Ir € R)(p <p v & r < z). Similarly, we set
z Sﬁ? & (Ir € R)(r <p p & z <z r). All other instances of order relations are as in P
and R.

Clearly < is reflexive and extends both P and R. We must check that it is transitive.
Consider any u < v and v < w. We must show that u <z w. Certainly if none of u, v
or w is z (so all are in P) there is nothing to prove as <p is transitive. If two of them are
z, the desired conclusion is again immediate. If only w = z then, by definition, there is an
r € Rsuch that v <p r <j 2. As, in this case, u <p v <p r and <p is transitive, u <z 2z
by definition. Similarly, if only v = 2z then, by definition, there is an r € R such that
2 <pr <puv. As, v <p w (and <p is transitive), 2 <z w by definition. Finally, if only
v = z then there are r; and ry in R such that u <p 1 <3 zand z <z 7o <p w. As <; is
transitive, 7 <z 75 but as both are in R which is a suborder of P, u <p r; <p 173 <p w
and so u <p w and u <p w as required. =

Theorem 5.1.15 There is a recursive universal countable partial order Q, i.e. a re-
cursive partial order Q such that every countable partial order P can be embedded in

Q.

Proof. We build Q by finite approximations, @ = UQ,. At stage s + 1 we have a
finite partial order Q, and extend it to Q,.; such that for every suborder M of Q,
every one element partial order extension M of M is realized in Q1. That is, for every
subset M C Q,, and extension M of M with M = M U {z} for some z ¢ Q, there is
an embedding of M into Q.1 which is the identity on M. To do this we list g };cthe
suborders M; of Q, and all of their one element extensions M ;, and apply Lemma b.1.14
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successively to each (j, k) to produce a sequence of partial orders Q, () each extending
the previous one and an embedding of M into O (jx which is the identity on M;.
Clearly, this is a recursive procedure and the final partial order so produced is the desired
Qs+1~

To see that Q = U Q) is universal, consider any countable partial order P with P =
{po,p1,...}. We define the embedding f :P — Q by recursion. Start with f(po) = qo-
Given an embedding f, of P | {pi]i < n} into Q, choose s such that the range of this
finite embedding is contained in Q,. This range is then a suborder M of Q,. Consider
the one element extension M of M that is isomorphic to P | {p;Ji < n+ 1}. By our
construction of Q,,; there is an extension of f,, to an embedding of P | {p;|i < n+ 1}
into Q1 which agrees with f,, on {p;|¢ < n}. This map is the desired f,;; and f = Uf,
is the desired embedding of P into Q. m

Proposition 5.1.16 Every recursive partial order P = (P, <p) can be embedded in D.

Proof. Let P = {p;|i € N}. We build sets C; and let A; = &,;,{C; : p; <p p;}. As
argued above, if p, <p p; then A, <p A; since <p is recursive. We now turn to the
requirements needed to guarantee that if py £p p; then Ay £r A;:

Ryje: I pi fp p; then (I)f]‘ £ A,

As for our approximations, at every stage s of our construction we will have defined
a finite set I's of finite binary strings v, ;. At the end, we set C; = Uy; . Given any
finite set I' of finite binary strings v, (such as the I',), the corresponding approximation
for the A; is given by

Aill] = Djer{; - pj <p pi}

i.e. for p; <p p;, Ai[l'] is defined at (j,x) if and only if v; € T and v;(7) is defined in
which case A;[T]((j,z)) = v,(x). If p; £p pi, we let A;[L]((j,x)) = 0. We write A;, for
A;[Lg] and so A; = UA, ;.

Construction: We begin with I'g = (). At stage s+ 1 with s = (k, j, €), we have A;
and Ay, the partial characteristic functions determined by the +, ; so far defined (I';) and

we wish to act for Ry, ;.. To guarantee that in the end DL # Ayp, we could try to take (as

in Theorem 5.1.1) & = |7, .| and ask if there is extension I' of I, such that B m(:c) | to
diagonalize. The problem is that an extension of I'y which guarantees convergence might
also determine the value Ax(z), so we might not be able to diagonalize.

To make sure x does not interfere with the computation from A;[I'], we want an
z = (n,y) such that p, £p p;. Also, to be able to define A; at = however we want so
as to be able to diagonalize, we need p, < pj (otherwise the relevant column is always
empty). We also need (n,y) > |7, ,|. So we want p, £ p; and p, <p px. By assumption,
pr £p pj, s0 we choose n = k and let z = (k, [y, )

Now, ask if there is an extension I' of Iy such that o) () | . If so, it is clear from
the definition of A;[I'] that this computation only depends on ~; € I' for p; <p p; and
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so (as pr €7 p;) we may assume that if v, € T then it is undefined at x. If such an
extension exists choose the least one I' and let 'y, extend I" so that Vist1 € D1 and
Yisrr(x) =1 — oM (x)=1- @fj’sﬂ(x). If there is no such extension, set Iy, = T's.
Verification: To see that the construction satisfies each requirement Ry, ;. we may
assume that p, £p p; and consider the stage s = (k, j,e) and the corresponding x. If

q)fj’sﬂ(:v) | then it equals ;" (x) and is different from Ay (z) as requlred If QJA”SH( )7

then no extension T' of T, makes &/ (x) |. On the other hand, if % '(x) | then the
finite amount of information about A; needed to produce this convergence provides a I

such that ®." ( ) | and A;[I'] C A;. By the definition of A; this I extends I'y for the
desired contradiction. m

gn%gggige 5.1.17 Do we need to worry that the Uy, ; in the construction for Proposition
5.1.76 might not be a total function? What changes in the construction would make this
obvious? Why are none needed?

Corollary 5.1.18 FEwvery countable partial order P can be embedded in D.

Proof. Let Q be the recursive universal countable partial r(il)er constructed in Theorem
univpo - T . 7 lem rec%o ) .

and f its embedding into D as given by Proposition s @ is universal there
is an embedding ¢:P — Q and then g o f is the desired embedding of P into D. =

Corollary 5.1.19 The one-quantifier theory of (D, <r) is decidable.

Proof. A one-quantifier existential sentence ¢ begins with a string Jz¢3x; - - - Jz,, of
existential quantifiers and is followed by a quantifier free matrix built from atomic for-
mulas of the form z; < x; or x; = x; for 7, j < n. Note that if we can decide whether an
existential sentence is true or false in D then we can flip the answers to decide if universal
sentences are true or false. We claim that D F ¢ if and only if there is a partial order of
size n + 1 which satisfies ¢ and that this question can be answered recursively.

First note that for any partial order P, P E ¢ if and only if some subpartial order
Q of P of size at most n + 1 satisfies . The point here is that the truth of atomic
statements about elements of Q are the same in P and Q. So satisfaction in Q implies
satisfaction (via the same witnesses) in P. In the other direction, if ¢ is true in P, then
the suborder Q consisting of the witness in P needed to Vgglibfyeép ‘gorm a subpartial order
Q of size at most n + 1. As we know from Proposition m‘eﬁha‘c every finite partial
order is isomorphic to a subpartial order of D, D F ¢ if and only if some finite partial
order Q of size at most n + 1 satisfies . We can decide this last condition recursively by
listing all the (finitely many) partial orders Q) of size at most n + 1 and then checking
for each Qy, if it satisfies ¢ by checking all the (finitely many) possible instantiations of
the z; for i < n as elements of Q;. m

embrecpo
Exercise 5.1.20 If the recursive partial order P of Proposztwn hﬁa %blegst element
0, then embedding f into D can be chosen such that f(0 llary .18 can then
be extended to partial orders with least element and C’orollary %9779 to the language with
a constant for its least element 0.
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embrecpo
We ask the following questions about the proof Proposition [5.7.76:

Question 5.1.21 How complicated are the images of the partial order under the embed-
ding?

We claim that A; <7 0’ uniformly. Indeed the whole construction and so the C; are
(uniformly) recursive in 0/. To compute A;(x) where z = (j,n) we first ask if p; < p;
(the partial ordering is recursive). If not, A;(z) = 0. If so, we can follow the construction
recursively in 0’ until it is decided if z € C}.

Question 5.1.22 Can we ensure that all the A; are low?
We can add requirements
N, : Make ®®4i(e) | if we can.
To act for N, still takes just a 0’ question.

Corollary 5.1.23 FEwvery countable partial older can be embedded in D(< 0') and so its
one quantifier theory is decidable.

Exercise 5.1.24 Make the copstrygtions suggested here precise, verify the associated
assertions and prove Corollary [5.1.23.

An alternative approach to these results begins with strengthened versions of incom-
parability.

Definition 5.1.25 The set {A; : i € N} is independent if no A; is computable from
the join of finitely many of the other A;. The set {A; : i € N} is very independent if
Ai fT EB];&ZAJ fO’f’ all 1.

Very independent implies independent because A;, ©---® A;, <1 ®;xA; if no i, = i
r €A & (i,z) € ®;4A;. However, while independence is a degree theoretic notion,
very independence is not. This is proved in the following exercises.

Exercise 5.1.26 Prove that there is a countable set {A; : i € N} which is very indepen-
dent. Indeed, one can make ®A; low.

Exercise 5.1.27 Construct {A; : i € N}, {B; : i € N} such that {A; : i € N} is very
independent, {A; : i € N} is not, but A; =r B;.

Definition 5.1.28 An uppersemilattice (usl) is a partially ordered set P such that every
pair of elements x,y in P, has a least upper bound, x V y.??

7?7Some of these to Appendix and just cite here??
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Exercise 5.1.29 FEvery usl L is locally countable, ?%i.e. for any finite F C L the subusl
F of L generated by F' (i.e. the smallest one containing F') is finite??. Moreover, there
is a uniform recursive bound on |F| that depends only on |F.

Exercise 5.1.30 Given finite usls Q C P and an usl extension Q of Q generated over
Q by one new element (with @ N P = @), prove that there is an usl extension P of P
containing Q.

Exercise 5.1.31 Prove that there is a recursive usl L such that every countable usl can
be embedded in it (as an usl).

Exercise 5.1.32 Ewvery countable usl L can be embedded in D and even in D(< 0') (pre-
serving V as well as < and 0 if L has a least element). Hint: Use a very independent

Exercise 5.1.33 The one quantifier theory of D as an upper semilattice is decidable.

Refs to Appendix??

Notes: The finite extension method for constructing degrees was developed in Kleene
and Post [1954]. This paper was the seminal paper on the structure of the Turing degrees.
Kleene and Post proved, amo gﬂg}cggrg, Theorem 5.1.1, the existence of countable inde-
pendent sets, and Proposition 5 [.16 3for finite partial orders and that all thes > I}lzllgleé)rems
are true in the degrees, below 0'. Sacks [1961] and [1963] contain Corollary 5 [[I8 and
much more. Corollary%?aig.egginted out in Lerman [1972].

We will see in Theorem 6.3.1 that every countable lattice can be embedded in D but
not by the methods used here in the sense that there is no countable lattice £ which
is countably universal, let alone a recursive one. Indeed local finiteness fails and there
are 2% many ffices generated by four elements 77ref??. We provide such with seven
generators in §6.4. 77 Appendix??

What about uncountable partial orders, usls and lattices? Of course, to be embed-
dable in D they must have the countable predecessor property, i.e. {y|y < z} is countable
for every x. Sacks [1961] shows that all partial orders of size ®; with the countable pre-
decessor property can be embedded into D. For uppersemilattices this follows from
Abraham and Shore [1986] where the embedding is‘rqur%l%degso‘rllggtzlmglé%gial segment of D.
(Initial segments of D are considered in Chapte 7+ and [10.) Some simple examples
of suborderings of D of size 2%0are provided in §§Z[ Sacks [1961] shows that all those
with the countable successor property can be embedded. However, it is consistent that
2% = N, and there is an usl of size N, with the countable predecessor property which can-
not be embedded in D (Groszek and Slaman [1983]. It is a long standing open question if
every partial order of size 2% with the countable predecessor property can be embedded
in D (Sacks [1963]).
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5.2 Extensions of embeddings

The next step after embedding results are what are called extension of embedding results.
For example, we consider an arbitrary degree x and we ask if there is always a y such
that y <t x or y >1 x or y|;x. To make this question nontrivial we want to require
that x > 0. While we could add a constant for 0 to our language, this is not necessary
as long as we move to the general case of extension of embeddings questions. Here we
consider an arbitrary sequence X = (X, Xy, ..., X,) of degrees with some specified order
structure P and we ask if there is always another sequence y such that (X,y) satisfies
some given extension O of P. Thus the general questions of this type are of the form
Vz(©(z) — Jyd(z,y)) where © and & are quantifier free. With this generality, we
can rephrase, for example, the question of whether for every x > 0 there is a y|x as
whether (Vxg,x1)(x1 < X9 — (3y0)(yo|X0)). Indeed, for any such sentence about D with
a constant symbol for 0, we Ce]}irfni d an equivalent sentence of the same form in the
language with just < (Exercise b.2.T). Another basic example is the question of whether
D is dense, i.e. if for every xq < x; there is a y such that xy < y < x;. Here the answer
'Ss r;‘lrlll(c)i’é but more complicated techniques are needed to prove it. Indeed by Theorem
E 7.9 L, Fhere are minimal degrees x, i.e. 0 < x but with no y such that 0 <y < x.) Such
questions are special cases of the decision problem for all two quantifier sentences in D.
We will eventually see that the answers to these e tension of embedding questions are
enough to decide the full 2-quantifier theory of D (%;ﬁ

Exercise 5.2.1 Consider the theory of partial orders with least element in the language
(<,0) where we add on the aziom Vz(0 < z) to guarantee that the constant 0 always
is interpreted as the least element of the partial order. Show that for any 2-quantifier
sentence YZIyV(z,y) in this language there is an equivalent 2-quantifier sentence without
the constant symbol. Also show that if the original sentence is of the form Vz(©(z) —
Jy®(z,y)) then the equivalent sentence without O can also be taken to be of this form.
Hint: Extend the lists of variables T and y each by one new one v and w, respectively.
Then consider the sentence (YZ,v)(3g, w)(w £ vV ®(Z,§)) where ® is gotten from ® by
replacing 0 by v.

We begin with a simple but basic example mentioned above.

Theorem 5.2.2 (Avoiding cones) For every A > 0 there is B such that AlrB. In-
deed, there is such a B <p A’.

Proof. Given a set A, we build B such that A €7 B, B £r A. There are two kinds of
requirements:

P, :®*+4DB Q. : P+ A

The construction uses finite binary string approximations 3, to B. At the end, we let
B = UyB,. We order these requirements in an arbitrary way as Rs.
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Construction: We begin with 5, = (). At stage s+ 1 we have (3, and work to satisfy
Rs by constructing an appropriate 3, ;. If Ry = P., we ask if ®2(|3,]) 1. If so, then P,
is satisfied so do nothing, i.e. 3, = 3,. Otherwise, we let 3, ., = 8,"(1—®2(|3,])). So,
B(18,]) = Bsa(18,]) # ®2(]8,]) and again the requirement is satisfied. Observe that at
this stage we ask a question that A’ can answer and then carry out a procedure recursive
in A.

If Ry = Q., we ask if there is an « and an extension o of 3 such that ®7(z) |# A(x).
If no such extension exists, do nothing. If there is such an extension, let 3,,,; be the
least such extension. Observe that we here asked a ¢ question followed by a recursive
procedure based on the answer, so this step is also recursive in A’.

Verification: We have already noted that all the P. are satisfied and that the
construction, (f,), and so B is recursive in A’. Suppose we fail to satisfy Q.. Then at
the stage s with R, = Q. there was no z and ¢ D 3, such that ®7(z) |# A(z). If ®5(x) 1
for any x then @, is satisfied. Otherwise, we claim that A is recursive: To compute A(z),
look for any o O 3, such that ®7(z) |. There is one since ®Z(z) | and B D 3,. By
our case assumption, the value computed with oracle o must be A(z). Thus we have
recursively computed A for a contradiction and so ). is satisfied. =

. . ) coneavoid
Exercise 5.2.3 Modify the construction of Theorem 15.2.2 to make B’ < A’'. Alterna-
tively show that the construction already guarantees that B’ < A’.

Exercise 5.2.4 Fvery mazximal chain (i.e. linearly ordered subset) in D is uncountable.

Exercise 5.2.5 For every countable set of nonrecursive degrees there is a degree incom-
parable with each of them.

Exercise 5.2.6 Fuvery mazimal antichain (i.e. set of pairwise incomparables) in D other
than {0} is uncountable.

Exercise 5.2.7 Every mazximal independent set of degrees is uncountable.

We now turn to a weaker result than the existence of minimal degrees that can
be proved with techniques not much different than tthéeirKleene—Post ones we have seen
already. An important generalization (Theorem 2.2. IZE) will have many applications. We
first introduce a notationally convenient way of dealing with pairs of indices computing
from two different sets.

Proof.

Remark 5.2.8 (Posner’s trick) We are often in a situation where we want to list re-
quirements that involve all pairs of Turing reductions ®; and ®; with two different sets A
and B as oracles. We can save one set of indices by noticing that we can get by in such
a listing using just one index e. The point is that we know that A and B are different
(say by construction). For definiteness, suppose that A(x) = 0 while B(x) = 1 for some
x. Given any indices i and j, we can find an e such that for any oracle Z, ®7 = ®Z
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if Z(x) = 0 and % = CIDJ-Z if Z(x) = 1. Using ®. for computing from both A and B

then gives the same results as using i and j to compute from A and B, respectively. This

notational device is known as Posner’s trick and we will use it frequently. After the first
. minpair ) } .

use 1 Theorem [5.2. ?, we will do so usually, without comment or specific reference to the

fact that the sets being constructed are distinct).

Theorem 5.2.9 (Minimal Pair) There are A, B > 0 such that aAb =0, i.e. for all
C, if C <7 A, B then C =1 0. Note we will often abuse notation and write AN B =1 0
in place of a Ab =0 and similarly AN B=r C foraAb=c.

Proof. We build A, B by finite approximations ay, 5, with union A and B, respectively.
There are three kinds of requirements:

P,:®,# A, Q.:P.#B and N, : CID’;‘ = <I>f = (C = (' is recursive.

Again we order the requirements arbitrarily in a list Ry. Note that we are using Posner’s
trick to replace the natural requirements N; ; : & = q)f = (' = (' is recursive by the
N, above.

Construction: We begin with ag = (0) and 3, = (1) (to make A and B obviously
distinct) and, given o, and (3, we act at stage s + 1 to satisfy R,.

If Ry = P., ask if ®.(Jas|) T. If so, the requirement is already satisfied and we do
nothing, i.e. we let a1 = o, and 8, = 3,. Otherwise, let a4 be defined by setting
(Jas]) =1 — ®c(|os|) and let 5, = B,. Again the requirement is satisfied. If R, = Q.,
the procedure is the same except that we interchange o and f3.

If R, = N,, ask if (3a 2 «,)(38 2 B,)(3x)(®%(z) |# ®(x) |). If such extensions
exist, pick the first pair («,/5) which satisfies the condition and put as; = « and
Bsr1 = B. If no such extensions exist, do nothing.

Verification: We have already observed that all the P, and (). are satisfied so
A, B > 0. For N, we may assume that ®2 = ®2 = C as otherwise the requirement is
automatically satisfied. We want to show that C is recursive. Consider ay, 3, for the
stage s such that N, = R,. To compute C'(x), find any finite extension o O « such that
®(z). (There is one since A D a, and ®}(x) |.) We claim that ®*(x) = C(x). If not,
there is a 3 D 3, with 8 C B such that ®°(z) = ®Z(x) = C(x) and so we would have
acted at s with @ and (3 (if not another pair of extensions) contrary to our assumption.
]

We frequently use this idea of searching for extensions that give different outputs when
used as oracles for a fixed ®. and, if we find them, doing some kind of diagonalization. If
there are none, we generallyez%{rﬁl%e glhrat ®4 is recursive (or recursive in the relevant notion
of extension as in Theorem E_.Z._WFTVVe extract the appropriate notion and provide some
terminology.
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Definition 5.2.10 We say that two strings o and T e-split (or form an e-splitting) if
Ju(®7 (x) |# @ (z) |). We denote this relation by gl.m and say that o and T e-split at .
Note that by our conventions in ??Definition 177, ®7(x) = ®7 ,(z) is a recursive relation
as is Jx(PI(x) |# P (x) |), i.e. o|.T.

. inpair
Exercise 5.2.11 We may make the A and B of Theorem 520 Tow or note that as
constructed they are already low. We can also relativize the result: Ycda,b(a Ab =

C&a=b=c).
-
Exercise 5.2.12 Improve Ezercise CBC.)ZD?Q?aVBOyl showing that we can make B' <p A® (0.

We now want a notion similar to minimal pairs but with an arbitrary countable ideal
of degrees playing the role of 0.

Definition 5.2.13 C C D s an ideal in the uppersemilattice D if it is closed under joins
and is closed downwards (i.e. if y € C and x <y thenx € C). An ideal C is principal if
there is a degree ¢ such that C ={x : x <r c}.

Theorem 5.2.14 (Exact Pair) If C is any countable ideal in D, there are a,b such
that C = {x:x <ra,b}={x:x<ra}N{x:x <7 b}.

This theorem gives a very strong characterization of the countable ideals C of D.
It says that, if not principal, C is at least the intersection of two principal ideals. An
alternative statement of the theorem that will be used in its proof is the following:

Theorem 5.2.15 If C; <y Cy <p --- is an ascending Ssequence, then there are A, B
such that {X : X <p A, B} ={X : In(X <7 C,)}.

exactpair?2 exactpair
Proposition 5.2.16 Theorem [5.2. Zg implies Theorem 5. 2. 25.

Proof. We list all the sets D; with degrees in a given countable ideal C and ghen consider
. . exactpair? |

the ascending sequence C; = ®;;D;. If A and B satisfy The ggggt%gl.rlg for this sequence
then we claim that their degrees a and b satisfy Theorem )5.2. 120 see this s Dpose. . .
d €C then some D; € d and so D; <p Cj;1 and so by the conditions of Theorem %.2.15,
d<taba el}“{%%%lh;elglg For the other direction, suppose that X < A, B. The conditions

of Theorem 5.2. lg imply that X <¢ C; = @;;D; for some i. As C is closed under finite
joins and downwards, x €C as required. m

exactpair exactpair2
Exercise 5.2.17 Theorem 15.2. 25 implies Theorem 5.2.25 50 the two formulations are
actually equivalent.

We now prove the gecond formulation of the theorem and so the first as well.
Proof of Theorem 5.2.15. Given (C,,) ascending in Turing degree, we build A, B
such that
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e for all n, C,, <r A, B and
o for every C <r A, B, C <r C,, for some n.

To prove the theorem is clearly sufficient to constructing sets A and B that satisfy
the following requirements:

P,:C,<r A B N,:®} =02 =C = In(C <1 C)).

As usual we list the requirements as R;. We build A, B by approximations «y, 3. Instead
of these being finite strings, however, they are more like matrices. For each approximation
v there are finitely many i (columns of the matrix) such that the value of v((i,z)) is
determined for every x. In addition, there are finitely many other numbers (j,y) such
that v is defined at (7, y).

Construction: As usual we begin with g, = 8, = 0, A = Ua, and B = US,. We
describe the construction at stage s + 1 given o, and f,. Suppose Rs = P,. Choose the
least ¢ such that both «, and [, are undefined at every (i,z). Let asy1 (B4,.1) be the
result of coding ), into that column of a; () and leaving the rest of the approximation
unchanged, i.e. a,41((3,2)) = Cp(x) = B,,1((i,x)) for every = and otherwise there are
no differences between o, (3,) and as41(5,,,). This action clearly satisfies P,

Otherwise, suppose R, = N,. We ask if 3z(3a D «,) (38 2 B,)(®%(x) |= ®P(z) |)
with the domains of o and 3 being only finitely larger than those of o and 3, respec-
tively. If such extensions exist, let (as41,5,,,) be the least such pair of extensions (in
terms of the finite amount of information added to a, and ;). If no such extensions
exist, do nothing, i.e. a 41 = a, and 3, = B,.

Verifications: We have already noted that A and B satisfy the P, requirements
and so C,, <p A, B for all n. Consider then the requirements /N, ,. We may assume that
d4 = ®F = ( for some C as otherwise the requirement is automatically satisfied. We
want to prove that C' <r (), for some n. Consider stage s + 1 of the construction for s
with Ry = N.; and let n be the largest m such that we have coded C,, into A and B
by stage s (by making some column of a, and 3, equal to C,, as in the construction at
stages devoted to P,,). Now, to compute C(x), find any finite extension « of a;; such that
®%(z) |. (There is one since A 2 a, and ®/(z) |.) We claim that ®%(z) = C(x). If not,
there is a finite extension 3 of 3, with 3 C B such that ®%(z) = ®5(z) = C(z) and so we
would have acted at s with o and (8 contrary to our assumption. The crucial point now
is that checking whether o O «y is recursive in C,,. As the finitely many columns of «
which are defined at all elements are each equal to some C), for m < n and as «a; is only
defined at finitely many numbers not in these finitely many columns, this check is clearly
recursive in @;.,C; (using the extra finite information about which column is which C;
and what other information is in «;) and so in (), as the sequence C; is ascending in
Turing degree. m

Now for the first of the important applications of this Theorem.

Corollary 5.2.18 D is not a lattice.
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Proof. Let C;} be strictly ascending in Turing degree. (Such exist, for example, by .
. ’ ﬁ a t)ﬁ 2
Proposition %el.nl N IeGC ot simply take C; = 0(1).) Now let A and B be as in Theorem b5 Tho

If there were a C' whose degree is the meet of those of A and B then C' < A, B and so
C <r C, for some n. In this case, C' <r C,,1 <r A, B for a contradiction. m

Exercise 5.2.19 A set S of degrees has a least upper bound if and only if the join of
some finite subset of S is its least upper bound.

g§g€c§§%5.2.20 What is a bound on the complexity (degrees) of the A and B of Theorem
5015 tn terms of the C,,? Does (©C,,) work? How about a better bound? Consider also
the special case that C,, = 0.

. ) . emb<0’
Exercise 5.2.21 Use the results of the previous exercise and Corollary [5.1.23 to show
that D(< Q') is not a lattice.

We now prove a generalization of Theorem 5.2.2 that will be the main i Ec%%lent from
this Chapter in the decision procedure for the 2-quantifier theory of D in [10.4.

Proposition 5.2.22 (Extensions of Embeddings) Given finite partial orders P C Q
with no x € Q — P below any y € P such that, for any q € Q and py,p1 < q € Q — P,
there is a p € P with pg,p1 < p < q and an embedding f : P — D, there is an extension
g of f embedding Q into D.

Proof. Let P = {p;|i < m}, Q — P = {gj|j < n}, Xi € x; = f(p;) for i < m and
X = @&{X;li < m}. By our assumptions on the p; <o g;, there is, for each j < n, an
i; < m such that p;; is the largest p; such that p; <g ¢;. We construct Y for j < n
and set Z; = &{Yi|qx < ¢;} @ Xy, Our plan is to let g(g;) = deg(Z;). It is clear that
pi <q — Xi <r Zj (as X; <p Xj;) and ¢; < qx — Z; <1 Z; (as p;; < p;, and so
Xi; <r Xj, while ¢ < ¢; — ¢ < g and so ®{V|q < ¢;} <r ®{Yi|a1 < ¢1.}). (Remember
all these sums are finite.)

To guarantee the required Turing inequalities it clearly suffices to satisfy the following
requirements for Y = @&{Y;|j <n}, i,k <m,j<nandeeN:

Seik 1 p; f pr then X, # @Z@Xj

Nej: Y # @?{Yklkijﬁn}@x

coneavoid
We can use the techniques from Theorems matisfy these requirements using
finite binary strings 0; ; as approximations to Y; = U0; ;. We list the requirements as ;.
Construction: As usual we begin with 6, = () for j < n. At stage s+ 1 we have 6,
and attempt to satisfy requirement R,. If Ry = N, ; we ask if there are finite extensions
0y of 8 s for k # j such that @?{eklkijgn}@)((Wj’SD . If so, we let 0, form the least such

n-tuple and set 0511 = 0 for k # j and 6,,41(0,5]) = 1 — @?{ek‘k#g"}@x(kywb. If
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there are no such ¢; then make no changes. If Ry = S, x, we ask if there are extensions
6, of 0, for j < n such, that for some z, X;(x) # @?{ejljsn}@Xj(x) }. If so, we choose
the least such (n + 1)-tuple §; and set ;.11 = 6, for all j < n. If not, we again make no
changes.

Verification: The verifications are as before. For N, ; if we act to extend 6;, at
stage s + 1 with Ry = N, ;, we have clearly diagonalized to satisfy the requirement and

if not, then no extension of the 0y for k # j can make @§{9k‘k#j§n}®X(|fyj7s|) l. Thus

@?{Yklkﬁén}@X(W]’,SD T and we also satisfy the requirement. For R, = S, suppose

that p; € pp but X; = ®r %% and consider stage s + 1. Clearly we did not produce a
diagonalization at stage s+ 1. We claim that X; <; X, for a contradiction. To compute

X;(z) look for any extensions 6; of §;, such that PO ex; (x) |. There must be

one as @, TV () |. If PEOIT=nIEX; (x) |# Xi(x) we would have taken such a tuple and
diagonalized. As the search for such 6; is recursive in X; we have computed X; recursively
in X, as desired. m

extemb
Exercise 5.2.23 FEaxtend Proposition m to countable partial orders P and Q satis-
fying the same conditions as in the Proposition. (This is somewhat more intricate than
the constructions we have seen so far in that more must be done to code the order on
elements of Q) into the sets being constructed to extend the given embedding.)

ctblextemb
Exercise 5.2.24 Use Ezercise %7272’370_]37‘01)6 that every partial order of size Wy with the
countable predecessor property can be embedded into D. (Of course, this is a construc-
tion of length Wy. Some facts about extending partial orders to uppersemilattices from
Appendiz 27 are also useful here.)

\ d mi tlatt
Notes: TheO{ems \tc)oél:éa\gﬁ% \blgéalal;tlld Corollary 5718 allrcéa due to Klgentlgﬂld Post

countco

[1954]. Exercises b.2.5 and b.2.6 to Shoeniield [1960]. In fact, Eer(:ls% bn 2,33 shows “that

any maximal antichain has size 2%°. Sacks [1961] proves Exercise ut Groszek and
Slaman [1983] show tha Jt 1Stcon31stent that 3 but there is a maximal independent
Ee‘gc of size Ny. Theor(?n%b Zd & q grejse % 2. ZI are due to Spector [1956]. Proposition

and Exercises 5.2.23 and b 2. 14 are due to Sacks [1961].77Posner’s trick??

5.3 The range of the jump

The Friedberg Jump Inversion (or Completeness) Theorem ffc.o § says that the only re-
striction on the jumps of degrees is the obvious one: they must be at least 0’. Thus,
the theorem characterizes the range of the jump o grator.as precisely the set of degrees
>7 0'. The Shoenfield Jump Inversion Theorem ﬁb_g%aracterlzes the range of the
jump operator on the degrees below 0'. It too consists of everything not ruled out by the
trivial restrictions: a <0 — a’' >0 & a’ isr.e. in 0'.
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5.3.1 The Friedberg Jump Inversion Theorem

Theorem 5.3.1 (Friedberg Jump Inversion Theorem )

vC 2 OIHA(A, =T C =T A V O,)

Proof. Let C >7 0. We build A by finite approximations «,. The properties that we
must insure are the following:

o C' <y A’ (coding C into A’)
o A" < C (keeping A’ as low as possible)

o A <p AV (deciding the jump)

Construction: We begin with oy = (). At stage s + 1 we have «,. We ask if there
is an @ D ay such that ®%(s) |. If so, we choose the least such extension « and let
asp1 = a"C(s).

Verification: The construction is recursive in C: As C' >p 0 it can answer the
question we ask at stage s. If the answer is “yes” then it (indeed even the empty set)
can find the least witness and C' can, of course then compute C(s)) to get asy1. So
(o) <7 C. Moreover, A’ <p C because s € A’ & ®%+1(s) | by construction (if ®4(s)
converges, it is forced to converge by stage s + 1).

To show that C <y A" and A" < AV (', it clearly now suffices to prove that
C <r AV0. As C(s) = asi1(|assi|), it is enough to show that the construction is
recursive in A V 0’: Given «g,, 0’ can answer the question asked at stage s and then
compute the least witness o. Now we know that a1 = " C(s) and so as A = U;ay,
C(s) = asy1(|ast1]) = A(Jass1|) and we can compute it and agy; from A. Thus, C' <r
AV(D. m

Exercise 5.3.2 Prove that all pairs of relations between A and B on the one hand and
A" and B’ on the other not prohibited by the known facts that A < A" and A <r B =
A" <r B’ are possible. More precisely, consider all the possible pairs of relations (<r,
<7, =7 and |7 ) between A and B and between A’ and B'. Determine which such pairs
of relations can be realized.

Exercise 5.3.3 (Jump inversion preserving partial order) Prove that given any fi-
nite set S of degrees above 0 there is a set T of degrees such that (T, <) and (S, <) are
1somorphic as partial orders and the isomorphism is given by the Turing jump operator.
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5.3.2 The Shoenfield Jump Inversion theorem

We now turn our attention to the jump operator acting on ;orgle degrees below 0’ and prove
an analog of the Friedberg Jump Inversion Theorem ho_BTB First note that if A < ('
then 0/ <p A" <7 0” and A’ is r.e. in 0/ by ??. This imposes an apparent restriction on
the jumps of degrees below 0. We say “apparent” because as far as we know now, it
might be that all degrees between 0’ and 0” are actually r.e. in 0'.

Exercise 5.3.4 Prove that there is an A < 0 such that Ye (A Zr W.) and so by rela-
tivization a ¢ between 0" and 0" which is not r.e. in 0.

Thus the apparent restriction to degrees REA. in 0" is real. It is, however, the only
restriction.

Theorem 5.3.5 (Shoenfield Jump Inversion Theorem) For every C' > 0" which is
r.e. in 0, there is an A <7 0’ such that A’ = C.

Proof. We construct A recursively in 0’ using an enumeration C of C' which is recursive
in 0/. Our approximations to A are finite binary strings «, whose union is A. Our
requirements are as follows:

P, :If e € C then Al is cofinite and if e ¢ C then Al is finite.

N, : Make ®2(e) converge if we can.

Construction: We begin with o, = (). At stage s + 1 we have a,. We get &
extending a by making &({e,z)) = 1 for each e < s with e € C, and each x such that
las] < (e,z) < s and &((e,x)) = 0 for all other x with |a,| < (e, z) < s. Next, we ask if
there is an e < s such that ®2+(e) T and a finite extension a of & such that ¢ (e) | and
« satisfies conditions similar to those in our first extension: For |&| < (e,z) and e < s,
a((e,z)) =1ife € Cs and &((e,z)) = 0 if e ¢ Cs. If so, choose the least such o as ;.
If not, let & = 5.

Verification: First, note that as C; is uniformly recursive in 0, given «ay, 0/, can
certainly compute & at stage s. As the question we then ask is ¥; (given & and Cj), 0/
can also compute its answer. It can then find «a,,; recursively using again only & and
C,. Thus the construction is recursive in 0" as then is A.

Next, note that (as in ?77), for each e, there is a stage s by which Cs [ e+1=C [ e+1
(and so Cs [ e+ 1= C; | e+ 1 for every t > s). It is clear from the construction that
for t > (e,z) > |as|, au(e,)) = 1if e € C and ay((e,x)) = 0 if e ¢ (.. Thus we have
satisfied the requirement P, and so, by the Shoenfield Limit Lemma (WﬁT A

Finally, we must show that A" < C. Recursively in C' we determine if e € A" and if
so a stage s, by which ®%¢(e) |. Suppose we have determined A’(7) and the stages s; for
1 < e. Let s be a stage larger than all the s; such that C; [e+1=C [ e+ 1. We can
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clearly find such a stage recursively in C' as C' knows the final value of C' | e+ 1 and, as it
is above (/, it can also run the enumeration C; and the construction until such a stage is
found. If ®2++1(e) |, then, of course e € A" and we can take s, = s + 1. If not, we claim
that e ¢ A" and have completed our inductive step as required. If e € A’ then there is
an initial segment a of A extending a, and indeed the & defined at stage s + 1 such that
®%(e) |. Given our choice of s, our argument above proving that C' <; A’ shows that if
i<e t>s,and t > (i,z) > ||, then oy ((i,z)) = 1 if i € C (or equivalently i € C})
and o ((i,x)) = 01if i ¢ C (or equivalently ¢ ¢ C;). Thus a must satisfy the conditions
required for us to choose it as a1 for the desired contradiction. (We cannot act for an
i<eats+1ass>s; and by assumption ®%(e) 7. ) =

Exercise 5.3.6 Strengthen the Shoenfield jump inversion theorem by making A <7 0.

We can strengthen the notion of highness as we did that of lowness in Definition

slow
%. [10:
Definition 5.3.7 A <y 0 is superhigh if 0" <;; A’.

Exercise 5.3.8 If we take C' in the proof é)tfrgﬁe ué'nhgggﬁeld Jump inversion theorem to be
0" then the set A constructed in Exercise [5.3.671s superhigh.

Notes: Theorem %‘E@sﬁﬁo Friedberg [1957]. It was pnly a part of his under-
graduate thesis; Exercise 0 Shore [1988] and Theorem h')_g_i%_Shoenﬁeld [1959].
The main result of Shore [1988] implies that the analog of Exercise %—ﬂ‘xpa@s not hold
for the Shoenfield jump inversion theorem. Indeed there are ag and a; r.e. in and above
0’ with join strictly less than 0” such that if up, u; < 0’ and u} = a; (for i = 0, 1) then
uVu =0.

5.4 Trees and sets of size the continuum

So far we have directly constructed only finite or countable classes of sets or degrees.
(Some of the exercises use Zorn’s Lemma or iterations of length X; of basically countable
constructions to construct sets of degrees of size X;.) We now want to provide some
direct constructions of uncountable sets of degrees, indeed ones of size the continuum,
with various properties such as being an antichain. Our basic approach is to construct
a perfect binary tree 7" such that [T], the paths of T', constitute the desired set. As in
Definition 22,1, hinary trees T' are subsets of 2% and so [T] is a class of sets. As in
Definition P‘Tsaythat a binary tree T is perfect if every node has two incomparable
successors. The crucial fact is Proposition ?? that there are continuum (2% and so
uncountably) many paths through every perfect binary tree.

Theorem 5.4.1 There is a set of pairwise incomparable degrees of size continuum, 28°.
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Proof. We build a perfect binary tree 7" such that if A, B € [T], A # B, then A|rB.
The requirements on the tree are

R, : (VA # B € [T])(Ve)(®? # B).

To meet these requirements, we construct 7' by finite approximations 7T, which are finite
binary trees such that every nonmaximal node has two incomparable extensions in 7.
At the end T = UTj.

Construction: We begin with Ty = {(}}. At the beginning of stage s+ 1, we have a
finite binary tree T with n many maximal nodes such that every nonmaximal node has
two incomparable extensions in T,. Let oy,...0,_1 be the maximal nodes in T,. Any
path through the final tree T" has one of these as an initial segment. We want to define
T,.1 so as to satisfy R, for sets A and B extending incomparable maximal nodes in T
and to give each o; two incomparable successors in T,,;. We list the pairs (i, j) with
i,j <mnandi#jas (i, ji) for 0 < k <[ and define, by induction on k, o, for i < n,
0 < k < so as to satisfy R, for sets A and B extending o;, , and o, ; respectively. We
begin with all 0, = 0; and then assume we have defined the o, (by induction). We
ask if there is a 6 D oy, ; such that ®7(|o;, x|) |. If so, we let o;,_ 41 be the least such
& and let 0j, jy1 extend o, 4 by setting o, x1(loj ) = 1 — % (loj, 1), We let
Oik+1 = Oi for © # iy or ji. If there is no such &, we let 0; ;411 = 0, for all 7. Finally
we add 0;;70 and 0;,"1 (and all their initial segments) to T to get Ty 1.

Verifications: It is clear from the construction that T' = UTj is a perfect binary tree.
Moreover, it is clear that if A € [T] extends some maximal node o; of T then (with the
notation as in the construction) it extends all the o, for & <[ constructed at stage s+ 1.
Suppose A and B are distinct paths in 7" and consider requirement R.. As A # B there
is clearly a ¢ such that for every s > ¢ the maximal nogggign T, that are initial segments
of A and B are distinct. By the Padding Lemma Eﬂ?ﬂthere is an s > t such that
®, = ®,. We claim that at stage s+ 1 of the construction we guaranteed that ®2 # B as
required. To see this, let o; and o; be the maximal nodes of T which are initial segments
of A and B, respectively and let k be such that at stage s + 1 we have (i, j;) = (i, 7).
As we noted A and B extend 0, ;41 and 041 respectively. If at substage £ + 1 of stage
s + 1 we properly extended o to get ojxy1 then ®0*' (|0, x|) |# ojx11(]0j, x]) and
so ®2(|oj, k|) 1= ®2(|oj, x]) 1# B(|oj, x|) as required. If we did not so extend o then
there is no extension ¢ of ;;, such that ®7(|o;, x|) | and so none such that ®%(|o;, «|) |.
In particular, ®2(|o;, |) T and we again have satisfied the requirement. =

Exercise 5.4.2 There is a size continuum set of degrees which are pairwise minimal,
more precisely, there is a perfect binary tree T such that, for A # B € [T], A,B >1 0
and VC(C <r A,B — C =1 0).

Exercise 5.4.3 There is an independent set of degrees of size continuum.

Thes afgshl}‘%?n 15gfive many more embedding theorems for uncountable partial orders..
Exercise %.2.54 shows that any size N; partial order with the countable predecessor prop-
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erty can be embedded into D. It is still an open question if every size continuum partial
order with the countable predecessor property can be embedded into D.
Notes: The results presented in this section follow from ones in Sacks [1961].



Chapter 6

Forcing in Arithmetic and Recursion

Theory

6.1 Notions of Forcing and Genericity

embeddings
Forcing provides many generalizations of the techniques we have developed in Chapter H
along with a common language for them all. It captures the idea of approximation to a
desired object and how individual approximations guarantee (force) that the object we
are building satisfies some requirement. Now approximations usually come with some
sense of when one is better, or gives more information, than another. Of course, an
approximation may have improvements which are incompatible with each other, i.e. the
set of approximations is partially ordered. The intuition is that p < ¢ means that p
refines, extends or has more information than q. We are generally thinking that the
conditions are approximations to some object G : N — N (typically a set) and that if
p < q then the approximation p gives more information than ¢ and so the class of potential
objects that have p as an approximation is smaller then the one for ¢. In addition, we
have some notion of what, at least at a basic level, the approximation p says about G.
We formalize these ideas in the rest of this section.

Definition 6.1.1 A notion of forcing is a partial order P with domain a set P and
binary relation <p. We call an element of P a (forcing) condition. For convenience,
we assume f%}%%tl 7 partial order has a greatest element 1. (For further restrictions see
Definition 16.1.12.] We often write < for < p and confuse the underlying set P with the
partial order P when the notion of forcing being used is clear from the context.

Example 6.1.2 If the notion of forcing is (2<%, D), theno < 7 = o D 7. In many of our
previous constructions we used such binary strings o as approximations to a set G such
that o C G. So the longer the string, the fewer sets that “satisfy” it, i.e. have it as an
approximation (initial segment). This e ar grllg azl'hseoften called Cohen forcing. Common,
but essentially equivalent (See Exercise%ations include (N<¥, D) ((k=“,D) for
k € N) approzimating a function from N to N (N to {0,1,2} )and the set of finite partial
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maps from N into N or from N into 2 (or k) ordered by extension approzimating functions
(N — N) or sets (or from N into k), respectively . These types of forcing notions with
finite conditions play a central role in this Chapter and the next.

Treec . . . . . ..
Example 6.1.3 In §5.7 we used finite binary trees with extension while requiring that
the tree extension add only strings that are extensions (as strings) of leaves of the given
tree. The object being approximated was a binary tree T'.

exactpair2
Example 6.1.4 In Theorem [5.2. 2%, we used partial characteristic functions o defined
on some finite set of columns and some finitely many additional points. Again we were
approximating a set G D a.

Example 6.1.5 Another important notion of forcing is the set of perfect recursive binary
trees with s T < S C T. (Here trees T are simply sets of binary strings as in
Definition e der The tree is perfect if every node has incomparable extensions as in
Definition P?WT We are thinking of such a tree T as approzimating some path onT'. So
refinement (more information) means fewer possible paths, i.e. more information about
which path is being approximated. This notion of forcing is often called Spector forcing
(or perfect forcing or Sacks forcing). Again there are many variants. For example the
trees can be n-branching for some fized n or finitely branching ?¢ with the number of
branches ?? speqﬁe-d recursively. Th.ese notions hgfné%géigigt j?%l%/ega central role in our
constructions of initial segments of D in Chapters |9 and 10.

How, in general, can we specify what object is it exactly or what class of potential
objects is it that a condition p in a notion of forcing approximates? For Cohen forcing
a condition (string) o approximates the class of sets {G|G D o}. So the collection of
all approximations to a single set G is simply {o|oc C G}, the class of all the initial
segments of G. We want to isolate the salient features of this set of conditions or any
set G C P that might be considered as an object its members are approximating. The
general approach that we want for an arbitrary notion of forcing begins with filters.

Perhaps the most salient feature of a subset F of P being an approximation to
something is that it not contain contradictory information so that there is, in the end,
some object for which we can view every member of the set as an approximation. We do
this by requiring that for every two elements of F there is a third that extends each of
the two given ones.

Definition 6.1.6 Two conditions p,q of a notion of forcing P, are compatible if and
only if Ir(r < pAr <q). If p,q are incompatible we write p L q (as opposed to p | q
which we use to denote incomparability, p € ¢ and ¢ £ p).

Definition 6.1.7 F C P is a filter on P if and only if F is nonempty, upward closed
and, for every p,q € F, there is anr € F with r < p,q (so p and q are compatible with
a witness in F).
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We are thinking of filters as connected by some procedure to the object we are ap-
proximating.

Example 6.1.8 Suppose we want to approzimate a set G € 2V and our notion of forcing
is (2<%, D) (finite binary strings). Then the set {c : ¢ C G} is a filter. In particular, the
union of this set (filter) is the characteristic function G. It will commonly be the case
that the object we want is defined fro% a ﬁrgtgr by some “simple” operation such as union.
We formalize this idea in Definition WNOtG that for finite strings, being comparable
15 the same as being compatible.

Example 6.1.9 Suppose we want to approzimate a set G € 2V and our notion of forcing
P is some countable set of infinite binary trees (not mecessarily perfect) such as the
recursive ones. Then the subset {T : G € [T} = {T : Vo C G(c € T)} of P is a filter:
Suppose two trees both have G as a path. Then the tree which is the (set) intersection
of the two trees is a common refinement. For upward closure, if G is a path on T and
T C S then G is also a path on S. In this case, the intersection of (the trees in) this
filter is the characteristic function of G.

For a given notion of forcing P, there is often a canonical way to associate some set or
function with a filter F on P. For example, for Cohen forcing we can naturally try UF.
For forcing with binary trees we might try N{[7]|7" € F}. Does this always make sense
even for Cohen or Spector forcing? For Cohen forcing it might be that UF is a finite
string so itself a condition. For Spector forcing N{[T]|T" € F} could be a set of paths
through a binary tree with more than one branch which might not necessarily be recursive
or perfect. We need to add conditions on our filter to make sure we get a total function
or a single set at the end. We might for example require for Cohen forcing that F contain
strings of every (equivalently arbitrarily long) length, i.e. (Vn)(3o € F)(|o| > n). For
Spector forcing we could require that there are trees in F with arbitrarily long nodes o
before the first branching (i.e. ¢ has two immediate successors in the tree but no 7 C o
does).

In general, we want to assure that we can associate a unique object to the set of
approximations (filters) that we consider. We then want these objects to witness vari-
ous theorems asserting the existence of objects with prescribed properties. So we want
a notion of forcing with gn%(élétdi%lss approximating the objects asserted to exist in the
theorem. As in Chapter iS, we then usually have requirements that, if met, make the
objects constructed satisfy the given theorem. Our desire for the set of approximations
to specify a unique object can then be seen as simply another (albeit very basic) goal
of the co ggﬁggtrinon to be satisfied by meeting ve%i)gggigeguirements. (See, for example,
Question 5.T.2.] Our constructions in Chapter E—mﬁy worked because at any stage
with a given approximation to our desired set we could extend the approximation so as
to satisfy any requirement. This property of approximations and requirements is a type
of density in the partial order of approximations. Thus, for each of these requirements,
we want the set of conditions guaranteeing (forcing) that we satisfy the requirement to
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be dense. Meeting them all produces a “generic” object which provides a witness for the
given theorem. The requirements for the uniqueness of the object approximated at the
end is handled in the same way. We now formalize some of these ideas.

Definition 6.1.10 A subset D of P is dense in P if Vp € Pdq € D(q <p p). A subset
D of P is dense below r € P if Vp < rdq € D(q < p).

Definition 6.1.11 IfC is a class of dense subsets of P, we say that G C P is C-generic
if GND # 0 for all D € C. We say that a sequence (p,) of conditions is C-generic if
Vi(pis1 <p pi) and ¥D € Can(p, € D).

For the specific goal of constructing a uniquely specified object, we add to every
notion of forcing a function V' (p) representing the atomic information about our generic
object determined by the condition p and the requirement that all generic filters meet
certain dense sets defined in terms of V.

Definition 6.1.12 From now on, we require that every notion of forcing have a valuation
function V' : P — N<¥ which is recursive on P and order preserving in the sense that
if p <p q then V(p) D V(q). (We say that a partial recursive function ® is recursive
on a set X if X C dom(®P).) Moreover, we require that the sets V,, = {p| |V (p)| > n)}
are dense. We also require that any collection of dense sets that we consider for the
construction of a generic filter or sequence includes the V,,.

Exercise 6.1.13 If, for two forcing conditions p and q, V(p) and V (q) are incompatible
as elements of N<“, then p 1 q. The converse does not hold for every notion of forcing.

Proposition 6.1.14 With the conventions of Definition 16.1.12 now in place, for every
C-generic sequence (p,) (or filter G), UV (p,) (or {V(p)|p € G}, is a total function.

Proof. The definitions of a valuation function V' as order preserving and of generic
sequences (or filters), guarantee that the V(p,) (or V(p) € G) are pairwise comparable
strings. (See Exercise % L. 133.) The requirement that the V), are each dense and met by
(pn) (or G) make UV (p,,) (or {V(p)|p € G} total. m

We now see how to specify the unique function associated with each generic sequence
or filter.

Definition 6.1.15 We associate to each C-generic sequence (p,) or filter G the generic
function G = UV (p,,) or {V(p)lp € F}.

cohenfor
Exampl > %‘clt?}?of’n Ezample6.1.2 jor basic Cohen forcing, we may define V(p) = p. In
Ezxample ;5 ) Z::Spector forcing), we may let V(p) be the largest o such that every T € T
18 comparable with o.

Exercise 6.1.17 Show that the corresponding V,, are dense for Cohen and Spector forc-
mg.
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. o ) cohenfor
Exercise 6.1.18 What could V' be for the variations of Cohen forcing of Example 16.1.27
Prove that the corresponding V,, are dense.

. . exactpairfor
Exercise 6.1.19 What could V' be for the forcing of Fxample 16.1.7 that constructs an
exact pair? Prove that the corresponding V,, are dense.

Proposition 6.1.20 If (p,) is a C-generic sequence then G = {p|an(p, < p} is a C-

generic filter containing each p,.

Proof. G is C-generic because it contains an element, p,, of D,, for all n. It is upward
closed because if p € G then p > p. for some e so if ¢ > p > p. then ¢ > p. as well.
Finally, it is pairwise compatible because given p > p.,, ¢ > p., then p,q > p. where
e = max{e;,e2}. W

If our collection of dense sets is countable (as it always essentially is in our applica-
tions) then generic sequences, filters and functions always exist.

Theorem 6.1.21 IfC is countabli and fgﬁ € P, then there is a C-generic sequence {p,)

with po = p and so, by Proposition a C -generic filter G containing p.

Proof. Let C = {D,|n € N}. We define (p,) by recursion beginning with py = p. If we
have p,, then we choose any ¢ < p,, in D,, as p,+1. One exists by the density of D,,. It
is clear that (p,) is a C generic sequence and so G = {p|3an(p, < p} is C-generic filter
containing p. m

Exercise 6.1.22 [f C is countable, each D,, € C is downward closed (as we can almost
always guarantee) and G is a C-generic filter containing p, then there is a C-generic
sequence pjg wfzt{Lt@ = p such that G = {p|3In(p, < p}. (This is a partial converse to

Proposition

As is our general practice, we often want to know how hard it is to compute a C-
generic sequence, filter or function. We must begin with the complexity of P and then
consider how hard it is to compute the generic sequence (p,,) and so the associated generic
G. We view the elements of P as being (coded by) natural numbers. For convenience we
let the natural number 1 be the greatest element of P. Finding the generic G' from the
sequence, requires only knowing the set P.

Proposition 6.1.23 If G is associated with the C-generic sequence (p,) (filter G) then

forcing?2
Proof. As V is recursive on P and the sets V,, of Definition %T[Zga_re included in C, we
can, recursively in P, compute G(n) by searching for a p € V,, such that p = p; for some
k (or p € G) and then noting that G(n) =V (p). =
To compute a generic sequence, we usually need the order relation <p as well as a
procedure for finding extensions in the given dense sets.
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Definition 6.1.24 A notion of forcing P is A-recursive (or a-recursive) if the set P and
the relation <p are recursive in A (€ a). (As usual if A =10 (a=0) we omit it from the
notation.) If C = {D,} is a collection of dense sets in P then f is a density function for
C if (Vp € P)(¥Yn € N)(f(p,n) € D).

Proposition 6.1.25 If P is an A-recursive notion of forcing and C = {D,} is a uni-
formly A-recursive sequence of dense subsets of P and p € P then there is a C-generic
sequence (p,) with pg = p which is recursive in A. More generally, for an arbitrary notion
of forcing P, p € P and a class C = {D,} of dense sets, if [ is a density function for
C, then there is a C-generic sequence (p,) <r f with po = p. The generic G function
associated with these filters or sequences are also recursive in A or f & A, respectively.

Proof. If P is an A-recursive notion of forcing and C = {D,,} is a uniformly A-recursive
sequence of dense subsets of P, then we can define a density function f <r A by letting
f(p,n) be the least (in the natural order of N) ¢ <p p with ¢ € D,,. In either case, the
desired generic sequence is now given by setting pg = D Zslcl)léi Dp+1 = f(n,p,). That G is
recursive in A or f @ A now follows from Proposition R

ce %\T?jge that the generic filter G defined from the generic sequen £ 1?6”2 in D Proposmon
% IWIRT %‘I‘Zb_)_lf

Y1 in (p,) but not necessarily recursive in it (Exercise ?terrec
direction, there is usually some generic sequence recursive in the filter (Exercise

Exercise 6.1.26 Give a recursive notion of forcing and a {V,}-generic sequence (p;)
such that G = {p|3i(p; < p)} is not recursive.

??Hint:P = {p;;|i,7 € N}. pij <p piy for j > k and all i and for i # 0, po,, <p Dpio
if i € K,, and not otherwise. V(p;;) = 17. (p;) = (po). 77

Exercise 6.1.27 Show that for a recursive notion of forcing P for which the relation

1 s also recursive and any collection of dense sets C that include D, = {p|lp < q or

(Vr < p)(r £ q)} for every ¢ € P and every C-generic sequence (p,), the generic filter
= {p|3In(p, < p)} is recursive in (p,).

filterse

Exercise 6.1.28 Show that in Ezxercise [6.1.22, z% the notion of forcing is A-recursive
then we may take the sequence (p,) to be recursive in G & A.

[There are various connections between forcing, (generic) filters and topology. Order
topology on P...dense open sets , meager comeager, generic..

In Cohen forcing the conditions correspond to (approximate) open sets in Cantor
space 2V i.e. o is an approximation to each set G D ¢ and these form an open (even
clopen) set in 2Y. Then the intersection of all the clopen sets in a filter F is a closed
set. If the filter is mildly generic it is the single set G which is the union of the filter.
In Spector forcing the intersection of the [T'] for T' in some filter is a closed set. It is
nonempty since the space is compact. If the filter is mildly generic the intersection is
also a singleton.]
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6.2 The Forcing Language and Deciding Classes of
Sentences

The ad hoc approach to constructions presented in Chapter Eﬂll)g_glcié_n&gm% a theorem we
want to prove, decides what are the specific requirements we need to meet, what approx-
imations we should use and how to extend approximations to satisfy the requirements.
It then builds the desired sets accordingly. For example, this is what we did to build
two Turing incomparable sets A|rB. The requirements were ®2 # B (and ®2 # A).
Our approximations were pairs (a, 3) of binary strings. Given («, ), we could find
(&, B) < (a, #) which would guarantee any particular requirement. In particular, if there
is an 2 and a pair of extensions (&, 3) of (o, 3) such that Jz(®%(z) |# S(x) |), we chose
the least one; if not, we took («, 3) itself as the next approximation. In the terminology
of forcing, we have a notion of forcing with conditions pairs («, ) and refinement given
by extension. Meeting the requirements ®/' # B corresponds to getting into the dense
sets

D, = {(a, B) : 3u(®¢ () 1# B(z) 1) or (V{@, ) < {a, 8))(~[B32®¢ (x) |# B(x) 1])}.

Likewise, we defined dense sets C,, which guaranteed that ®Z #£ A. Now if (a,, 3,,) is a
{D., C.}-generic sequence and Gy = Ua,,, G1 = UpS,,, then Gy |r Gy.

In this manner, each of the proofs we did earlier by constructions with requirements
can be translated into a notion of forcing (consisting of the approximations with a natural
order), dense sets and generics for the dense sets D, determined by the conditions that
guarantee (force) that we satisfy the eth requirement. However, a primary benefit of
the forcing technology is the generality it allows. For example, we can tackle many of
the constructions simultaneously and so give one theorem implying many of our previous
ones that were proven individually.

To this end, we need to define the forcing relation (IF) more generally, by induction
on formulas ¢ that somehow say that if p IF ¢ then ¢(G) holds for the set or function G
determined by any sufficiently generic sequence (p,,) or filter G. Thus we want a relation
I between conditions p € P and sentences ¢(G) (where we use G as the formal symbol that
is to be interpreted as our generic set or function ). This relation should approximate
truth ihn the sense just described. We could use a standard language of arithmetic as in
§4.4 (in set theoretic forcing, one would use the language of set theory) augmented with
another parameter (G) for the set we are building. (At times we may also want other
fixed other parameters (h) for given functions. As usual we typically leave this case to
relativization.)

The usual definition of forcing adopts some such standard language (in our case, for
arithmetic) and proceeds by induction on the full range of formulas with the crucial steps
(after the atomic variable free formulas) being p IF 3x¢p < In(plk p(n)); p IF —p <
Vg < p(g K ) and so p ¥ Vap < VnVg < p (g —p(n)) < VnVq < par < q (1 IF o(n)).
(The definitions for conjunction and disjunction are given by p IF ¢ A Y < p IF ¢ and
plEYandplk oV < plkporpl-.)
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For our purposes it is more convenient o use the master (universal) partial recursive
functions described and defined in §2.1. In particular we want to use the predicate
©14n(f e, Z,s) | that means that Turing machine e, with oracle f and input Z of length
n, converges when run for s any. steps. We also exploit the normal form theorems
for sentences of arithmetic of §h.4. With our restricted language we can simplify the
definition of forcing and so, crucially, the calculation of the complexity of the relation
plE .

We begin with an arbitrary ¥; formula of arithmetic with a set parameter G: (G, ¢, 7).
For later convenience we have displayed the numerical terms ¢ and free variables ¥ appear-
ing in ¢ (with |¢| = k and |Z| = {). By the m-completeness of G’ for the class of ¥ sets

Theorem is equivalent to 3s(p,,,(G,e,¢€,¢, 7, s) |) (in the usual sense that for
every mstantlatlon n of the z, ¥(G,¢,n) < Els(gonH(G e,e,c,n,s) |)). Here e is given
as a recursive function of (the code for) the formula ¢, say e(¢). (The uniformity of the
completeness result (??%’?%ﬁ_smgws that e(¢) is independent of the choice of ¢ and that
it depends uniformly on ¢.) Note that by the analysis and conventions of §2.T, this last
formula (and so (G, ¢, 7)) is equivalent to (30 C G)(¢1,4u(0,€,e,¢,7) |). Of course,
any II; sentence ¢ is then equivalent to ones of the form Vs (11 p(Gre, e 6,2,s) |)
and (VU - G)(_'(Sol-i-k—l-l(av €, ¢, ¢, E) Ql)ithh

The normal form theorems of §4.4, say that any sentence of arithmetic with set
parameter G is equivalent to one of the form Qzv(G, ¢, ,) where Q7 is a string of al-
ternating quantifiers ending with V and ¢(G, ¢, 7) is a ¥ formula or Q7 is a string of
alternating quantifiers ending with 3 and (G, ¢, ) is a II; formula. So every sentence
of arithmetic with one function parameter GG is equivalent to a sentence of the form
QTIs(144(G e 6,6, 5) |) or QTVs(—(¢144(G e, 6,6, s) |)). Thus we can induc-
tively define the forcing relation only for such sentences and still be able to talk about
all arithmetic sentences.

We need some notational conventions.

Notation 6.2.1 By the negation —p of a formula in this form we mean the natural
equivalent gotten by driving the negation sign through the quantifiers, i.e. change each
quantifier in QT (3 to V and vice versa) and 3s(p,,,,,(G e, e,¢ T, ) |) to its negation
Vs(—(p146(G,e,e,6,2,s) |)) (and vice versa). For example,

ﬁamvy38(¢l+\é\+2(G> €€, 57 z,Y, S) l) = V.Z'ElyVS(_'(301+|E‘+2(G, €,¢€, Ea z,Yy, S) l)) .
So, in particular, ——p = @ for every ¢ in our special form.
Notation 6.2.2 We use G for the generic filter, G for U{V (p)|p € G}, the function
associated with G that we are building and G for the symbol in language that stands for

that function.

We now define the forcing relation p I+ .



6.2. THE FORCING LANGUAGE AND DECIDING CLASSES OF SENTENCES 57

Definition 6.2.3 Given a notion of forcing P, we define the relation p forces ¢, p I ¢,
forp € P and sentences ¢ of our specified form, by induction on the number of quantifiers
m Q.

If ¢ is a Xy sentence 3s(¢;, (G, e, e,¢,s) |) then p Ik ¢ if and only if ¢, . (V(p), e, e, €) |.

If ¢ is a II; sentence Vs(—(y,,4(G,e,e,¢ 5) |)) then p IF ¢ if and only if Vg <
p(—|¢1+k(V(q),e,e,é) l))

o If pis a X, formula 3xf(z) then p I- ¢ if and only if Im(p IF 6(m)).

o If pis a Il formula Vzi)(x) then p Ik ¢ if and only if Vg < pVm(q ¥ —p(m)).

Remark 6.2.4 We have restricted our definition of forcing to sentences of very specific
forms and consider only these in formal proofs about properties of forcing. In applications,
however, we abuse our notation by writing p |- 6(G) for any sentence 0 of arithmetic.
Formally, we assume some uniform procedure to replace any 0 by an equivalent sentence in
our special form. In view of the relation between forcing (which depends on, gétgtsyntactical
form) and truth (which does not up to semantic equivalence) in Theorem 6.2.15, this will
make no difference in terms of our generic sets satisfying the sentence 0.

Remark 6.2.5 (Relativization) Just as we often relativized results in Chapter %%#E
often want to consider arithmetic and forcing with extra function pamme%e%rﬁib@ for fixed
functions h depending on the circumstances. For example, in Exe%ise 1.6, we built
A; > X with Ag|r Ay by relativizing the construction of Theorem 15.1.1 to X. So too,
we now want to be able to fix some h and talk about the properties of G in a language
that allows functz’o?z pammeters for theseaﬁri thlg/e do this in thp natuml.way. The ba-
sic language of arithmetic described in m_allowed for multiple function parameters
22 So we have formulas 0(G,h,¢,T) of arithmetic which are equivalent to ones of the
form Qz3s(p1 (G, h,e,e,6,2,s) |) or QTVYs(~(1141(G, hoe, e, G Fys) 1)) where we
similarly use the versions of the universal partial functions of J2.1 with multiple ora-
cles. For the definition of forcing we then, of course, use the recursive in h relations
ngkH(a,fL,e, e, ¢, x). As usual, we typically leave such matters of adding parameters
and relativizing to the reader.

Theorem 6.2.6 If P is a notion of forcing then, for n > 1, forcing for XF (117 ) sen-
tences ¢ (i.e. whether plk ) is a ¥, (I1,,) in P relation.

Proof. We proceed by induction on n. If ¢ is 31 or II; then p IF ¢ is directly defined as a
37 or II7 formula, respectively. (The point here is that the ¢, (o, €, e,¢) are uniformly
recursive, P and g < p are recursive in P and V' is recursive on P.) For n > 1 the result
follows by induction and our definition of forcing. m

Exercise 6.2.7 In fact, if ¢ is 31 then p Ik ¢ is a recursive in P relation.



ngeneric

enericdense

enmeetdense

cohenvar

o8 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

Exercise 6.2.8 If plF ¢ and ¢ < p then q IF ¢.

We now want to tackle the question of how much genericity do we need to make
forcing equal truth for generic filters and functions in the sense that if p I- ¢, p € G and
G is sufficiently generic then ¢(G) holds and, in the other direction, if ¢(G) holds then
there is a p € G such that p I ¢.

Definition 6.2.9 Let P be a notion of forcing and G a filter on P. Forn > 1, We say
G is n-generic for P if, for every ¥, in P subset S of P,

IpeGpesS VvV Vg<plqggs)).

We say that G is w-generic (or simply generic) for P if it is n-generic for all n.

Similarly, the descending sequence (p,) of conditions is n-generic for P if, for every
Y, in P subset S of P, there is an m such that p,, € S or¥q < p,(q ¢ S). The sequence
is w- generic (or simply generic) for P if it is n-generic for P for all n.

The function G determined by an (n-)generic filter or sequence is also said to be (n-
Jgeneric. A degree g is (n)-generic for P if there is a G € g which is (n)-generic for
P.

These notions all relativize to an arbitrary h in the obvious way. We then say, for
example, that G is n-generic relative to (or over) h. Qgﬁozpclude h as a parameter in our
languages for arithmetic and forcing as in Remark mand consider sets S which are
Y, mP&h.)

The following equivalence is now immediate.

Proposition 6.2.10 Let C,, be the class of dense sets {p:p € S. V Vg <p(q¢ S.)} =
D, for all ¥, in P subsets S, of P. A filter G (or a descending sequence (p,)) is
n-generic iff G ((pn)) is C,-generic.

Exercise 6.2.11 If D C P is dense and X7 then D meets every n-generic G. If D is
dense below p and X7 then D meets every n-generic G containing p.

We now point uf an Oilglportant sense in which the variants on Cohen forcing men-
tioned in Example % [.2 are equivalent.

Exercise 6.2.12 Let Py be (K<, D) and P, be (N<“ D). (So Py is Cohen forcing).
Show that for every n a degree g is P,, (n-)generic if and only if it is Py (n-)generic for
every k € N iff and only if it is Py (n-)generic for some k € N.

Hint: Consider, for example, the map that first takes any f € 2Y to h: N — N given
by writing f as 0™01™10™2 ... where each m; is chosen mazimal and we are taking 0° to
be the empty string. Then we set h(i) = m;. Prove that f is Cohen (n-)generic if and
only if h is P, (n-)generic and in all these cases f =r h.
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To build an n-generic G we proceed as in the construction of a generic for an arbitrary
countable class of dense sets. We can now also calculate how hard it is to carry out this
construction.

Proposition 6.2.13 For any notion of forcing P and each n > 1, there is an n-generic
sequence (p) <7 P™ and so its associated n-generic G is also recursive in P™. There
is also a generic sequence (py) such that it and its associated G is recursive in P
Moreover, for any p € P we may require that po = p and so V(p) C G.

enericdense
Proof. Fix n. We build a generic sequence (p,,) for the C,, of Proposition %%Z.TUW
sively in P™. We begin with py the given p € P. If we have already defined p, we find,
recursively in P™, a g <p p, which is in D,, s+1. This procedure clearly constructs the
desired sequence and is recursive in P™ by definition of the D, .. For w-genericity we
simply carry out this construction for the collection {D,, e[n e € w)l} recursively in P,

That G is recursive in P™ (P«)) follows from Proposition 5or .

Definition 6.2.14 A condition p decides a sentence ¢ if pIF ¢ or pIF —p.

Theorem 6.2.15 If G is n-generic for a notion of forcing P and ¢(G) € Xy or I,
k < mn, then there is a p € G which decides p(G). Moreover, if there is a p € G such that
p - @(G) then ¢(G) holds.

Proof. For the first assertion, note that the case for I sentences ¢ follows from that for
Y sentences since —y is X, and L fls . Suppose then that ¢ is ¥; and consider the
set S, = {p|p IF ¢}. By Theorem %‘2’%_&? is X and so by the definition of n-genericity,
there is a p € G such that p IF ¢ or Vg < p(q ¥ ¢). If p I ¢ we are done so suppose
Vg < p(g ¥ ¢).

We now want to prove that p IF —¢. If k = 1, i.e. ¢ is of the form 3s(¢, (G, e, e,¢,s) |
), this follows immediately from the definitions of forcing a »; sentence and the II; sen-
tence which is its negation: ¢ ¥ ¢ & —¢,,,(V(¢),e,e,¢) | and so by our assump-
tion Vg < p(—¢,,,(V(q),e,e,¢) 1), ie. p Ik Vs(=(p144(G, e, e, ¢ s) |)) while ~p =
VS(_‘(SOIJrk(G? €, €,C, 5) l))

If £ > 1 then ¢ = Jxy)(z) for some IIj_; sentences 1. By the definition of forcing for
Yr sentences, we have that Vg < pVm(q ¥ ¥(m)). Keeping in mind that =—) = 1), this
is precisely the definition of p IF Vax—1). As Vx—1) = —p, we have the desired result.

We now prove the second assertion of the theorem by induction on k. Suppose ¢ is ¥;
and so of the form 3s(y, (G, e,e,¢,5) |). Asplk o, ¢, (V(p),e e, ¢) |. As V(p) C G,
01.:(G,e,e,¢ |V(p)]) | and so Is(p, (G, e e ¢, s) |) as required.

Next suppose that ¢ is II; and so of the form Vs(—=(yy,4(G, e, e, ¢, ) |)), pI- ¢ and,
for the sake of a contradiction, that Vs(—(y, (G, e, e, ¢,s) |)) does not hold. This means
that there is some s such that gpl"i_kgOI"Cl ¢, s) L andso ¢1,4(G [ s,e,€,¢) |. Now, there
is an r € V; NG #0 (by Definition %nd so a ¢ > p,r in G by Definition 6.1.7. As
VC() )8 V(p) (again by Definition 6.1.12), ¢,,.(V (q),e,e,¢) | (by the use property of
s ¢ < p we have contradicted the assumption that p IF ¢ as desired.
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Next, we consider ¥ ; and Il sentences ¢ for & > 1. If ¢ = Jap(G,x) with ¢
a Il sentence and p I ¢, then by definition p IF (G, m) for some m. By induction,
(G, m) holds and then so does ¢ = Jx)(G, x) as required. Finally, suppose, for the
sake of a contradiction, that ¢ = Va)(G, z) with ¢ a X sentence, p IF ¢ but Vo (G, x)
does not hold. As Vi) (G, x) fails, there is some m such that —¢(G, m) holds. The first
part of our Theorem supplies an r € G such that r I (G, m) or r - —1)(G,m). The first
alternative contrad'gﬁtglrlr inductive assumption as 1 is ¥j. Thus r IF =¢(G, m). Once
more by Definition 6.1.7, we have a ¢ < p,r. As ¢ IF =)(G, m), we have contradicted the
definition of p IF V21 (G, z) as desired. =

for=t
Exercise 6.2.16 Prove the analog of Theorem o7 5 for n-generic sequences (p;): For
any Xy or I formula ©(G) there is an i such that p; IF ¢ or p; Ik —p. Moreover, if, for
any i, p; IF ©(G) then p(G) holds.

We now analyze the degree theoretic properties of sets with various amounts of gener-
icity. We begin with some connections between genericity and low ne%%.elflilggnbasic Propo-
sition provides two corollaries. The first improves Proposition %2 [3. The second is
specific to notions of forcing similar to that of Cohen.

enericlowng | Proposition 6.2.17 For any notion of forcing P and each n > 1 and n-generic filter
or sequence Z with associated n-generic G, (P®G)™ <p Z @ P™. Similarly, if Z is
generic then (P®G)@) < Z & P for the associated G.

Proof. Consider the case for n-generics. As the question of whether e € (P®G)™

is uniformly >, in P®G, we can recursively find the ¥” formula 0.(G) of our forcing
langl(la)ge such thaf, ¢ l(i) e € G™. Now as p I- 0,(G ) and p Ik —0.(G) are recursive
in P heorem and there is a p in Z that decides 6, b_y Theorem %2;1’5_ T
Exercise<%_2_f54mve can find one recurswely ZaPm, Theorerrf ) or Exercise %%.:1%68&1
then tells us that e € (P ® G)™ < pIF 0.(G). The proof for full genericity is essentially
the same using P“). m

senericlown| Corollary 6.2.18 For any notion of forcing P and each n > 1 there is an n-generic G
such that G <p P . There is also a generic G such that G <p PW),

enericOn
Proof. By Proposition % 5 [3, there is an n-generic se uence @fg recursive in P™ and
% T

a generic one recursive in P“). Now apply Proposition

Corollary 6.2.19 If G is n-generic for Cohen forcing then G =p GV 0™, Similarly,
if G is generic for Cohen forcing, G =, G v 0

Proof. For Cohen forcing the filter G with which G is aﬁé?fé%ted is just {oloc C G}
which is clearly recursive in G. Now apply Proposition % o .

We can now generalize the Fri db%rf% Co lelpeness Theorem }lb_gT%O iterations of
the jump. Ihe 1:proofs of ExermsE?r 390 and 6.2.21 combine the ideas in the proofs of

Proposition and Theorem
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Exercise 6.2.20 For every C > 00 there is a Cohen n-generic G such that C =r
0 @ G =p G™. The same is true if we replace n by w.

More generally, we have the following.

Exercise 6.2.21 If for every p € P there are q,v < p such that V(q)|V (r) then, for
every C > P™ we can find an n-generic G such that C = P &G =1 (P @ G)(”) =r
P® @ G . The same is true if we replace n by w.

gﬁgggigﬁe 6.2.22 Find an A-recursive notion of forcing for which the analog of Corollary
6.2.19 does not hold, i.e. there is an n-generic G with G™ £r GV A 22Hint??

The next proposition gives gnllgég%g ﬁﬂlsOf the incomparability and embeddability results
for countable sets of Chapter % i one Tell SWOOp.

Proposition 6.2.23 If G is Cohen 1-generic then the columns Gl = {z|(i,z) € G} of
G form a very independent set, i.e. Vj(GV £y GUI).

Proof. 1%(3’&% otthat we are using the column notation for sets and binary strings from
Notation b.T.13. For each e and j we want to show that @fb] £ GUl. Consider the 3,
sets Se; = {p:pIF J2(9% () |# GUl(2))}. As G is 1-generic, there is p C G such
that p € S, ; or (Vg < p)(¢ ¢ Se;). (The 1-generic filter with which G is_associated
is G = {p|lp € G}.) In the first case, Iz(®" (z) |# GU(z)) (by Theorem %QZr:l%) and
SO CIDQG“] # G as required. In the second case, we claim that q)fm is not total. If it
were, let (j,z) be outside the domain of p. We must then have some ¢ C G with ¢ < p,
¢((j, ) | and @7 (2) |. Now let §((j,x)) = 1 — q((j, x)) and §(2) = q(2) for z # (j,x).
So ¢V = ¢l and 4" (z) |= @1 () | but ¢({j, z)) # ¢({(j, ). Thus (by the definition of
forcing for ¥; sentences) one of ¢ and ¢ (both of which extend p) is in S, for the desired
contradiction. m

Exercise 6.2.24 The T. heoremse rﬁlﬁgi fropositions of this section relativize to an arbitrary
X. For example, Proposition %223’ now says that if G is 1-generic over X, then the
independence results hold even relative to X, i.e. Vj(Gm <r X & G[j]).

Exercise 6.2.25 If G is Cohen 1-generic over X and A, B <7 X then
A<rB&AG <y BaG.
In particular, if X >7 0, G | X .

Exercise 6.2.26 If G is Cohen 1-generic over X >1 0, then GANX =0, i.e. G and X
form a minimal pair.

Exercise 6.2.27 Prove that if G is Cohen n-generic then the G are very mutually
Cohen n-generic in the sense that each Gt is Cohen n-generic over G,
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Exercise 6.2.28 Translate the FExact Pair Theorem into the language of forcing. Hint:
Given (C;), define a notion of forcing P with conditions («, 5,n) for a,f € 2<% and
n € N. The ordering is given by (o/,B',n') < {a,,n) if &’ D, ' D B, n' > n and, for
i <n,if ((i,x)) | but a({i,z)) T then o/ ({i,z)) = C;(x) and similarly for 5" and f3.

Exercise 6.2.29 Let f : N — {0,1,2} and {d,} list the x such that f(x) = 2 in increas-
ing order. For any A € 2V, we let fa(x) = A(n) if v = d,, for some n and fa(z) = f(x)
otherwise. Construct an f such that f4 is Cohen 1-generic for every A € 2V. Hint: make
f 1-generic for conditions p € {0,1,2}<%.

Exercise 6.2.30 Show that the Cohen 1-generic degrees generate D. Hint: Fix an h €
2N, Mak‘e the f of the previous construction 1-generic relative to A. Show that for any

i#k (e fhHn e )= A

7?7Probably write out this proof as Proposition not exercise.??
We closg ¥hbsi section with a slight variation of our previous constructions that is

needed in §% 4.

Proposition 6.2.31 If P is a recursive notion of forcing and Cy and Cy are low sets,
i.e. C) =r 0 =p C] then there is a G which is 1-generic for P over Cy and over Cy so
that, in particular, both G & Cy and G & C; are low.

Proof. Build a generic sequence meeting the dense sets {p : p € S.; V Vg < p(q ¢
S él)u}, (Pe ; for all 3, in C; subsets S, ; of P for i € {0, 1} as in the proof of Proposition
%%Tm both C; are low, 0’ can uniformly compute extensions in each D, ; of any p so
the generic sequence and the associated G are recursive in 0'. Moreover, when we meet
D.; we also decide which clause in the definition is satisfied. To decide if j € (G & C;)’,
ie. if <I>].G@C (J) | we recursively find the e such that S.; = {p[p I- QDG@C (7) 1}. Then, as
in the proof of Proposition %E‘Z_WTE%%; @ ;)" if and only if at the stage we met D, ;
we met S.;. W

Notes: Forcing in arithmetic was introduced in Feferman [1965]. It has since been
used in various formulations by many people. Hinman [1969] introduced a version of
n-genericity. Two important early papers applying forcing to degree theory are Jockusch
and Posner [1978] and Jockusch [1980] in which many of the results of this section appear
for the special but typical case of Cohen forcing. A systematic development of degree
theory based on forcing was first presented in Lerman [1983]. Our approach attempts
to both simplify and generalize previous versions. A similar version is in Cai and Shore
2012)].

Give specific references for specific theorems and exercises??
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6.3 Embedding Lattices

We have so far studied questions of embedding countable partial orders (a (élﬂ}%’@}%ﬂ
D which is itself an usl. Now we know that D is not a lattice (Corollary H%ZTB')_W
we al§cr) know that some pairs of degrees do have greatest lower bounds in D (Theorem

Thus we can ask which lattices can be embedded in D preserving the full lattice
structure. We now prove that every countable lattice can be embedded in D.

Theorem 6.3.1 (Lattice Embedding Theorem) FEvery countable lattice L is embed-
dable in D preserving the lattice structure.

For later convenience, we actually want to prove an a priori stronger statement about
partial lattices.

Definition 6.3.2 A partial lattice £ is a partial order <, on its domain L together with
partial functions A(meet) and NV (join) which satisfy the usual definitions when defined,
i.e. if x ANy = z then z is the greatest lower bound of x and y in <.; if t Vy = z then
z is the least upper bound of x and y in <,. We say that L is recursive (in A) if L and
< are recursive (in A) and V and A\ are partial recursive (in A) functions on L.

Now, actually every partial lattice can be embedded into a lattice.

Theorem 6.3.3 If L is a partial lattice with least element 0 and greatest element 1 then
there is a lattice £ and an embedding f : L — L which preserves 0, 1, order and all meets
and joins that are defined in L.

Proof. Consider the lattice Z of nonempty ideals of £, i.e. nonempty subsets I of L
closed downward and under join in £ (when defined). The ordering on Z is given by set
inclusion. Meet is set intersection and the join of I; and I is the smallest ideal containing
both of them. The map that sends z € £ to I, = {y € L|y <, x}, the principle ideal
generated by x, is easily seen to be the desired embedding into the sublattice Lof T
generated by the principle ideals. m

rol} ary 6.3.4 If L s finitely generated as a partial lattice, then the L of Theorem
may be taken to be finitely generated as a lattice, indeed it is generated by the
images of the generators of L under f.

extparlat
Proof. Consider the £ provided by Theorem %3%_'1”56 sublattice £’ of £ generated (as
a lattice) by the image under f of the generators of L is a finitely generated lattice into
which f also gives an embedding. m
Extending partial lattices to lattices is not necessarily effective.

Exercise 6.3.5 There is a recursive partial lattice L which cannot be recursively embed-
ded in a recursive lattice. Hint:?7(Paul Shafer).??
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Exercise 6.3.6 ?7Put in effective embeddings of p.o. and usl... all the way into Boolean
algebras where do p.o. and usl embeddings?? Move to appendix??

Thus as far as a simple embedding theorem is concerned, it may seem that there is no
reason to use partial lattices but both effectiveness considerations and convenience come
into play. It is certainly often more convenient to specify a partial lattice than to decide
all the meets and joins. Thus we state our theorem for partial lattices.

Theorem 6.3.7 (Partial Lattice Embedding) If £ is a partial lattice recursive in
A with least element 0 and greatest element 1 then there is an embedding f : L — D
which preserves order and all meets and joins that are defined in L. Moreover, we may
guarantee that f(0) =a <p f(1) <p a"” and that, for x € L, f(z) is uniformly recursive
in f(1), in the sense that we have sets G, of degree f(x) which are uniformly recursive

in f(1).

arlatemb . .
To prove Theorem %.3. 7, we need some lattice theory. In particular, we use a type of
lattice representations called lattice tables.

Definition 6.3.8 A lattice table for the partial lattice L is a collection, ©, of maps
a : L — N such that for every x,y € L and o, 5 € ©

1. «(0) =0.

Afx <py and a(y) = B(y) then a(x) = 5(z).
. If x £, y then there are o, § € © such that a(y) = B(y) but a(x) # B(z).

2
3
4. [favy =z a(2) = Blz) and aly) = B(y) then alz) = B(2).
5

Afx ANy =z and a(z) = [(2) then there are v1,74,73 € © such that a(x) = v,(x),

1Y) = 72(), 72(®) = 73(x), v3(y) = B(y). Such ; are called interpolants for o
and (3 (with respect to z, y and z2).

The representation of lattices by lattice tables is closely related to the more standard
(in lattice theory) representation by equivalence relations.

Definition 6.3.9 We define equivalence relations on © for each x € L by a =, B if and
only if a(x) = B(z). For sequences p, q from © of length n and x € L, we say p =, q if
p(k) =, q(k) for every k < n. We also write, for example, p =, q to mean that p =, q
and p =, q. For g € ©¥, we write p =, g or p =, g to mean that p =, g | |p| or
P =zy 9 | |p|, respectively.

Definition 6.3.10 For arbitrary equivalences relation E, E on a set S, we say F is
larger or coarser than E if (Va,b € S)(a =5 b = a =g b). Similarly, E is finer or
smaller than E if (Va,b € S)(a =g b= a=30).
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Remark 6.3.11 With this ordering on equivalence relations (on S), the join of E and
E is simply their intersection. Their meet is the smallest equivalence class on S that
contains their union. This is also the transitive closure of their union under the two
relations.

The conditions of Definition 16.3.8 can now be restated in terms of these equivalence
relations:

1. a =¢ B for all @ and § and so =g is the largest congruence class, i.e. the one
identifying all elements. At the other end, =i att}%% smallest congruence relation,
indeed, it agrees with equality: By Definition %8’(%), a(1) uniquely determines
each a € O©.

2. If x <y then a =, B implies o =, B for all a and 3 and so =, is larger than =,.

3. If # £, y then there are o and 3 such that o =, § but a %, § and so =, is not
larger than =,.

4. IfzVy=zand a =, fand a =, 8 then a =, 8 and so =, is the meet of =, and

Ey.

5. If # Ay = z then there are v,,7,,7; € © such that o =, v, =, 7, = 73 =, 5.
So =, is certainly contained in the join of =, and =,. It is part of the theorem
that we can arrange it so that chains of length three suffice to generate the entire
transitive closure.

Thus a lattice table © produces a representation by equivalence relations with the
dual ordering. A reason for reversing the order is that D is only an uppersemilattice. So
joins always exist and we want them to correspond to the simple operation on equivalence
relations of intersection. On the other hand, meets do not always exist and they then
correspond to join on equivalence relations which requires work to construct.

We now prove our representation theorem in terms of lattice tables.

Theorem 6.3.12 (Representation Theorem) If L is a recursive (in A) partial lattice
with 0,1 then there is a uniformly recursive (in A) lattice table © for L.

Proof. Define 3, ; for z,y € L, i =0,1 by

_ )0 ify #0 _ B ify <gw

The set of these 3, ; satisfy (1), (2), (3) and (4). We now want to sequentially close off
under adding interpolants as required in (5) for each relevant instance. To do so, we have
some dovetailing procedure which does the following. Consider Ay = z and a =, 5. We



66 CHAPTER 6. FORCING IN ARITHMETIC AND RECURSION THEORY

want to add 7y;, 75,75 as required in (5) and preserve the truth of (1)-(4) in the expanded
set. If & <,y or y <. x, it is easy to do so just using « and (. If not (i.e. x £, y and
y %« x), then choose new numbers a, b, ¢, d not used yet and for w € L let

. T(w)ifw <y Bw)ifw <,y
a(s) ifw <gx ) .
fyl(w):{ Yo(w) =< bifw<grandw £y  3(w)=<Saifw<g,zandw £,y

a if w f rx . .
¢ otherwise d otherwise

This is a recursive (in A) procedure and it is an Exercise to check that it works. m
Exercise 6.3.13 The construction given above provides a lattice table for L.

We now turn to the proof of our embedding theorem for partial latices.

Proof (of Theorem Fé%’??rmb\?\]e assume that A and so £ are recursive to simplify the
notation. (Otherwise we just need to add on A to all our sets and procedures. We do
this explicitly once or twice as a reminder.) We begin, then, with a recursive lattice table
O for L. We define a notion of forcing P with elements p € ©<“, the natural ordering
p <p qif p D qand V(p) = p. Our generics are then maps G : N — L. Define, for z € L,
G, :N — N by G,(n) = G(n)(z). The desired embedding f is given by z — deg(G,)
(or, in general, z — deg(G,) V a).

We show that all the requirements for this map to be an embedding except for the
preservation of A are satisfied if G is 1-generic. Our proof here of the p fgggation of A
uses 2-genericity of G. We follow the numbering of clauses in Definition 16.3.8.

1. By definition, 0 is preserved by our embedding as Go(n) = 0 for all n and so f(0) =
0. As for f(1), note that G; =r G: Given n, G1(n) = G(n)(1) so G; <r G(DA).
For the other direction, given G1(n) we already pointed out that there is only one
a € O such that a(1) = G1(n) and we can find this «, which is by definition G(n),
recursively. Thus f(1) = g.

2. Suppose z <, y. We must show that G, <p G,. Given n, we want to compute
G.(n) = G(n)(x). Find any a € © such that a(y) = G,(n). One exists because
G(n) is one such. As O is uniformly recursive we can search for a dat@gd one
recursively in G,. Then since © <, y and G(n) =, «, by Definition 6:3.3(2) we
have that G(n) =, a so G(n)(z) = a(z) = G.(n).

4 Suppose z V y = z. We must show that G, =r G, ® G,. By the preservation of
order, G, >r G, & Gy, so it suffices to compute G,(n) = G(n)(z) from G,(n) and
Gy(n). We search for an a € © such that a(z) = G(n)(x) and a(y) = G(n)(y), i.e.
a =,y G(n). There is one and we can find if recursively in G, ® G, as above. Now
as a =, G(n), @ =, G(n) by Definition %.3.8(?3), so a(z) = G(n)(z).

Until this point, w f(%%\{% 1ot actually used any genericity beyond the requirements
imposed by Definition 6 [.12.”We now turn to nonorder and meet.
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3 Suppose x % y. We want to prove that & #+ (G, for every e. Suppose now that GG
is 1-generic (over A) and consider the ¥; sets

Se={p € O~ :pl- (In)[2¢"(n) |# G.(n)]}

The 1-genericity of GG implies that there is a p € G N S, or there is a p € G no
extension of which is in S.. Suppose p € G N S,, then ®7(n) # G,(n) and we
are done. Otherwise, oo extension of p is in S.. Suppose then f(%r the sake of a
contradiction, that ®.” = G,. Let a and 8 be as in Definition 16_3_8193) for x and
y. As the recursive sets D,, = {p|3m > n(p(m) = a} are clearly dense below p, the
1-genericity of G guaran;cees that there is a ¢ < p and an m > |p| with ¢(m) = «

nmeetdense
and ¢ € G (Exercise oreover as ¢ Y(m) | , we may choose ¢ so that

qIF @ (m) |. Consider now the condition ¢ such that (j(k) q(k) for k # m and
g(m) = . Our choice of «, 5 and ¢ guarantees that ¢ < p, ¢ =, ¢ and ¢ #, §
Thus ¢ |- ®¢¥(m) | =i and § I+ ®¢¥(m) |= i for some i but g,(m) # G,(m). So one
of g and ¢ is in S, by definition for the desired contradiction.

5 Suppose that zAy = 2z and ¢+ = " = D. We want to prove that D < GG,. Now

the assertion that %= f%rrlgt ®SY are total and equal is IT,. By the 2-genericity (over
A) of G and Theorem m, there is a p € G such that p forces this sentence. Thus
for each n and ¢ < p, there is an r < ¢ and an i such that r IF ®% (n) = i = ®¢*(n).
We now wish to compute D(n) from G,. As above, we can recursively in G, find a
¢ < p and an i such that ¢ |- ®%(n) = i = ®%(n) and ¢. C G, (since some initial
segment of G does this with i = ®%(n) = D(n)).

We claim that i = D(n). To see this consider a t € G such that ¢t < p, |t| > |¢| and
t - @%(n) |= ®c"(n) |. Necessarily, % (n) |= ®(n) |= D(n). By extending ¢
to agree with t on [|g|, [t]) | if |{| > |¢ we may assume that |t| = |[¢ = m and so
t =:.g- Let I = |p[. We now use both the interpolants guaranteed by Definition
%‘3‘8’(%) and the fact that p forces ¢ and ®$ to be total and equal.

For each k with | < k < m we choose interpolants 7, ; (for i € {1,2,3}) between
q(k) and t(k) as in Definition 6.3:8(5). We let ¢;(k) = p(k) = t(k) for k < [ and
qi(k) = vy for I <k <m. Wealsolet g = qand ¢4 =t. Soq=qo = @1 =
G2 =z q3 =y @4 = t. We now extend the ¢; in turn to make them force convergence
at m but remain congruent modulo z. In fact, we make a single extension for all of
them. By the fact that p |- (9% = ®& and both are total) and ¢; < p, we can find
an s; such that ¢; sy IF ®%(n) |= P (n) |. We now, similarly, extend ¢"s1 to
q2"s1" 82 such that ¢o"s; " sy IF @8 (n) |= @Sy(n) |. Finally we extend ¢3"s;"s3 to
q3" 51782 83 IF @8 (n) |= @Sy(n) l. Let s = 51”59”83 and consider ¢;"s for ¢ < 4.

Looking at each successive pair we see, by the alternating (between x and y) con-
gruences among the ¢;, that they all force the same equal values for ®%(n) and
P (n). (This follows from the transitivity of equality alT%c}%preservation of either
computations (use property from §2.1) or forcing (Exercise 6.2.8) under extensions.)
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Thus the first value, i, given by ¢ and ¢ is equal to the last value, D(n), given by
t and g4, as required.

By Theorem %%n'.%f,_otl:here is a 2-generic G <7 0" (A"). As G(®A)=r G1(®A), we have
that f(1) < 0” (a”) as required. m

We can now disprove the homogeneity conjecture for D' = (D, <, ). This conjecture,
like the analogous one for D, was based on the empirical fact that every theorem about
the degrees or the degrees with the jump operator relativizes and so if true in D (or D’)
then it is true in D(> c¢) or D'(> c) for every c. The conjectures asserted then that
D = D(>c) and even that D' = D’'(>c) for every degree c.

Theorem 6.3.14 There is ¢ such that [0,0"] 2 [c,c”] and so (D, <)) 2 (D(>c¢), <)),
i.e. The homogeneity conjecture for D' fails.

Proof. If not, then [0.0"] = [c, c"] for every c. To find a contradiction, it is sufficient
(by Theorem % 3 () to find a partial lattice recursive in ¢ which cannot be embedded in
[0,0"].

Now it is a fact of lattice theory that there are continuum many finitely generated
lattices, indeed ones with only four generators. We supply such lattices with seven
generators in the next section. On the other hand, only countably many finitely generated
lattices can be embedded (as lattices) in [0, 0”] since the lattice embedded is determined
by the image of its generators. Thus we may choose a lattice £ which is finitel gﬂleratgd
but not embeddable in [0,0”]. £ has some degree, say c. By Theorem %3 [, Lis
embeddable in [c,c”]. Thus [0,0”] 2 [c,c”] as required. =

We will produce specific such degrees c in the next section and more examples will
be provided in later Chapters.

Our usual question now is 5 Gan_we improve the complexity bound on the (top of
the) embeddmg in Theorem %T?Tpartlcular we might w. nt t the f(1) < a’ or even
f(1)) = a’. Such improvements would also improve Theore ?ﬁ?ﬁl by replacing ¢” by
c’. As was often the case in the constructions of Chapter m%do this in two ways.
The first asks for new dense sets (corresponding to new requirements) to add to those
for 1-genericity that force us to preserve meets but can be meet recursively in (/. The
second method says we should show, by some more clever argument, that the dense sets
(requirements) for 1-genericity actually suffice to preserve meets as well.

For the first method, note that making the dense sets that force the preservation of
meets to be uniformly rec%sw% in 0" suffices get a generlc Gwith (P& G) <r GaP.

generi
(Here we use Propositions 6.1.25 and 6.2.17.)

Theorem 6.3.15 If L is a partial lattice with 0 and 1 recursive in A, then there is an
embedding f : L —Dla,a’] with f(0) = a and f(1)" = a’. Moreover, for v € L, f(x) is
uniformly recursive in f(1).
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Proof. Again we consider the case that A =¢ 0 and so we have a recursive lattice table
O for L. We u e the same notion of forcing and the same definition of our embedding
as in Theoremn 37 Y gnggnsider any 1-generic G which meets (in addition to the C,
of Proposition %%ZTHTt"h_at_guarantee 1-genericity) some new dense sets D.. Now all the
conditions, other than the ggfg{g%gion of meets, required to make f an embedding hold
by the proof of Theorem %.3.7 and the 1-genericity of G. By our remarks before the
statement of the Theorem, it suffices to show that the D, are uniformly recursive in 0/
and guarantee the preservation of meets.
For e € Nand x Ay = z in L, we define the new dense sets as follows:

Dewy = {plp Ik 3In(PC"(n) |# P*(n)) or
(G < Ip)(¥a < p)(ak &7 (n) 1) or Bn < |p[)(Yg < p)(g ¥ PG¥(n) |) or

(Vr,s < p)(vn)(Vi,j)(s=.7 & sk % (n) |[=i & ri-®%(n) |=j —i=j}.

As the first clause in the definition of D, , is ¥; and the others are II;, these sets
are clearly uniformly recursive in 0. The argument that meeting the D, ,, guarantees
the preservation of meets is much as before but simpler. Suppose ®% = ®% and both
are total. Thus there is no p € G satisfying any of the first three clauses in the definition
of D.,,. So we may suppose that there is one satisfying the fourth clause. We now
claim that we can compute ®¢+ = ®% recursively in G: For any n find a ¢ < p such
that ¢ =, G and ¢ IF ®% (n) |=i. (There is one as before.) We claim that ®C"(n) = i.
Again the point is that there is an r € G and an j such that r I+ @gy(n) l= 7 and,
of course, j = S (n). We may, as above, assume that || = |r| by lengthening one if
necessary without changing the output of the forced computations. The fourth clause of
the definition of D, , , now guarantees that ¢ = j as required.

All that remains is to prove that the D, , , are dense. Again, we can extract the proof
from that of the previous Theorem. Given any p ask if there is a ¢ < p satisfying the
fourth clause of the definition of D, ,,. If so, we are done. If not, then for every ¢ < p
there are r,s < ¢, n, i and j witnessing its failure, i.e. s =, r & s - ®%(n) |=i & r -
®¢¥(n) |= j but i # j. (Note that, by our conventions on congruences and forcing
convergence, n < |r| = |s|.) Now follow the construction above to interpolate 7, ; (for
i €{1,2,3}) between r(k) and s(k) and get ¢; for i < 4 starting with r, ending with s, all
agreeing on |p| and congruent modulo z. Attempt the extension procedure used above to
get s1, So, s3. If at some point we are unable to find the next s; to force convergence at
n, then we have a condition extending p such that no extension forces convergence at n,
i.e. an extension of p satisfying the second or third clause in the definition of D, , ,. If we
can find all the desired extensions, we argue much as before that one of the ¢;"s; 55" s3
satisfies the first clause of the definition of D, , , as required. =

We now give the proof which shows that 1-genericity actually suffices to guarantee
the embedding preserves meets.
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Theorem 6.3.16 Given a recursive (in A) partial lattice £ gnd any G 1-generic (over
A) for the notion of forcing P of the proof of Theorem %377771_6 map from L to the
degrees below that of G(®A) given by v — deg(G,)(Va) is a partial lattice embedding.
More specifically, G(BA) =1 G1(BA) whose degree is the top of the embedding is low
(over A), i.e. f(1) =a’.

Proof. ﬁéarifla We assume for convenience that A =7 0. We use the same forcing as in
Theorem 6.3.7, assume G is 1-generic and only have to show that meets are preserved.

Suppose that x Ay = z and &%+ = % = D. Consider the Y1 sets
To = {t]t IF In(2F=(n) |# &7 (n) 1)}

and

Sex = {s:sLtor(s<t&3In,ij3q, s0, 82,7 <UI=s50=,s=p 52 =7
&q IF 0% (n)|=i&rlFd%(n) |=j & i#j))}

By our assumptions there is no ¢t C G with ¢t € T, so let ¢ C G be such that
(Vp < t)(p ¢ T.) and consider S, ;. We first claim that no s C G can be in S, ;. Of course,
no s C G can be incompatible with ¢t C G. So the only way we can have s € S, is if
s < t and we have n, 1, j, q, so, S2 and r as in the definition of S. ;. By our assumption that
00+ = ®" = D, we may extend s to § C G such that § IF ®%(n) |= & (n) |= D(n).
we may then extend ¢, sg, so and r by the string p such that s"p = 5 to get ¢, 5o, 52
and 7 which also witness that § € S.;. By the definition of § € S.;, either i # D(n)
or j # D(n). Suppose i # D(n). As ¢ =, so, so IF ®%(n) |=1i but as sy =, s,
so IF ®¢"(n) |= D(n) and so sy € T, while sy < ¢ for a contradiction. The argument for
j # D(n) is similar.

Thus there is an 7 C G with no extension in S, ;. In particular every extension of #
is compatible with ¢ and so 7 O ¢, i.e. 7 < t. We now claim that for any ¢ < 7 with
¢ =. G such that ¢ IF ®%(n) |= & (n) |=1i, i = D(n) and so D <; G, as required.
If not consider a counterexample q. Let v be such that r=r"v = ¢ so ¢ =, r and both
extend 7. Choose interpolants sg, s, sy between ¢ and r, i.e. ¢ =, 50 =, 5=, s2 =, T
with all extending 7. These conditions now provide witnesses that s € S, for the desired
contradiction as s < 7. m

Corollary 6.3.17 There is ¢ such that [0,0'] 2 [c, c/].

Exercise 6.3.18 If L is a recursive lattice with O and 1 then it can be em Cegilde%cg, Jnto
D(< g) preserving both 0 and 1 for any Cohen 1-generic g. (Recall Exercise 6.2.

We close this section with noting that not all constructions that can be done by adding
on dense sets recursive in 0’ to the ones for 1-genericity can be replaced by showing that
1genericity for the original forcing suffice L %&q igrxlfestigating some variants of n-genericity
suggested by the argument for Theorem 6.3.16.
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Exercise 6.3.19 If H <1 0" is 1-generic, then there is a uniformly recursive in 0 se-
quence D, of dense sets (also for Cohen forcing) such that H does not meet all the D,.
Indeed, if G meets all the D, then H £ G.

Definition 6.3.20 Given a notion of forcing P and ann > 1, a filter G or descending
sequence in P is weakly n-generic if it meets every dense X¥ subset D of P. The asso-
ciated generic G is then also P weakly n-generic. A degree g is P weakly n-generic if it
contains a P is weakly n-generic G.

In the following Exercises, if no other notion of forcing is mentioned, Cohen forcing
is intended.

Exercise 6.3.21 For any P, every weakly (n+ 1)-generic G or g is n-generic and every
n-generic G or g is weakly (n — 1)-generic. (For convenience we take weakly 0-generic
to mean that it meets every recursive dense set)

Exercise 6.3.22 For any P and weakly (n+1)-generic G, if X <7 P™ G then X =7 0.
Exercise 6.3.23 There is a weakly (n + 1)-generic g which is not (n + 1)-generic.
Exercise 6.3.24 There is an (n + 1)-generic g which is not weakly (n + 2)-generic.

Thus the classes of weakly n-generic and n-generic degrees g form a strictly descending
hierarchy of degree classes as n increases (with the n-generic degrees properly containing
the weakly (n + 1)-generic degrees).

Notes: Representations by equivalence relations is an old subject in lattice theory.
In degree theory they were first used to embed all finite lattices in D and certain special
lattices as initial segments of D by Thomason [1970]. The version used here in terms of
tables is particularly suited to degree theory and was introduced in Lerman [1971] and
extensiw?ly presented in his [1983] Their use to embed 1a‘ﬁc;%%%u%g§1%%¢ih1££ical segments
appeas in ‘§§t%1¥n%([)],982] where it is u %%etm%(g),rove T.heorems 6.3.1, bd 7, 6.3.14, Corolllloz%nré/
6.3.17 and 6.3.15 XVH?CIJ) as Exercise %.3. [5 and variou hsc%gngthemngs of Theorem 6.3.14
such as Corollary g.B.l 7. The first proof of Theorem 6.3.14 and so the failure of the ho-
mogeneity conjecture for D’ is due to Feiner [1970] but it depended on the construction
of 31 but not recursively presented Boolean algebras and known, be’lcn brplucelrrl1 more com-

allitcee%ntgéi l@{nbeddings of lattices as initial segments of D. Theorem 6.3.16 and Exercise
%.3. [8 come from Greenberg and Montalban [2003]. The notion oafu Xveakly n-generics and
the Exercises about them are from Kurtz [1983]. 77Exercise E‘B‘5 due to Paul Shafer

(personal communication).??
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6.4 Effective Successor Structures

For later applications, we would like to have a specific family of size 2% of finitely
generated partial lattices that code arbitrary sets S in a relatively simple way and can be
g{r%bggfiﬁd below various degrees related to S in ways that we specify later. By Corollary
%Tﬁffﬁs will also supply the 2% many finitely generated lattices required for the proof
of the failuﬁgmfc)f the homogeneity conjecture for the degrees with the jump operator
(Theorem 6.3.14).

We begin our description of the desired partial lattices with ones that are effective
successor structures.

Definition 6.4.1 An effective successor structure (ess) is a partial lattice with constant
symbols eq, e1, dy, fo, f1 generated by the corresponding elements and containing pairwise
incomparable elements d,, such that, for each n > 0,

(don V €0) A f1 = dapt1 and (dons1 Ver) A fo = dopsa.

Definition 6.4.2 If L is an ess and go, g1 € L a partial lattice extension of L, we say that
go, g1 roughly code the set S = {n|d, < go, 01} in L. We say that go, g1 precisely code
the set S if, in addition, go, g1 form an exact pair for the ideal generated by {d,|n € S},
i.e. every x < go, g1 1S below a finite join of some of the d,.

It is clear that given a set S there is an ess £ and an extension Lg of £ generated (over
L) by by two additional elements g, g1 that precisely code S. (If this is not clear now, it
mi%lsbe when we co %izgineg the subclass of effective successor structures given in Definition
4.3 and Remark 6.4.4.) Thus the class of structures Lg provides us with continuum
many different finitely generated partial lattices (and so lattices as well). Moreover,
we have represented an arbitrary set S by a finitely generated partial lattice Lg in a
reasonably simple way. For later applications we now analyze the relations between the
complexities of S and Lg and so of their embeddings in D. To make these relations as
simple as possible we want to impose some additional conditions on our partial lattices
and relax our notion of coding a set S.

Definition 6.4.3 A nice effective successor structure (ness) is a partial lattice extension
of an ess containing various new elements and constants naming them: a, naming its
greatest element, b, naming its least element, as well as cy,c; and d,, for each n € w such
that co # ¢1 and (Yn € w)(d, V co > ¢1 & dy Ady = b & (Ym # n)(dy > ).

Remark 6.4.4 In any ness L C D the degrees d,, (denoted by the constants d,) are
independent: no finite join x of d,,’s for m # n can be above d,, (denoted by dn) as
x < d, whiled, Ad, =b (denoted by b) implies that d,, ¢ d,,. Thus, for any set S, L
can be extended to an Lg C D by adding on an exact pair gy, g1 for the ideal generated
by the d,, forn € S so that S is precisely coded by g, g1 in Lgs.
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We now want to analyze the complexity of sets coded in a related manner in such
substructures of D. As A on degrees is more complicated than < or V, our first goal is to
eliminate the use of A (in defining the d,, from the generators) in favor of an approximation
in terms of just < and V which will be sufficient to code a set S. Moreover, as the use
of £ also increases the complexity of formulas in D, we do not want to use it either. We
provide such an approximation ¢, (z) to d,, in an arbitrary ness.

Definition 6.4.5 A formula 0 of a language F 1is positive ¥y if it is built from the atomic
formulas of F using only conjunction, disjunction and existential quantification.

Proposition 6.4.6 If £ is a ness then there is a recursive sequence @, (x) of positive
Y formulas in the language containing only V, < and the constants cy, c1, dy, €g, €1, fo, f1
such that the following two assertions are true in L for every n.

1. p,(d,).

2. Va(p, () = b <z <d,).
Moreover, if Lisa partial lattice extension of L, then the same facts are true in L.

Proof. We define ¢, by recursion on n. We begin with ¢,(z) = x = dy. The successor
steps depend on their parity.

oni1(T) = Vg >er & y(py,(y) & 2 < (yVeo), fr).
onso() = Vo> & (o, 1(y) & 2 < (yVer), fo)

It is clear by induction that the ¢, are positive ¥; formulas with only the desired
constants. We prove the two assertions of the Proposition by incLLé%tion. Both are obvious
for ¢,. Consider ¢,, ., and the first assertion. By Definition %.7173, dop+1 V cg > c1. We
claim that dy, is the desired witness y that the sgcond clause of ¢y, (d2n+1) holds as
well: by induction ¢,,(ds,) and, by Definition m, don+1 < (dan V €9), f1 as required.

Now, for the second assertion, suppose that ¢, () holds. As xV¢y > ¢; and ¢o # ¢,
b < x. Let y be the witness that the second clause of ¢,,, . ;(z) holds. Thus ¢,, (y) and so
by induction y < da,. Finally, by the second clause in ¢y, 1, * < (don V €9) A f1 = dapio
as required. The argument for ¢, , is essentially the same.

The same arguments work in any L extending £. m codeSs3

For later use in complexity calculations (starting with Proposition 6.4.9); we now
point out that we can replace all the existential quantifiers in the ¢, by bounded ones.

‘s . 4 .,.  |approxdn .
Proposition 6.4.7 With the notation of Proposition 6.5.6, 1f we replace all the existen-
tial quantifiers Jy in @, (for any n) by bounded quantifiers Iy < a to get formulas ¢,,,
then ¢,,(x) and ¢,,(x) are equivalent in every L extending L.
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Proof. Fix any £ extending £ and proceed by induction on n. The first formula ¢, has
no quantifiers so there is nothing to prove. For ¢,,.; as we may assume that we have
replaced all the quantifiers in ¢,, by bounded ones, the only quantifier that we n gd 10 40
consider is Jy in the second clause Jy(p,,(y) & = < (y V o), f1). By Proposition % 16
Vg, (y) — y < da, and so this clause is equivalent to (Jy < a)(¢,,(v) & x < (y V eo), f1).
The argument for ¢,,, ,, just replaces 2n by 2n +1. =

We now adjust our notion of coding a set S by using the ¢, in place of the d,, and
then calculate the complexity of sets coded in D.

Definition 6.4.8 If L is a ness and go, g1 € L a partial lattice extension of L, we say
that go, g1 code the set S = {n|LF Jz(p, () & £<go,g1)} in L.

Proposition 6.4.9 Given a ness L C D and any degrees g, g, the set S coded by
g0,81in D is X3 in AP Gy ® Gy = Z € z and is the same set coded by go, g, in any
extension L of L in D containing {x|x < z}. (As might be expected we are taking the
degrees denoted by the constants of the ness to have the natural names: a denotes a, b
denotes b, etc. We also follow the usual convention of naming representatives of the
degrees: A € a, B € b, elc.)

tbdd
Proof. By Proposition , () and its bounded version ¢, (x) are equivalent in any

£ as in our Proposition. Thus we may replace khe Bad by these ¢,, in the definition of the
set S coded by g, g; in L. As by Proposition ey can hold only of x < a and all
the constants in these formulas are below z and the quantiﬁers are bounded by a < z, it is
clear that the truth of the defining formula 3x(p,,(x) & £<gg, g1) forn € S'is mdependent
of our choice of £ as long as it contains {x|x < z}. So we consider £ ={x|x < z}.

We can represent all the degrees below z by sets of the form ®Z and, in particular
we choose indices a, b etc. so that ®Z € a, ®Z € b, etc. Conversely, every total ®
has degree < z. We now translate the defining formulas 0,, = 3x(¢,,(x) & 2<go, g1)
that code whether n is in S into the language of Turing reducibility on sets recursive
in Z and so sentences 0, of arithmetic. First, recall the uniform proc dures for (ﬂeahng
with join and changing oracles for sets recursive in Z from Examples ; £10 a
PZ P PZ = q)f(eﬂ.) and &% — CIDtZ(eﬂ.). We begin our translation of the 6,, by choosing, for
each constant symbol v, a number 9 such that ®Z € v. We now replace each occurrence
of v in 6, by ®Z. We next inductively replace each bounded quantifier (Jy < a)y(y) by
Hi(CI)tZ(L 2 18 total & 1Z)(<I>tZ(i7d)). Then we inductively eliminate \VV by replacing terms of the
form ®7 v &7 by ®7_ . Finally, we replace all atomic formulas of the form ®7 < &7

or & = ®Z by <I>Z <T ®Z and ®Z =1 P, respectively. It is clear that the resulting
sentence 6, (of arlthmetlc is equivalent to the truth of 6, in £. As <I>t(Z 5y being total is a

]l_Ié-?t roperty (Example A. while ®Z <7 &7 and &7 =1 &7 are ©Z relations (Example
.0, is ¥Z as requlred |

Remark 6.4.10 For any degree d and ness L contained in D(<d), if we can show that
all P sets are coded in L by pairs below d, then we know that these sets are exactly
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those which are Y. Similarly, if we have a ness £ C L C D such that, for every d € ﬁ
every set X is coded in L by a pair in L, then the sets so coded are precisely the sets
»P for any d el.

These calculations will play a crucial role in our determination of the complexity of
the theories of D and various substructures such as the degrees below 0’ as well as our
global results on definability and automorphisms of D and its substructures in various
7?7 later chapters.

We give one application now that determines specific counterexamples to the homo-
geneity conjecture for D’. Stronger results will be provided in 77.

Corollary 6.4.11 The degrees below 0, [0,0], are not isomorphic to [0, 0] and so
D(<)) £ D(>09)(<)).

Llatemb0’ |emb<lgen
Proof. By Theorem 6.3.15 or 6.3.16 (relatwlzed to 00 there ]SS 4 ness L and degrees
g0, g1 in [00), 0] which codes 0®). However, by Proposmon , any such substructure

in [0,0'] codes a set which is X3 and so ¥,. Of course, 0©) ¢ 24. n

h
Exercise 6. 4 12 Improve Corollarg)% ZomZCCZ by replacing [0®), 0] by (0¥ 00)]. Hint:
Code both 0 and its complement.

xercjse 6.4.13 Show that D(<,) % D(>03)(<L,"). Hint: Use the fact that Theorem
em eds lattices recursive in A so that the top of the lattice has jump A’.

We conclude by noting that we can always restrict ourselves to coding by exact pairs
in substructures of D and so to precise coding.

Proposition 6.4.14 If L C D is a ness, S C N and gy and g, are an exact pair for the
ideal generated by the d,, forn € S, i.e. g, g1 precisely code S, then S is the set coded
by go and g1 in D (and so in any L C D containing the degrees below a 'V g,V g1).

Proof. Let S he set coded by gg, g1 in D. (;le rgy ifn €S, d, < gog1- By
Proposition %%G_D E ¢,(d,) and o e% Definition ,n € 5. On the other hand ,
if n € S, then, again by Definition , there is an x < gg, g such that D F ¢, (x).
The first of these facts tells us that x is below the join of finit Cll}{igé%ny d,, form e S.
The second that x < d,,. As the d; are independent by Remark , n € S as required.
That the same set S is o%eg gn any LCD containing the degrees below aV g, V g;
follows from Proposition % 4.9.

Notes: The conditions on (nice) effective successor structures and their use in coding
arithmetic come from Shore [1981] as does Proposition %.ZLQ. ??other references for some
of the development of these ideas??
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Chapter 7
The Theories of D and D(< 0)

In the previous chapter, we talked about embeddability issues. We need to consider more
in order to understand the theory of the degrees. We now approach theorems which say
that the theories of (i.e. the sets of sentences true in) D and D(< (') are as complicated
as possible. More precisely they are of the same Turing (even 1— 1) degree as true second
and first order arithmetic, respectively. The method used is interpreting arithmetic in
the degree structures.

7.1 Interpreting Arithmetic

We say that we can interpret (true first order) arithmetic in a structure S with parameters
p if there are formulas ¢, (2), ¢, (2,9, 2), ¢ (2,v, 2), ¢.(z,y) all with parameters p and
one p.(p) such that for any p € S such that S Fy_(p) the structure M(p) with domain
D(p) = {z € S|S F ¢p(x)} and relations +, x and < defined by ¢ (z,y, 2), ¢, (2, v, 2),
v (x,y), respectively, is isomorphic to true arithmetic, i.e. the natural numbers N with
relations given by +, x and < respectively and there is at least one such p. (We are
writing the operations + and x in relational form +(z,y,2) < = + y = 2z and similarly
for x.) In this situation, the theory of true first order arithmetic, Th(N), i.e. the set
of sentences of arithmetic in this language true in N, is reducible to Th(S), the set of
sentences in the language of S true in S. Indeed, the reduction is a 1 — 1 reduction. More
precisely there is a recursive function 7 taking sentences ¢ of arithmetic to ones ¢’ of
S such that NF ¢ & S EVp(p.(p) — ¢T). The definition of T is given by induction.
Atomic formulas +(x,y,2), x(z,y,2) and < y are taken to ¢, (z,y,2), ¢, (2,9, 2),
¢_(x,y), respectively. A formula of the form Jwy is taken to Jw(pp(w) & ¥") while
Vw is taken to Yw(pp(w) — 7). It should be clear (and, if not, routine to prove)
by induction that if M(p) = N then, any sentence ¢ (of the relational formulation of
arithmetic) is true in N if and only if ¢ is true in M(p). Thus if ¢.(p) guarantees that
M(p) = N, we have the desired recursive reduction from Th(N) to Th(S).

A second order structure is a two sorted structure (i.e. one with two sorts of variables
say = and X in its language and two domains U and W C 2Y over which the two types of

7
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variable range, respectively. This provides the semantics for the quantifiers Jx, Va, 3X,
and VX in the obvious way). The language also has relation symbols and relations on
the first sort as in a standard first order language and structure. In addition, it has
one relation x € X between elements of the first sort and ones of the second sort that
is interpreted by true membership. We say that it is a true second order structure if
W = 2V i.e. the second order quantifiers range over all subsets of the domain U of the
usual first order structure. It is a model of true second order of arithmetic if U = N, the
first order language is that of arithmetic as above and W = 2. (Note that as with true
first order arithmetic there is, up to isomorphism, only one model of true second order
of arithmetic.)

We extend our notion of an interpretation of arithmetic to second order structures
by adding a formula ¢g¢(z,y) which implies ¢, (z). For each tuple of degrees y, we are
thinking of p¢(z,¥) as defining the set of n € N such that ¢4(d,,¥) holds for d,, the
degree corresponding to the nth element of the model in the ordering given by ¢_, We
then translate the second order quantifiers by replacing each atomic formula z € X by
wolr,7x), 3X1p by Igxv’ and VX by Vixy" where we are thinking of the 7y as
coding the set X. If; as before, ¢ .(p) guarantees that the associated first order structure
is isomorphic to N and, in addition, as § ranges over S™ (where n is the length of 7) the
sets S; = {z|¢g(x,7)} range exactly over all subsets of D(p) then it clear (or routine
to prove) that, for any second order sentence ¢ of arithmetic, ¢ is satisfied in the true
second order model of arithmetic if and only if S F ¢, (p) — ¢!. In this case we again
have a recursive reduction: a sentence v of second order arithmetic is “true”, i.e. satisfied
in the model of true second order of arithmetic if an only if S EVp(p,(p) — 7).

Our goals now are to prove that there are interpretations of true second order arith-
metic in D and true first order arithmetic in D(<0’). The first we complete in this
chapter. We actually show in the next section that we can code and quantify over all
countable relations on D in a first order way by quantifying over elements of D. From
this result is routine to get a coding as described here of second order arithmetic in D.
The results and analysis need for D(< 0) are mostly contained in this chapter but the
proof also requires material from the next chapter as well. In each case, the correctness
condition ¢,(p) includes the translations (via T') of the axioms of a finite axiomatization
of arithmetic such as Robinson arithmetic that is strong enough to guarantee that any
model of the axioms in which the ordering < on its domain is isomorphic to w is actually
isomorphic to N. The crucial steps are then to prove that there are p such that M(p) = N
and that there is a formula . which guarantees that the ordering of M(p) (given by
@ (p)) is isomorphic to w.

We begin with D and coding countable subsets of pairwise incomparable degrees
by using Slaman-Woodin forcing. We then show how to deal with arbitrary countable
relations on degrees.
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7.2 Slaman-Woodin Forcing and Th(D)

Let S = {c;|i € N} be a countable set of pairwise incomparable degrees. We want to
make S definable in D from three parameters c, gy and g;. The definition is that S is
the set of minimal degrees x < ¢ such that (x V g,) A (xV g;) # x in the strong sense
that there is ad < xV gy, x V g, such that d £ x.

Theorem 7.2.1 For any set S = {Cy, C4,...} of pairwise Turing incomparable subsets
of N let C' = &C;. There are then Gy, G1 and D; such that, for every ¢ € N and
J <2, D; <p C; ®Gj while D; ﬁT C;. Moreover, the C; are minimal with this property
among sets recursive in C' in the sense that for any X <r C for which there is a D
such that D <p X ® G; (j <2) but D £ X there is an i such that C; <r X. Indeed,
there is a notion of forcing P recursive in C' such that any 2-generic computes such Gg
and Gy. Thus for c;,c and go, g1 the degrees of C;, C, Gy and G respectively, the set
S = {c;|i € N} is definable in D from the three parameters c, gy and g;.

Proof. Without loss of generality we may assume that each C; is recursive in any of
its infinite subsets: simply replace C; by the set of binary stings o such that o C C;.
The point of this assumption is that to compute C; from some X it suffices to show that
X can enumerate an infinite subset of C; as then there is an infinite subset of this set
recursive in X and so then is C;.

We build G; as required by forcing in such a way as to uniformly define the D; from
Gy and C; and such that D; is also recursive in Gy @ C; (although not uniformly). We
begin with the coding scheme that says how we compute the D;.

Let {cip, ci1, ...} list C; in increasing order. Our plan is that D;(n) should be Gy(c; )
and so the D; are uniformly recursive in Go ® C;. We call (i, k) a codmg locatwn for C;
if k € C;. To make sure that D; <p G & C; as well, we guarantee that G ( n) = G—’[Z (cn)
for all but finitely many n. We now turn to our notion of forcing P.

The forcing conditions p are triples of the form (po, p1, F,,) where pg, p1 € 2<“, |po| =
Ip1], and F), is a finite subset of w. We let the length of condition p be |p| = |po| = |p1].
Refinement is defined by

P<q < po24qop 2 ¢,y 2 Fy, and
if i € F, and |q| < (i, ¢in) < |p| then po((i, cin)) = p1({%, cin)).

This is a finite notion of forcing with extension recursive in C'. The function V' is defined
in the obvious way: V' (p) = po@® p1 so our generic object defined from a filter G is Go® G
where Gj, = U{pi|p € G}. We use G; in our language to mean the k" coordinate the
generic object. Note that C' <p P as well (Exercise) and so n-generic for P means generic
for all ¢ sets.

Note that for any ¢ € 3y, if p IF ¢ then (po, p1,0) IF ¢ as V(p) = V({po, p1, D). So if
q < pand qlF 1 for ¢ € 3y then (qo, 1, Fp) IF 1) as well.
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Suppose that G is 1-generic for P. It is immediate from the definition of <p and the
density of the recursive (in P) sets {p|i € F,} that Gg] and G[f] differ on at most finitely
many n € C;. (If i € F, and p € G then G([)ﬂ(m) = G[f](m) for m € C; and m > |p|.)
Thus D; <r Gy ® C; as required.

We next show that D; €7 C;, that is ®¢" # D, for each e. Suppose for the sake of a
contradiction that D; = ®¢ for some e (and so in particular ¢ is total). Consider the
»¢ set

Sie =1{p : IM(po((i, cim)) # (I)Si (m))}

The S;. are dense because if p € P and m is such that (i, ¢; ,) > |p| then we can define
q<pby F,=F,and for [p| <j < (i,c;im) put qo(j) = 1(j) = 1 — ®%i(m). So q € S;.
and ¢ < p as desired. Thus, thereis ap € G N S; . for which

Dj(m) = Go((i, cim)) = po({i, cim)) # B (m),

contradicting D; = ®¢:.
Now, we have to ensure the minimality of the C;. In other words, we want to prove
that if
P — X = p X <rC  and D #r X

then C), <¢ X for some k.

Consider the sentence ¢ that says that ®X®% and @f@Gl are total and equal. It is
II; in C' (because X <7 () and true of G = Gy ® G;. So, if we now assume that G
is 2-generic, there is p € G such that p IF . Suppose first that =3In(Jo D p)(IT 2
po)[®X%7(n) |# ®X®7(n) |]. Then we claim D is computable from X. To compute D(n)
search for any o O po such that ®X%°(n) | and output this value as the answer. There
is such a 0 C Gy by the totality of ®X®% . Qur assumption that there is no pair of
extensions of pg that give two different answers implies that any such o gives the answer
PX®Co(n) = D(n).

On the other hand, suppose there is such a splitting for n given by py o, po” 7. By
extending one of ¢ and 7 if necessary, we may assume that |o| = |7|. We claim that py“c
and po "7 differ at a coding location (k, ¢k ) for some k € F),. Let 7/ be such that

CI)ZX@(PlATAT/)(n) |= (bf@(pOATAT/)(n) l.
There must be such a 7" as (po"7,p1 7, F,) < p and so it has a further extension
q = (po" 7 po,p1 T p1, Fp) which forces ®X®Co(n) |= &X%“1(n) |. Next consider
G = (po 7" po,p1 T po, Fp) < p. It also has an extension (po 7" py " o, P17 po 1, Fp) IF
PXECo(n) |= &1 (n) |. Tt is now clear that 7" = p,"p, has the desired property.
Next, consider the condition ¢ = (po"c 7/, p1"7°7', F,). Notice that ¢ £ p because:

1 X0 (n) = X (1) as py o1 2 pyo.

2. @7 T (n) = &0 7 (n) by our choice of 7, but
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3. o) (n) # P Opo’T) (n) because n, py" o, po” T were chosen to be splitting.

Hence, @2 7 ™) (n) # & "7 ™)(n) and so ¢ does not extend p. However,
po o T D pg and p1 7T 7T D p1, so it must be that py o7 and p;"7 "7’ differ at a
coding location above |p|. Therefore, py"o and py”7 differ at a coding location (k,n)
with & € F},.

We now show that there must be such py~o and py”~7 which differ at only one number
(which then must be a coding location (k,n) for some k € F,). Suppose o, T are strings
as above with |o| = |7| = (. Let 0 =+9,7%,...,79% = 7 be a list of strings in {0, 1}* such
that 79,4, , differ at only one number for each i. Let § be such that e A (n) |

(such a 3 exists by the same argument as before). Set v; = 79" 3 for each 0 < i < 2.

. . 4 X®(po 741 "B)
Repeat this process for each j < z. At step j + 1, let 5 be such that &, (n) |,

and set ”yﬁl = V{AB for each 0 < i < z. At the end, we have strings v§, 77, ...,7Z such

that &, OAﬁ)(n) | for each i, and po"v7,po 77, differ at only one number for each i.

Since
q,g(@(po%)m) — q)ifea(pow) (n) # q)gfea(pokf) (n) = q)gf@(poAvi)(n)’

there must be an ¢ for which @f@(powf)(n) # g o ﬁ“)(n). The strings po™v7,p0 Vi1
differ at only one number and it must be a coding location (k,m) for some k € F, as
required.

Next, we show that X can find infinitely many coding locations (k, m) for some fixed
k € F,. Suppose we want to find such a location (k,m) with m > M. Search for
strings po~ o and py"7 that agree on the first M positions, differ at only one position,
and satisfy @2 2 ) (n) % ®X®* 7 (n). Such strings must exist because we could have
started the above analysis at any condition ¢ € G with ¢ < p (so we can find such strings
agreeing on arbitrarily long initial segments). The position at which py“o and py~7 differ
must be a coding location bigger than M. Since F, is finite, infinitely many of these
coding locations must be for the same k. Given this £, X can find infinitely many coding
locations (k, ¢k ). Hence, X can enumerate an infinite subset of C} and so can compute
C} by our initial assumption on the C;. m

As 2-genericity sufficed for the proof of the theorem above , we can get th Sggquired
G; <p CS”an(Iil, indeed with (Go & G1)" =r C”. We show below (Theorem [7.371 and
Exercise b?%%’that we can do better.

Now we work toward coding arbitrary countable relations on D.

Proposition 7.2.2 If H is Cohen 1-generic over C, then, for any1,j € w and X,Y <
C,if XeoH! <Y @ HU theni=j and X <Y.

Proof. Suppose that for some e, X|Y < C, ®Y®H "' — X @ H and consider the set
Se={o €27 : (@) (n) |# X @ all(n))}.

Se € ¥1(C) so either there is a 0 € S, N H or there is a ¢ C H no extension of which is
in S,. The first alternative clearly violates our assumption that ®¥®#” = X @ Hll and
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so there is a ¢ C H such that 7 ¢ S, for all 7 D . Let n = |ol!|. If i # j and there
were 3 O oVl such that ®Y®5(2n 4 1) |, we could extend o to a 7 such that 7V = 5 and
rlil(n) =1 - ®Y®%(2n + 1) (as the value of 717(n) is independent of 719). In this case, we
have

Yo (2n 4 1) |#£ 7 (n) = (X ® 71 (2n + 1)

and so 7 € S,, contradicting our choice of o. Therefore, there can be no 8 D ol
making ®Y®%(2n + 1) converge while ®Y®#" ig total by assumption and o ¢ HU! for
a contradiction. Thus ¢ = j.

Next we show that X <7 Y. To compute X (n) from Y, search for a 7 O o such that
Y™ (2) converges (such a 7 exists because ®¥ 7" s total and o) ¢ HU!). Then, as
usual, we claim that @Z@T[J] = (X @7 (2n) = X(n) for if not, 7 € S, and extends o for
a contradiction. m

Theorem 7.2.3 Every countable relation R(xg,...,x, 1) on D is definable from pa-
rameters. Indeed, if C' is a uniform upper bound on representatives C; of the sets with
degrees c; in the domain of R as well as of the <C’j0, e Cjn_1> such that R(cjq,...,¢; )
and H is Cohen 1-generic over C' then there is a notion of forcing recursive in C' & H
such that any 2-generic computes the required parameters. Moreover, for each n there is
a formula ¢, (o, ..., Tn_1,y) with y of length some k > 0 (depending only on n) which
includes the clauses that x; < yo for each i < n such that as p ranges over all k-tuples
of degrees, the sets of n-tuples of degrees {a|D E p(a,p)} range over all countable n-ary
relations on D.

Proof. We take ¢ = deg(C') to be our first parameter. Let H be Cohen 1-generic over C
and h; ; be the degree of H [53)], We code R using the following countable sets of pairwise
incomparable degrees.

H; ={h;;|j € N} fori <n

Fi={c; Vhy;|j € N} fori <n
R ={hojo Vhy; V-V, R(Cy, €y, -5 €5,00))
Each of ‘ihese sets consists of pairwise incomparable degrees The first and third by
Proposition at for a Cohen 1-generic H the sets H¥ form a very independent
set. (So, for any finite sets A and B of h;;, V{x|x €A} < V{x|x eB} if j%qn(v)vlfl%nlf

A C B.) The elements of each F; are pairwise incomparable by Proposition ur
defining formula ¢ for R is now

&icn(x; <) & (3y,)icn(yi € Hi & &icn(x; VYY) € Fi & V{yili <n} eR)

where we understand membership in the sets H;, F; and RS as being defined by the
appropriate formulas and parameters as given by Theorem [7.2.1. This also supplies
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the notion of forcing required in our Thegrem by taking (the disjoint union of) three
versions of the one provided in Theorem 7.1 for the three families of pairwise Turing
incomparable sets needed for these definitions as they are uniformly recursive in C'@ H.
The verification that this formula defines the relation is straightforward. If R(X) then
every element of the sequence X is below ¢ and is therefore equal to a c;, (for i < n).
The degrees h; ;, € H; then are the witness y; required in ¢. In the other direction, if
¢ holds of any n-tuple then all its elements are below ¢ and we need to consider the
situation where ¢(x;,,...x;, ,) for some j;, i < n. Let the required witnesses be y;. As

yi € H; and (x;, Vy;) € F;, yi = h; ;. Then as \/yi € R, R(Xj,,Xjy,...,Xj, ,). The

<n
assertions in tthTheorem about the form of the re<quired formulas ¢ are now immediate
from Theorem 72.1. m -

Note that with the above assumptions on ¢ in é%lnls proof, Theorem h??.l, the remarks
immediately following it and Proposition %.EZWCEHI get all the parameters need for
this definition of R below ¢”. We improve this by one jump in the next section.

We can now precisely characterize the complexity of Th(D) as that of true second
order arithmetic.

Theorem 7.2.4 Th(D, <) =, Th*(N,<,+, x,0,1).

Proof. That Th(D, <) <,Th*(N,<,+, x,0,1) is easy. As A <p B is definable in arith-
metic (indeed as we have seen it is X3 in A and B) and quantification over all sets gives
quantification over all degree, we can recursively translate any sentence about D to an
equivalent one of about second ord rreladre@hmetic. For the other direction we use the
formulas ¢;, ¢, and @5 of Theorem ;.2.3 to give an interpretation of true second order
arithmetic in D. We consider sequences of parameters pp, p, px and p so that ¢,(pp)
defines a countable set of degrees and plays the role of ¢, for our interpretation. Our
correctness condition then includes the sentences that say that v5(p. ), @5(Px) and o, (p<)
(playing the roles of ¢, ¢, and ¢_, respectively) define relations on the countable set
defined by ¢, (pp) to determine a structure M(p) (where p is the concatenation of all the
sequences of parameters dg;ed here) that satisfies all the axioms of our finite theory of
arithmetic. Theorem bfZTB‘fhen says that there are choices of these parameters such that
the structure so defined is isomorphic to N. After all, N is just a countable set with two
ternary relations and one binary one. We now use ¢, (z,q) Ay, (Pp) as tTr% g Fequired for
our interpretation of true second order arithmetic. Again by Theorem [7.2.3, as ¢ ranges
over tuples of degrees, the subsets of M (p) defined by ¢, range over all subsets of M (p) as
required. All that remains to do is to show that we can extend the list of correctness con-
ditions that guarantee that M (p) is a model of our finite axiomatization of arithmetic to
also guarantee that it is isomorphic to N. We can do this by adding on the sentence which
asserts that every nonempty subset of M (p) (as given by p¢(q, p) for some ) has an <y

least element, i.e. Vg{3x(¢g(x,q,p)) — Iz[vg(x,q, D) AN 3y(ps(y,q D) Ao (y, z,p<))]}-
m



thjumpideal

84 CHAPTER 7. THE THEORIES OF D AND D(< 0/)

Exercise 7.2.5 If C is a jump ideal of D (i.e. a downward closed subset that is also
closed under jump and join), then the theory of C is 1-1 equivalent to that of the model
of second order arithmetic where set quantifiers range over the sets with degrees in C.

Notes: Slaman and Woodin forcing wag introduced in Slaman and Woodin [1986]

SW relde
where they proved Theorems 72.1 and 7.2.3 Theorem 7.2.4 (which as presented here
follows easily from these results) is originally due to Simpson [1977] g{gg%l }:{rWith a
very different proof using then new initial segments results and Theorem %.2. IZE. Another

version u%ig&tsig}?ler codings and previously know iniﬁjc%l. &?%@éﬂ results along with

Theorem 5.2.14 15 in Nerode and Shore [1980]. Exercise [7.2.5715 from Nerode and Shore
[1980a).

7.3 Th(D < 0)mm<0o’]

We now want to improve our coding results so that they become applicable below 0. We
begin with the Slaman and Woodin coding of sets of pairwise incomparable degrees.

Theorem 7.3.1 For any set S = {Coy, C1,...} of pairwise Turing incomparable subsets
of N let C = &C;. There are then Go,Gy <7 C' and D; such that, for every i € N and
Jj <2, D; <r C; ®G; while D; £7 C;. Moreover, the C; are minimal with this property
among sets recursive in C' in the sense that for any X <p C' for which there is a D such
that D <r X ® G; (j <2) but D £r X there is an i such that C; <r X.

Proof. We follow the ideas of the proof of Theorem 72.1 but replace the uses of 2-
genericity for extending conditions to make something converge. At various steps we ask
if there are appropriate extensions, if so we take them and continue our construction.
If not we have a condition that forces some functional to diverge and so can satisfy the
relevant requirement in that way. m

Proof. We build D; <y Gy & C;,G; & C; such that D; fT C;. The requirements for
diagonalization here are:

P.;: 9% £ D

Let X; = q)jc_ We also have requirements for minimality:

R, j: ®50%% = 919X = D = D <; X, or 3i(C; <r X;).

We list all the requirements as Q5. We build Gy, G by finite approximations 7 4, 71 4
of equal length. As before we let D;(m) = Go({i,¢;m)) where {¢;,} is an enumeration
of C; in increasing order. So D; <r Gy & C;. We guarantee that D; <p Gy ® C; as
before by making sure that, for each i, Go((i,¢;m) # G1({i,¢;m) for at most finitely
many m. In particular we institute a rule for the construction that when we act to
satisfy requirement @), at stage s by extending the current values of v, (k = 0,1) we
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require, for i < n, (i,m) > [y, = |71, and m € Cj, that the extensions v}, are such that
vo({i,m)) = v ({z,m)). As we act to satisfy any @Q,, at most once, this rule guarantees
that there are at most finitely many relevant differences between Gy and G, for each 1.

At stage s, if Qs = P.;, we act to satisfy P.;. Choose m such that (i,c;,,) >
V0.l Ask if ®7(m) |. If not, let v, 1 = Y, for k = 0,1. (As usual this satisfies
P.;.) If it does converge, extend each of v, ,,7, , by the same string o to vy ,,1,71.641
with Y 1 ({2, ¢im)) # ®7(m). This also satisfies the requirement because D;(m) =
Go((i, ¢im)) by definition and trivially obeys the rule of the construction.

Note that C” can decide if ®%¢(m) |, so this action is recursive in C’.

If Qs = R, ;, this stage has a substage for each requirement @), = Ro ; with n <'s
that has not yet been satisfied. For notational convenience we write 7, for 7, ; in the
description of our action at stage s. At the end of each substage we define successive
extensions vy, of v, satisfying the rule of the construction. We first try to satisfy R. ;
(which, of course, we have not attempted to satisfy before). We ask if 3x3oy, O v, which
satisfy the rule of our construction and such that the o, & X e-split at x, i.e.

2709 (z) | BP9 () | .

Note that, when we are acting to satisfy any @),, checking if extensions of the current
values of v, satisfy the rule of the construction is recursive in &{C;|i < n} and so
uniformly recursive in C'. Thus this question can be answered by C’. There is one
subtlety here. We must be careful with what we mean by a computation from X; as
there is no list of all the sets recursive in C' that is uniformly recursive in C'. So what we
mean here is that there is a computation of CIDJC providing a long enough initial segment
of X; so as to make the desired computations at m converge. This makes the whole
question one that is ¢ and so recursive in C".

If the answer is yes, choose as usual the first such extensions (in a uniform search
recursive in C') as 79,7;,;. Note that we have now satis eesdl%d. If the answer is no,
ask if Jz3o, 7 (7 0 @& X;)|e(7o 7 @ X)) (See Definition 1%5 [0). This question is also
¥ (0).

o xGo®X; . . o
e If not, let v, . o = V4. Then, as usual, if .°7"7 is total, it is recursive in X as we

guarantee that Gy 2 7. To calculate it at z, find any o such that B0 7N (x) |.
This computation must give right answer. So in this case we have also satisfied
R

e’j ‘

e If so,we can find such o and 7 (recursively in C'). We interpolate between o, 7 with
strings 0 = 09 = 01,...,0, = 7 which differ successively at exactly one number.
Ask if 3oy such that ®7° * %% (z) | If not, let Yo = Vi 01. Note that this

extension satisfies the rule of the construction and that we have satisfied R.; by
Go®X;

guaranteeing that ®. (x) 1. If yes, consider 02 ¢ and ask again if there is a o9
such that @2 " Uz@Xj(x) |. If not, let 7, o = 02”01 as before obeying the rule of

the construction and satisfying R. ;. If so, we continue on inductively through the
Ok-
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e Eventually we either define v, , and satisfy R.; or we find o4,...,0, such that

PJo 0 PEX; (x) | for every | < z where p = 01" ... 0,. In the second case, we set
Yko = Vks- Lhis action does not satisfy R.; but it demonstrates that there are
¢ and 7 which differ at exactly one number and for which (v,"6 & X)|c(7, 7 &
X). The point here is that, as ®1° ° *®%(z) |= @10 “®¥(2) |£ % "% (1) |=
®J0 %= *®%i (1) |, there is an [ such that ®2° * *®%(z) | £ &0 "+ #¥% (1) | while
0;"p and 6,41 p differ at exactly one number. Now consider v, . If there is no
4 such that P 7 HEN (z) | then we can again satisfy R.; by setting v, .o =
Yi,s 0. If there is such a x, we compare P T HEN (x) | with PJo 7 HENS (x) | and
oo TN (z) . As the last two are different one of them must be different from
the first. If ;1 7 #&X (x) [# P07 MO (x) |, we would contradict our assumption
that the answer to our very first question was no as v, 6" p and 7,6 i certainly
satisfy the rule of the construction. If ®* 7“4 (z) |£ @10 ™ #*%i(z) |, the only
way we would not have the same contradiction is if the one point at which ¢ and
7 differ is a coding location (k, ¢y ) with k < s. Thus the only way our actions at
this stage do not satisfy R ; is if there are 6" ¢ and 7" p which differ at at exactly
one point such that (v, 6" @& X;)|e(7 7 1 @ X;) and for any such ¢ and 7 the
point of difference must be a coding location (k, ¢k ,,) with k < s.

e In this last case we set vy, = 7y and 7, g = 7, ,. In any event, we now proceed to
extend 7, 5 (and then ;) in the same way but attempting to satisfy each Q,, = Res jr
with n < s that has not yet been satisfied. After some finite number of such
attempts we have tried them all, satisfying some and for the others producing
one more example of an x and two strings 6 and 7 differing at one number only
(after |yy|) such that (v, 6 & Xj/)|e(v, 7@ X;) for each (¢, j') which we have not
yet satisfied and a guarantee that any two such strings differ at a coding location
(k, ckm) with k < n.

e At the end of this process we let 7, ., be the final extension of v, that we have
produced.

We now claim that all the requirements are satisfied. It is immediate that P, ; is
satisfied when we act for Q)5 = P.; at stage s. Consider any R, ; = Q5. If we ever act so
as to satisfy it at some stage s of the construction, it is clearly satisfied and we never act
for it again. As we violate the rule of the construction at some (k, ¢ ,,) only when we act
to satisfy requirement @), for n < k and we do so at most once for each n, D; <r G;® C;
as required.

Finally, suppose that the first requirement that we never act to satisfy during the
construction is @,. It must be some R, ;. Suppose that all requirements @), for r < n have

been satisfied by stage sy > n. At each stage s > so with Q5 = R/ j we attempt to satisfy

. . 1 v 1) y
R, ; at some substage of the construction. As we fail, there are CIJe?EBXJ (x) |# <I>e,1 X () |

with 0x 2 Y4 2 Vg, which differ at exactly one point and any such pair differ at a
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coding location (k, ¢, ;) with & < n. Recursively in X; we can then search for and find
infinitely many extensions 0 of 7, with this property with the points at which they
differ becoming arbitrarily large (as |y, ,| is clearly going to infinity). As there are only
finitely many k& < n, there must be one k& < n for which infinitely many of these ¢, differ
at a point of the form (k, z) with infinitely many different 2. As every such point is a
coding location, recursively in X we can compute an infinite subset of C}, so by our
initial assumption that each C; is recursive in everyone of its infinite subsets Cj, <r X;
as required for R, ; to be satisfied in the end. m

This step-by-step construction is the much the same as the forcing argument we saw
before, but grittier, and we gain a quantifier. This helps us determine the true complexity

of Th(D,< 0'): Th(D,<0') =,, Th(N, +, x, <).

07
Exercise 7.3.2 It is easy to show that the G; of Theorem S7?72“?.1 can be made to have
(or already have) jumps below C'.??Need this for definability in D(<0’) do proof or some
details??

Exercise 7.3.3 With the notation as in Theorem [7.2.1 show that for any G 1-generic
for P, Gy and Gy have the properties required by the Theorem. So in partic lalr %ue can
make Gy =7 0 =¢ G'|. This then supplies the analogous result for Theorem e a
notion of forcing recursive in the appropriate C & H such that any 1-generic computes
the parameters necessary to define the given relation. Hint: This is not easy. A proof

can be found in Greenberg and Montalbdn [2003]. ?¢Do out, need just for minimality
205-207222%9(Go & G1)' = 0'77.

Theorem 7.3.4 If R is an n-ary relation on D(<L0') which is uniformly recursive in a
low degree c in the sense that there are families of sets {X;} =S and {(X;,,..., X;,)} =
T uniformly recursive in C' € ¢ such that {deg(X;)|X; € S} is the field of R (i.e. all ele-
ments that occur in any n- tuple satisfying R) and {(deg X;,,...,deg X; )| (X;

RER Qd f
T} = R, then there are p < ¢’ = 0" which define R by the formula ©,, of Theorem R

Proof. We begin with a G which is Cohen 1-generic over C' so that (C' & G) =r C".
The set o dle& es R and the ﬁnite families of sets of degrees H; and F; of the proof of
Theorem are all now unifor recurswe in C'® G and consist of pairwise Turing
1nc0mparable sets so, by Theorem , there are seguences of parameters defining each
of them all below (C' @ G)'. The proof of Theorem mow shows that they define R
as required. m

We now explain how we plan to code arithmetic in D(<0’). The “intended model”
starts with an nice effective successor structure determined by parameters q: ¢, by, by,
e, €1, do, fo and f; with ¢’ = 0’ and c being above all of the other parameters and all the
required d,, n 25 ebl}) More Ve, the d,, are all uniformly recursive in c. e can do this
by Exercise \b 3.5 or 177, We tnen choose, as in the proof of Theorem hél parameters

Pp, P+; Px and p< so that ¢, (pp) defines {d,|n € N} and ¢3(p4), ¢3(Px) and ¢, (P<)
(playing the roles of ¢, , ¢, and ¢_, respectively) that define relations on the countable
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set defined by ¢, (pp) to determine a structure M(p) (where p is the concatenation of all
the sequences of parameters used beginning with @) that satisfies all the axioms of our
finite theory of arithmetic and such that d is the least element in the ordering of M (p)
given by ¢,(p<) and, for each n, d,;; is the immediate successor of d,, in this or%l%é c
We can find such para eters below 0’ by the arguments for the proof Theorem 7.2
combined with Theorem 7.371 (relativized to c) since the d,, and the desired relations on
them are uniformly recursive in ¢ and ¢’ = 0’. Now this model is standard since the d,,
are ordered in order type w and constitute the universe of the model.

The problem is that there is no obvious way to definably say that the universe of
the model is precisely the d,, in terms of just the prescribed parameters (or any other fi-
nite list). The issue is that we only have a scheme to generate these degrees not one
to define them. We can come fairly close in a first order way. In addition to the
correctness conditions that guarantee that the defined relations give a model of arith-
metic on {z|¢,(x, p)}, we can approximate niceness by adding the sentences ¢ #? b and
Vd[pp(d) = dVe>b & JddAd=0 & (Vd* # d)(¢p(d*) — (dAd* = 0) & (d > d¥))].
We can approximate the desired condition that {d,|n € w} is the domain of our structure
by saying that dy is the least element in the ordering of M(p) given by ¢,(p<) and for
every d such that ¢,(d,p), if d is an even number in M(p), then (ey vV d) A f is its
immediate successor in the ordering given by ,(p~) while if it is an odd number then
its immediate successor is given by (e; V d) A f;. This guarantees that {d,|n € w} is
the standard part of the model M(p). Thus if we had a formula @¢(x, 7, p) which, as 7
ranged over n-tuples from D(<0’), defined a collection of subsets of M(p) that include
{d,|n € w}, we could guarantee that M(P) was standard by saying that every subset
(i.e. picked out by some choice of parameters i) of M(p) which contains its least element
(dp) and is closed under immediate successor is all of M(}TI_C)O. deSe3

The crucial point now is that the proof of Proposition 6.4.9 shows that, under these
conditions, {d,|n € w} € ¥ as is the ideal generated by this set. That is, the standard
part of any M(p) for p satisfying all of these correctness conditions and the ideal it
generates are both 3. Our goal now is to prove that for every ¢ < 0’ and every %

ideal in the degreejclggcle%%c, there are S %fle c<1'§e9/ which are an exact pair for the given

ideal. Proposition 6.4.9 and Remark 77 then show that we could define the desired set
iglg,l\n a%iagiain terms of this exact pair. We later prove this required result as Theorem
%.2.1 i supplies the final ingredient of our theorem.

Theorem 7.3.5 Th(D <0') =,_; Th(N).

resigma3ideal
Proof. The above argument (together with Theorem %Tfﬁﬁ_smthat we can interpret
true first order arithmetic in D(<0’). Thus Th(N) <, ,Th(D <0’). The other direction
is immediate since we can define the sets recursive in 0’ in arithmetic as well as the
ordering of Turing reducibility on them. Thus we have a recursive translation of sentences

about D(<0’) to ones of arithmetic that preserves truth. Of course, this implies that
Th(D SO’) <11 Th(N) |
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swQ’ . reldefQ’ | .
Notes: Theorem [7.3.1 and a spe rleall Lass of Theorem [7.3.4 are in Slaman and Woodin
[1986]. The o uggsion of Theorem ;.3.4 15 in Odifreddi and Shore [1991] as is the proof
of Theorem [7.3.5 which is originally due to Shore [1981].
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Chapter 8

Domination Properties

8.1 Introduction

An important topic in the study of the complexity of functions from N to N is the
notion of rate of growth and of one function growing faster than another or faster than
a whole class of functions. These issues are not only natural but they have important
connections with the computational complexity of the functions as measured by Turing
and other reducibilities. In this chapter we will study some of these notions and their
impact on the structure of the degrees. They will play a crucial role in our analysis of
the complexity of important degree structures including D(< 0’) which we study in this
chapter ?7and all of D as well as many jump ideals that we will study in later chapters??.
We begin with some basic definitions.

Definition 8.1.1 1. The function g dominates the function f (f < g) if, for all but
finitely many z, f(x) < g(x).

2. The degree g dominates the function f if some g € g dominates f.
3. The function g dominates the degree f if g dominates every function f € f.

4. The degree g dominates the degree f if for every f € f there is a g € g which
dominates f.
We also sometimes express these relations in the passive form saying, for example,
that f is g-dominated or f is g-dominated for the first two relations. A function g that
dominates the degree 0 s called dominant.

In the literature a degree f that is not 0-dominated (i.e. there is an f € f which
is not dominated by any recursive function) is, for historical reasons unrelated to our
concerns, called hyperimmune. If £ is not hyperimmune, i.e. it is O-dominated, is also

called hyperimmun 2 zﬁe 2 dFor example, we show later that every 0 < a < 0’ i h&g@gormm
immune (Theorem . while the minimal degrees constructed by Spector (§ are
hyperimmune free.

91
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Exercise 8.1.2 Prove that if a is 0-dominated and B <r A € a then B <; A. So
any 0-dominated Turing degree consists of exactly one tt (and so wtt) degree. Hint: if
B = @ then consider the function f such that f(n) = us(®L(n) ).

8.2 R.E. and A) degrees

Theorem 8.2.1 If A > 0 is r.e. then there is a function m =p A which is not 0-
dominated, i.e. it is not dominated by any recursive function. Indeed, any function g
which dominates m computes A.

Proof. For A r.e., let A, be the standard approximation to A at stage s. Let m be the
least modulus function for this approximation: m(x) = us(vt > s)(As [ © = A; | x). For
r.e. sets, the approximation changes its mind at most once and is correct in the limit, so
m(x) is also the pus(As | © = A | x) and is clearly of the same degree as A. Moreover, if
g(x) > m(x) for almost all =, then A <p gas A [ x = Ay [ « for all but finitely many
x. Thus, if A >7 0, then m is not dominated by any recursive function and any ¢ that
dominates m computes A. m limitlemma

The Shoenfield limit lemma (Theorem Ws us a recursive approximation h(x, s)
to any A € AJ (or equivalently A <7 (). So the least modulus function m makes sense
for such an approximation as well. So does the second version used in the above proof.
Here we call it the computation function: f(x) = p(s > z)(Vy < x)(h(y,s) = A(y)) (for
technical reasons, we do not consider first few stages). It calculates the first stage after
x at which the approximation is correct up to x. But, since we are no longer looking at
r.e. sets, the approximation might change even after it’s correct and the computation
function f need not be the same as the least modulus m. The two functions may not be
the same even up to degree.

Exercise 8.2.2 Find an A < 0' and an approximation h(x,s) to A for which the least
modulus function m computes 0. On the other hand, the computation function f for h
1 always of the same degree as A.

d
We can, nonetheless extend Theorem %?2.0 ['to all A € AY.

Theorem 8.2.3 If A is AY, then there is an f =r A which is not 0-dominated. Indeed,
any function g which dominates f computes a.

Proof. By the Shoenfield limit lemma, there is a recursive h(z, s) such that lims_,, h(x, s)
A(x). Let f(x) be the computation function for this approximation. Suppose f < g. We
claim that even though h(z,s) may change at z < x for s > f(z), we can still compute
A from g. Let so be such that (Vm > s¢)(f(m) < g(m)). To calculate A(n) for n > s
find an s > n such that h(n,t) is constant for ¢ € [g(s), gg(s)]. Since h(n,t) is eventually
constant, such an s exists. Moreover, we can find it recursively in ¢g: compute the inter-
vals [g(n+ 1), gg(n+ 1)], [g(n 4+ 2), gg(n + 2)], [g(n + 3), gg(n + 3)], ... checking to see if
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h is constant on the intervals. By the clause that makes f(x) > z in the definition of the
computation function and our choice of sg, gg(s) > fg(s) > g(s), so the first t > g(s) at
which h is correct for all elements below g(s) is in [g(s), gg(s)]. For this ¢, h(n,t) = A(n).
As we chose s so that the value of h(n,t) is constant on this interval, A(n) = h(n,t) for
any t € [g(s), gg(s)] and we have computed A recursively in g as required. =

Exercise 8.2.4 What are the correct relativizations of the previous two theorems?

2

Exercise 8.2.5 The above results can be extended by iterating the notions of “r.e. in
or more generally “AY in” as long as one includes the lower degrees. We say that A
1-REA if it is r.e. then we define n-REA by induction: A is n + 1-REA if A is of the
form B ® W2 where B is n-REA. (REA stands for r.e. in and above.) Prove that any
n-REA set A has an f =7 A such that any g > f computes A. Do the same with A
replacing r.e. These results can be carried into the transfinite. Prove, for example, that
0« has the same property.

Theorem 8.2.6 If A > 0 is r.e. and P is a recursive notion of forcing then there is a
1-generic sequence (ps) <t A so that the corresponding 1-generic G is recursive in A as
well.

Proof. We build a 1-generic sequence p, recursive in A. Let f <r A be the least modulus
function for A. The requirements are

R, : for some s, ps € S, or (Vq < ps)(q & Se), where S, is eth 3; set of conditions.

At stage s, we have a condition ps. Note that we are thinking of P as a subset of N
and so have the natural ordering < on its members (and all of N) as well as the forcing
ordering <p. We say that R, has been declared satisfied by stage s if there is a p, with
n < s such that p, € S, y(s). Find the least e < s such that R, has not yet been declared
satisfied and such that (3¢ <p ps)(q < f(s) & q € Se f(s)). For this e, choose the least
such ¢ and put psy1 = ¢. If there is no such e, let ps 1 = ps.

To verify that the construction succeeds, suppose for the sake of a contradiction that
€ is least such that

—\E|S(ps € Seo \ (VC] <p ps)(q ¢ Seo))'

Choose sy > ey such that Vi < eg if there is a p, € S; then there is one with s < sg
and p, € S f(sp) (s0 by this stage we have already declared satisfied all higher priority
requirements that are ever so declared). We claim that we can now recursively recover
the entire construction and the values of f(s) for s > so. As this would compute A
recursively, we would have our desired contradiction. Consider what happens in the
construction at each stage s > sg in turn. Suppose we have p,. At stage s we look for the
least e < s such that (3¢ <p p,)(q¢ < f(s) & q € S¢ f(5))- There is no such e < ey by our
choice of s¢. If ey itself were such an e, we would act for it and declare P, to be satisfied,
contrary to our choice of eg. On the other hand, by our choice of eq there is a ¢ <p p;
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with ¢ € S,,. We can find such a ¢ recursively (because we know it exists). We did not
find this ¢ in the construction at stage s because either ¢ > f(s) or ¢ € Seq — Seq,f(s)-
So we can now find a bound ¢ on f(s) by finding the stage at which ¢ enters S,,. Given
t > f(s) we can calculate f(s) as the least z such that A, | s = A; [ s. Once we have
f(s) we can recursively determine what happened at stage s of the construction and in
particular the value of ps;;. Thus we can continue our recursive computation of f(s) as
claimed. m olren

Relativizing Theorem %TZ-.%_‘EO C gives, for any C recursive notion of forcing P, a
G <7 A which is C 1-generic for P for any A > C' which is r.e. in C.

Exercise 8.2.7 The crucial property of the function f used in the above construction was
that there is a uniformly recursive function computing f(x) from any number greater than
it. Prove that if there is a partial recursive p(z,s) such that (Vs > f(x))(¢(x,s) = f(z))
then f is of r.e. degree.

Corollary 8.2.8 If a > 0 is r.e. then there is Cohen 1-generic G <r A and so, for
example, every countable partial order can be embedded in the degrees below a.

Similarly we have

Corollary 8.2.9 Ifaisr.e. inb and strictly above it, then every partial lattice recursive
in b can be embedded into [b,a).

Corollary 8.2.10 If a is r.e. then every mazimal chain in (D(< a), <r) is infinite. In
fact, there is no mazximal element less than a in (D(< a), <r).

?GIiong. Suppose b < a. Then a is r.e. in and strictly above b. Relativizing Theorem
%TZ%_EO a B € b and using Cohen forcing gives us a G <7 A which is Cohen 1-generic
over B. So the degrees of B @ Gl are in fact all between b and a and even independent.
" relgen

We now apply Theorem %TZ%TO provide the missing way of identifying the standard
parts of effective successor models coded below 0’ that we need to calculate the complexity
of Th(D(<0)).

Theorem 8.2.11 If A >r C, Aisr.e. inC and I is an ideal in D(< deg(C)) such that
W = {e: deg(®Y) € I} € XY then there is an exact pair Gy, Gy for I below A.

Proof. We provide a C-recursive notion roeflf%l;lcing P such that any 1-generic for P gives
an exact pair for I and apply Theorem %TZ“.%_relativized to C. The conditions of P are
of the form p = (po, p1, Fp, n,) where p; € 2<%, |po| = |p1| = |p|, F, € N, n, € w such
that

(Vi € {0,1})(V{e, 2, ) 3= (w,m)) ({e, x, y, w,m) € p;).

We define V' as expected V (p) = po @ p1. So for a 1-generic G, we have G; = U{p;|p €
G}. If e € W, we want ®¢ to be coded into G;. The unusual restriction above on
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conditions in P suggests how we intend to do this coding. Since W € X we have
a relation R <y C such that e € W < JaVy3zR(e,z,y,z). We denote the pairs of
elements of T and their witnesses by W = {(e,z) : Vy3zR(e,z,y,z). To calculate ®C
for e € W, our plan is to first choose an x such that (e,z) € IW. We then search for
{(w,m) such that (e, z,y,w, m) € G; and announce that ®¢(y) = m. The definition of P
guarantees that this procedure gives at most one answer. The definition of the partial
order <p below guarantees that this procedure makes only finitely many mistakes for any
1-generic. Genericity also guarantees that, when (e, z) € W, it gives a total function.
The number n, in our conditions acts as a bound for how far we have to search to
sufficiently verify the Il assertion that x is a witness that e € W (and so also that ®¢
is total). The set F, tells us for which (e,z) we can make no further mistakes in our

coding of ®¢ into Gf”” when we extend p. With this intuition, we define extension in
P by q <ppiff
4 2 pi F, 2 F,, ng > ny,

and

(vi € {0,1H)(V(e,z,y,w,m) € [|p|, |a])((e,z) € F}, & {e,z,y,w,m) € ¢;
— @gnq(y) =m & Vy <y3z <n,(R(e,x,y,2))

Note that P is recursive in C.
o 1Sellllppose that Gg, G are given by a C-1-generic sequence (ps) <7 A as in Theorem
%TZ.%_relativized to C. We claim that Gy, G; are an exact pair for [.

First assume that (e, z) € W. We show that ®¢ <, G;. As the sets {p| (e, z) € F,}
are obviously dense in P, there is an s such that (e, z) € F,,. For any (e, z,y,w, m) € p
with ¢t > s, ®¢(y) = m by definition and so as noted above, the prescribed search
procedure which is recursive in G; returns only correct answers for y > |ps|. Next,
we claim that for each y > |ps], i € {0,1} and m = ®Y(y) the I¢ sets Seymi =
{r|Fw({e, z,y,w,m) € r;} are dense below p;. This guarantees that (p;) meets each of
these sets and so the search procedures are total and correctly compute ®¢(z) for all
but finitely many z. To see that these sets are dense below p,, consider any ¢ < p;
with no w such that (e, z y,w m) € ¢;. Choose any w > |q| and define an r <p ¢ by
making |r| = (e, z,y,w, <I>C Y+ 1), i =qU{{e,z,y,w, 85 (y))} (i.e. we let them be 0
at other points below the length) F, = F, and letting n, be the least n > n, such that
vy < y3z < n(R(e,z,y,2) & OF, () l) (one such exists since we are assuming that
(e,x) € W). Then r<pq and 7 € S, 4, m. as desired.

We next want to deal with the minimality conditions associated with the G; being
an exact pair for I. Suppose then that ®%° = ®%1 = D is total. We want to prove that
D < @{®Y : e € F} for some finite F C W. Consider the X; set S, of conditions p:

Se = A{p: In (P (n) [# B (n)) 1}

By our assumption there is no ps € S so we have a p; = p such that Vg <p p(q ¢ Se).
We claim that D < @{®% : (e,z) € F,NW}. For every (e,z) € F,\ W, let y(e, z)
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be the least y such that —Vy' < y3zR(e,z,y/,2) V ®%(y) 1. It is clear that there is
no ¢ <p p with any (e,z,y,w,m) € ¢; for (e,x) € F, \ W and y > y(e,z). Choose
q <p pin (p,) so that it has the maximal number of y’s with some (e, z,y,w, m) € g; for
y < y(e,z) and i € {0,1}. To compute D(y) for y > |g|, we find a t € P such that ¢t; D ¢;,
d(y) |= ®"(y) |, no elements not in ¢; are added into t; in columns (e, z) € F,\IW and
for any (e, z,y,w,m) € t; with (e,x) € F, N W, ®%(y) = m. Such an extension exists
because ®¢°(y) |= ®%1(y) | and by the maximality property of ¢ and the definition of
<p, GIo" = glem for (e 2) € F,\ W and so there is such a f € (p,). Finding one such
t is clearly recursive in @{®C : (e,z) € F, N W}. Thus we only need to show that any
such t provides the right answer. If one such gave an answer different than that given by
t (and so Gp and Gy) then (to, {1, F,, n) (where n > n, is large enough so that ¢, (y) |
for every (e, z,y,w, m) in t, or t; with (e, z) € F,N W) would be an extension of p in S,
for the. desired contradiction. m Th(D<0?)

This Theorem completes the proof of Theorem 7.3.5 that the theory of the degrees
below 0’ is recursively isomorphic to true arithmetic. We can extend the result to all r.e.
degrees.

Exercise 8.2.12 For every r.e. r > 0, Th(D(<r) =, ,Th(N).
77Explain??

Notes: Theorem %%.Elmis due to Dekker [1954]; Theorem %iller and Martin
[1968]. We are not sure who first proved Corollary 8.2.8 (presumably using a different
method called r.e. permitting). rgf ggyle of proof based directly on domination proper-
ties used here to prove Theorem 8.2.6 1s atﬁlgglggtggleggegi in Soare [1987, Ch. VI Exercise
3.9] in the case of Cloben forcing. Theorem [7771s"in Shore [1981] which also is the original
source of Exercise §.2.

8.3 High and G L, degrees

We now look at stronger domination properties and their .eul%t%cigrto the jump classes H;
and Ly below 0" and their generalizations. Recall from §7. at fora<0,acH; &
a = 0" aely, & a’” = 0”. For degrees a not necessarily below 0, a € GLy <
(av0) =a’sac GH; & a = (av0'). It is also common to say that a is high if
a’ > 0”. As it turns out these last are the degrees of dominant functions. Of course,
a €GLy means that a ¢ GLy. We relativize these notions to degrees above b by writing,
for example, a €GLy(b).

Let us begin by showing that there is there a dominant function. In fact, if C is any
countable class of functions {f;} then there is function f which dominates all the f;. For
example, put f(z) = max{f;(z): 7 < x}+ 1. This construction requires a uniform list of
all the functions f;. For the recursive functio s we know that 0” can compute such a list.
Indeed, Tot = {e : @, total} =7 0” (Exercise 4.5.4) and so there is a sequence f; uniformly
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computable from 0” which then computes a dominant function as described. We can do
better than this and avoid using totality. If f(z) = max{®.(x) :e <z & ®.(z) |} then
f <r 0" and is also clearly dominant. We can even do a bit better and get away with
functions of high degree.

Theorem 8.3.1 (Martin’s High Domination Theorem) A set A computes a dom-
inant function [ if and only if 0" <p A’.

Proof. Suppose first that 0" <; A’. By the Shoenfield limit lemma (Theorem HT%
the fact that Tot <7 0”, there is an h <p A with lim, ., h(e,s) = Tot(e). We want to
compute a function f recursively in A such that, for every e for which ®, is total, f(x)
is larger than ®.(z) for all but finitely many x. Any such f is dominant. To compute
f(z) we compute, for each e < z, both ®.;(x) and h(e,t) for ¢ > = until either the first
one converges, say to e, or h(e,t) = 0. As, if @, is not total, lim h(e,t) = 0, one of these
outcomes must happen. We set f(x) to be one more than the maximum of all the ¥, so
computed for e < x. Note that f <r h <p A. It remains to verify that if ®, is total then
®. < f. By our choice of h, 3s9(Vs > s¢)(h(e,s) = 1). So for x > sy when we calculate
f(x) we always find a t such that ®.,(x) |= y. and so f(z) > ®.(x) for all > s.

For the other direction, suppose we have a dominant f. As Tot is I13 and computes
0”, it suffices to show that it is also ¥o(f) as it would then be Ay(f) and so recursive in
1. We claim that

Vo3ds®. () | & eV, pa)te(z) | .

Suppose P, is total (if not, then of course both conditions fail). Let k(z) = pus®y () |.
Then k is recursive (because we know thatVax®.(x) |). By hypothesis, f dominates k.
Thus, the right hand side holds. This is a Xo(f) formula as desired. =

‘Now. a look a.ut the deﬁnitior.ls.sbows that for a <o 0’, a ¢ L is equivalent to 0’ not
being high relative to a. Relativizing Theorem %73._170 an a <7 0’ we see that a ¢ Ly
if and only if no f <7 0/ dominates every (total) function recursive in A. We can then
handle GL, by relativizing to a V 0’ to prove the following:

Proposition 8.3.2 A set A <7 0" has degree in Ly if and only if (Vg <7 0(3f <r
A)(f £ g). An arbitrary set A has degree in GLy if and only if (Vg <r AV 0)3f <r
A)(f £ 9)-

?77Prove??

This says that, while sets that are not high do not compute dominant functions, if
they are not too low they compute functions which are not dominated by any recursive
function. This suffices for many applications.

Theorem 8.3.3 If A ¢ G Ly then for any recursive notion of forcing P there is 1-generic
sequence (ps) <t A and so the associated 1-generic G is also recursive in A.
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Proof. For any g <p AV (', there is an f <r A not dominated by ¢g. Without loss
of generality we may take f to be strictly increasing. We first construct the function
g that we want and then, using the associated f, we construct a 1-generic sequence p;
recursively in f (and so A). We again make use of the natural order < on P C N.

Let S, list the X; subsets of P. As usual, we declare S, to be satisfied at s if
(In < s)(pn € Ses).- We define ¢ by recursion using 0. Given g(s), we want to determine
g(s+1). For each condition p < g(s)+1, ask 0 if (3¢ <p p)(q € S.) for each e < g(s)+1.
If such an extension exists, let . be the least x such that (3¢ <p p)(¢ < x & ¢ € S, ).
Put g(s + 1) = max{z.|e < g(s) + 1}.

We cannot use g itself in the construction of the desired 1-generic (ps) because we
want (ps) <7 A. But, since g <p AV (', we can use an increasing f <7 A not dominated
by g. The construction of G is recursive in f (hence in A). At stage s, we have finite
a condition ps. For each e < s not declared satisfied at s, see if (3¢ <p ps)(¢ <
f(s+1) & q € Se f(s+1)). If so, take the smallest such ¢ for the least such e and let it be
psi1- If not, ps11 = ps. The construction is recursive in f, hence in A. Thus (ps) < A
and the associated G <7 A as well. Note that p; < f(s) by induction. Indeed ps; < g(s)
as well because ¢g(s) gives a bound on the witness required in the definition of p.

To verify that G is 1-generic suppose, for the sake of a contradiction, that there is a
least eg such that

—ELS(pS € Sey V (VP <p ps)(p ¢ Seo))‘

Choose s such that, (Vi < eg)[(3s)(S; is declared satisfied at s) — S; is declared satisfied
by sp]. Consider any s > sg at which f(s+ 1) > g(s+ 1). By our choice of eq, there is a
q <p pssuch that ¢ € S,,. Moreover, as ps; < ¢(s), by definition of g there is one < g(s+1)
such that it belongs to S, 4(s+1) as well. By our choice of s, ¢ < g(s+1) < f(s+1). Thus
at stage s+ 1, we would act to extend p, to a ps41 € S, for the desired contradiction. m

Remark 8.3.4 The function g we used in the above proof was actually recursive in 0.
In fact, for Cohen forcing g <. 0. Thus we used the weaker property that for every
function g <., 0" there is an f < A not dominated by g. This property is called array
non-recursiveness and is discussed in the next section.

As for the r.e. degrees, having a 1-generic below a degree a ¢ Gl_;egc cBlré)ryides a lot of
information about the degrees below a. For example, as in Corollary %7278,_\7\76 can embed
every countable partial order belo¥ve any a ¢ GL,. It is tempting to think that we could
also prove the analog of Corollary 8.2.10 th t every maximal chain in the degrees below a
is infinite. This is true for a < 0/ (Exercisea%TZT%but was a long open question (Lerman
[1983]). Cai [2012] has now proven that it is not true. There are a ¢ GLy which are the
tops of a maximal chain of length three.

Exercise 8.3.5 Prove that if a < 0" and a ¢ Ly then any maximal chain in the degrees
below a is infinite.

On the other hand, we can say quite a bit that is not true of arbitrary r.e. degrees
about the degrees above a when a ¢ GL; .



renoncup

gl2genseq

8.3. HIGH AND GL, DEGREES 99

Definition 8.3.6 A degree a has the cupping property if (Ve > a)(db < c)(aV b = c).

Theorem 8.3.7 If a €GL, then a has the cupping property. Indeed, if A ¢ GLy and
C >1 A then there is G ;7_4T A such that A ® G =7 C and G is Cohen 1-generic.

121gen
Proof. We need to add requirements R, : ®¢ # A to the proof of Theorem %TBTch')r
Cohen forcing (making all the requirements into a single list ().) and code C' into G as
well (so as to be recoverable from A @ G). In the definition of g(s + 1) in that proof,
for each p < g(s) + 1 look as well for ¢o,¢1 2 p and z such that gol.q;. Then make
g(s+1) also bound the least such extensions 7¢, 71 for each e, p < g(s)+ 1 for which such
extensions exist.

Again choose f <r A strictly increasing and not dominated by g. The construction
is done recursively in f & C. At stage s we have p, and we look for the least e such
that (). has not yet been declared satisfied and for which there is either a ¢ <p p with
q < f(s+1) that would satisfy Q. as before if it is an S; or a pair of strings qo, q1 2 ps
with ¢; < f(s+ 1) such that ¢oleqn if Qe = R;. Let e be the least for which there are
such extensions. If (). = S; choose ¢ as before. If it is R; Let ¢ be the g; such that
d¥ () |# A(x). We then let p,,1 = ¢"C(s) and declare ), to be satisfied. If there is no
such e, we let psi1 = ps"C(s). Note that psr1 < f(s+ 1)+ 1 (the extra 1 comes from
appending C'(s)).

Since the construction is recursive in f & C and f <; A <¢ C, we have G <p C.
But, C' <7 (ps) because C(s) = psi1(|ps+1|). However, (ps) <r AV G because f <r A
tells how to compute each stage from the given p, to the choice of q. Then G tells us the
last extra bit at the end of p, 1.

To verify that G has the other required properties suppose ey is least such that @), fails.
Assume that by stage sog we have declared all requirements with ¢’ < eq which will ever
be declared satisfied to be satisfied. Consider a stage s > sg at which f(s+1) > g(s+1).
If Q. = S; then we argue as in the previous theorem. If (). = R; and there were any
Jo, q1 2 ps With qoleq1 then would have taken one of them as our ¢ and declared Q. = R;
to be satisfied contrary to our choice of ¢y. On the other hand, if there are no such
extensions, then as usual ®¢ is recursive if total and so R; would also succeed contrary
to our assumption. m

Remark 8.3.8 Not every r.e. degree has the cupping property.

N L. 121gen
For other results about GL, degrees it is often useful to strengthen Theorem E.S.B; to
deal with notions of forcing recursive in A rather than just recursive ones.

Theorem 8.3.9 For A € GL,, given an A recursive notion of forcing P and a sequence
D,, of dense sets uniformly recursive in AVO' (or with a density function d(n,p) < AV(0')
there is a generic sequence (ps) <r A meeting all the D,. Of course, the generic G
associated with the sequence is recursive in A as well.
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Proof. Let mg be the least modulus function for K = 0’ and let U/9X = D, i.e. the
¥,, uniformly compute membership in D,,. We define g <r AV 0/ by recursion. Given
g(s) we find, for each p,n < g(s)+1 the least ¢ such that ¢ <p p and q € D,, as witnessed
by a computations of W7%Ku1u(n) = 1 where K, is the same as K on the use from K in
this computation. Next we let g(s + 1) be the least number larger than ¢, v and mg(u)
for all of these ¢ and u as well as mg(g(s) +1). As g <r AV0 and A € GL, there is an
increasing f <7 A not dominated by g.

We construct the sequence (p,) recursively in f <; A. At stage s we have p;. Our
plan is to satisfy the requirement of meeting D,, for the least n for which we do not seem
to have done so yet and for which we can find an appropriate extension of p, when we
restrict our search to ¢ < f(s+ 1) as well as our use of 0/ to what we have at stage
f(s+1). More formally, we determine (recursively in A) for which D,, (n < s) there is

at < s such that W, oFsee) /) (pt) = 1. Among the other n < s, we search (again

recursively in A) for one such that (3¢ <p p,)(¢ < f(s+1) & \I/iLAQBKf(S“))rf(SH)(q) =1).

If there is one we act for the least such n by letting psy1 be the least such ¢ for this n. If
not, let psy1 = ps. Note that ps.1 < f(s+ 1) by the restriction on the search space and
Ps+1 < g(s+1) as well since g(s+ 1) also bounds the least witness by the definition of g.

We now claim that for each n there is a ps € D,,. If not, suppose, for the sake of a
contradiction, that n is the least counterexample. Choose sy such that for all m < n there
is t < sg such that p; € D,,, and indeed such that \I/%‘@Kso)rso (pr) =1land Ky, [u=K [u
where u is the use of this computation of ¥,, at p,. Thus, by construction, we never
act for m < n after sqg. As g does not dominate f we may choose an s > sq with

f(s+1) > g(s+1). At stage s we have ps and p; ¢ D,, for all ¢ < s in the sense required,

ABK : ) : .
ie. GYOKs )l (S+1)(pt) = 0 since any computation of this form gives the correct answer

by our definition of g(s + 1) and the fact that f(s+ 1) > g(s + 1). There is a ¢ <p p;

with ¢ € D,, and the least such is less than f(s + 1) and \Ilq(zA@Kf(S“))rf(erl)(q) = 1 with

the computation being a correct one from A @ K by the definition of g(s+1) < f(s+1).
Thus we would take the least such g to be psy1 € D, for the desired contradiction. m

We now give a couple of applications that play a crucial role in our global analysis
of definability in D( < 0’). ??Later also for D and, in particular, of the jump operator
??7. The first is a jump inversion theorem that 77strengthens and (check original)??
generalizes Shoenfield’s.

Theorem 8.3.10 (GL, jump inversion) If A € GLy, C >7 AV, and C is r.e. in
A, then there is a B <p A such that B' =7 C.

Proof. Let C; be an enumeration of C' recursive in A. We want a notion forcing recursive
in A and a collection of dense sets D,, such that for any (D,,) generic G, G’ = C. This
time, our notion of forcing has conditions p € 2<“. The definition of extension for P is
a bit tricky. If ¢ O p and

(e, ) €llpl; lgl) = [Cpi(x) = q(e, ) or In < e (P} (n) T & ¥i(n) |)]
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we say that ¢ <; p. Now this relation is clearly recursive in A since A computes Cjy
for each p. However, it need not be transitive (Exercise). We let <p be its transitive
closure. As, given any r O p, there are only finitely many ¢’s with » O ¢ 2 p we can
check all possible routes via <; from p to r recursively in A and so <p is also recursive in
A. The plan for coding C' into G’ uses the Shoenfield limit lemma and partially explains
the notion of extension. It guarantees that e € C' = Gl =* w while e ¢ C = Gl = ().
Thus e € C < lim, G({e,s) = 1 and so C <y G'. Suppose we ]il%Veenge eneric sequence
(ps) <r A for some collection of dense sets as in Theorem %3@ The definition of
extension guarantees that coding mistakes can happen in column e only when ®P:(n)
first converges for some n < e. Thus C <r G.

Our first class of dense sets include the trivial requirements and in addition force the
jump of G in the hope of making G’ < C"

Dy = {p:lpl = j & [®),(m) | or (Vg 2 p)(®,(m) T
or [(Fe < m)(He, ) € [Ipl, [a])(Cppi(e) # q({e,;x)) but =(In < e)(Ph(n) T & Di(n) 1))}

Note that, after we use A to compute C),, membership in D, ; is a II; property and so
recursive in 0’. Thus, the D,,; are uniformly recursive in A vV (/. We must argue that
they are dense. Consider any p. We can clearly extend it to a ¢ with |¢| > j by making
q({e,z)) = Cyp/(e) for (e, x) € [|p|,j). So we may as well assume that [p| > j. If @ (m) |
then p € D,, ; and we are done. So suppose ® (m) 7. If there is ¢ O p such that ®¢ (m) |
and (Ve < m)(V(e,x) € []pl,|q])[Cp(x) = q((e;x)) or Tn < e(P7(n) T & Ph(n) )],
q <p p by definition (because ®? (m) T while ®¢ (m) | so any violation of coding is
allowed for e > m) and is in D,,, ;. If there is no such ¢ then p € D,, ; by (!Lezﬁg%tggn.

Now we verify that G = Up, has the desired properties. By Theorem WST A
To see that C' <7 G’ consider any e. Let s be such that (Vi < e)(®F (i) |= ®(i) |
&i e C = i€ Cp,) Itis clear from the definition of <p that for any ¢ > s and
(i,2) € [|psl, |pt|]) with @ < e, (i,z) € pr & i € C. Thus C(e) = lim; G((e,t) and so
C <7 G' by the Shoenfield limit lemma. For the other direction we want to compute
G'(e) recursively in C. (Of course, A <7 C and so then is (p;).) Suppose we have, by
induction, computed an s as above for e — 1. We can now ask if e € C. If so, we find
au >t > ssuch that e € Cp,| and p, € D, . If ®P(e) |, then, of course, e € G'.
If ®P(e) T but e € G’, then there would be a v > u such that ®2*(e) | and, of course,
Py <p py. This would contradict the fact that p, € D, |, by our choice of s and ¢ and
the definitions of D, |, and <p. ®

Corollary 8.3.11 (Shoenfield Jump Inversion Theorem) For all C > 0 there is
B < 0 such that B' =1 C if and only if C is r.e. in 0.

Proof. The “only if” direction is immediate. The “if” direction follows directly from the
Theorem by taking A=0". =

For later applications we now strengthen the above jump inversion theorem to make
B <y A.
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Theorem 8.3.12 If A € GLy, C >p AV, and C is r.e. in A, then there is B <p A
such that B' =7 C.

El2completeness
Proof. In addition to the requirements of Theorem 8.3.10, we need to make sure that

®& £ A for each i. To do this we modify the definition of extension to also allow violations
of the coding requirements for e when we newly satisfy one of these diagonalization
requirements for i < e. (As we did above for making ®¢ (i) |.) We say q <, p if

(e,z) € [Ipl,1q]) = [Clp(z) = q({e, x)) or
In <e([®)(n) T & @}(n) ] or [Fy®i(y) I# Aly) & =FyP) (y) |# A(y)]) -

Again <p is defined as the transitive closure of this relation and it is recursive in
AV 0 as before. We then adjust the D,, ; accordingly

Dmj = {p:lpl>j & [®),(m) | or (Vg 2 p)(®,(m) T
or [(Fe < m)(IHe,z) € [Ipl,1q])(Clp(e) # q({e, z)) but
—(3n < e)([@h(n) 1T & Ph(n) 1] & ~(3y)[PL(y) |# Aly) & ~FyPL(y) |# Ay)])]}-

We also need dense sets that guarantee that ®% # A:

Di = {pl(3r)(®(x) |# A(z) or
p) (Vo < |qol, [@[)[=(@° () |# @7 (x) |) or

V0,1 2
((Fe < i)(3e,z) € [|pl, lal)(Fi € {0, 1})[(Clp(e) # a:((e, x)) but
—(3n < ([0 (n) T & ®h(n) |] & =(Fy)[@L(y) |# Aly) & ~FyPh(y) 1# Ay)])]}-

The proof now proceeds as in the previous Theorem. The arguments for all the verifica-
tions are now essentially the same as there and are left as an exercise.”? m

Exercise 8.3.13 Vergftyf at the notion of forcing and classes of dense sets specified in

completene
the proof of Theorem \8 o’ 12 suffice to actually prove 1t.

Exercise 8.3.14 Prove that if A is r.e. and C >7 0" is r.e. in A then thereis a B <p A
such that B' =1 C. Indeed we may also make B <p A. ¢?Hint:??

The next result says that every a € GL; is RRE (relatively recursively enumerable),
i.e. there is a b < a such that a is r.e. in b and a bit more.

Theorem 8.3.15 Ifa € GL; then there is b < a such that a is r.e. in' b and a is in
GL;y(b), i.e. (aVD') <a”.

Proof. Let a € GL,. We'll use a notion of forcing P with conditions p = (po, p1, p2),
p; € 2<% such that
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L |po| = |p1l, po(dn) = A(n), p1(dn) = 1 — A(n) where d, is nth place where po, p1
differ and

2. (Ve < |po + p1|)(e € po ® p1 < Jz({e,z) € p2)).

As expected, our generic set Gy ® G1 ® G, is given by V(p) = po ® p1 & pe. The idea
here is that if we can force pg, p; to differ at infinitely many places while still making our
generic sequence recursive in A, the first clause in the definition of <p guarantees that
Go & G1 =r A. The second clause works towards making Gy & G r.e. in G5 with the
intention being that deg(Gs) = g» is to be the b required by the theorem. Extension in
the notion of forcing is defined in the simplest way as ¢ <p p < ¢; 2 p; but note that
this only applies to p and ¢ in P and not all ¢ with ¢; 2 p; are in P even if p € P. The
notion of forcing is clearly recursive in A.

We now define the dense sets needed to satisfy the requirements of the Theorem. We
begin with Dy, = {p : po, p1 differ at at least n points}. These sets are clearly recursive
in A. We argue that these are dense by induction on n. Suppose Ds,, is dense. To show
that Ds, .o is dense, it suffices, for any given p € Ds, — Dy, 2, to find a ¢ <p p in
Dayio. Let o = po”A(n), g1 = p1” (1 — A(n)). Choose i € {0,1} such that ¢;(|po|) = 1.
Define g2 O py by choosing x large and setting g2((2|po| + 7, z)) = 1 and ¢2(z) = 0 for all
z ¢ dom(py) and less than (2|pg| + 7, z). Now ¢ = (qo, ¢1, g2) satisfies the requirements to
be a condition in P. It obviously extends p and is in Dy, 5.

For any generic recursive in A which meets all the D,,,, Go & G; =7 A and Gy & G,
is r.e. in Gs.

We also want dense sets similar in flavor to those of the previous theorems to force
the jump of G2 to make (aV g}) < a”. Let

Dopy1 = {p:®P*(n) | or (Vo 2 p2)
(@7 (n) T or (3e, ) € 0)((po ® p1)(e) = 0)}.

For p € P, membership in Dy, 1 is a 0/ question and so these sets are recursive in AV ('.
We want to prove that they are dense. Suppose have a p € P and so we want a ¢ <p p
with ¢ € Dy,1. We may suppose that ®P2(n) T and that the second clause fails for p
as otherwise we would already be done. Thus we have a ¢ O py such that ®7(n) | but
—(3(e,x) € 0)((po@p1)(e) = 0). We claim that there is a ¢ <p p such that ¢g; 2O o and so
®%(n) | and g € Da,1 as required. The only issue is that there may be some (j,y) € o
with j > [po ® p1| If so, we must define ¢y and ¢, accordingly, i.e. j € qo ® q1. So if j
is even, we want J € qo; if it is odd, 3%1 € ¢1. We now define qp, q; at the appropriate
element (% or ]Tl) to both be 1. Elsewhere we let both gg and ¢; be 0. Thus we have
not added any points at which ¢o and ¢; differ beyond those in pg, p1). Now we extend o
to g2 by adding (e, y) for some large y if (qo ® ¢1)(e) = 1 and e > |po @ p1| and wherever
not yet defined we let ¢2(2) = 0. Thus ¢ € P and is the desired extension of p in Ds,
o B = 07l |

We now let (ps) <r A be a generic sequence meeting every D, as given by Theorem
%'SW have already seen that Go® G| =r A and it is r.e. in Gy <p A. If we can show
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that (A & GY)" <r A” then we will be done as this clearly implies that Gy <7y A. We
first claim that G, <p AV (0. To see if n € G, recursively in AV 0’ find an s such that
ps € Do,yq. Then we claim that n € Gy < ®,7%(n) |. If ®2(n) |, then we are done.
If not, then (Vo 2 ps2) (®%(n) T or (e, x) € 0)((po @ p1)(e) = 0)) and by definition of
membership and extension in P, ®,°*(n) T for every p;5 for t > s. Thus ®%2(n) 1 as
desired. As G, <p AV0', (A®G,) = AV0 andsoas A ¢ GLy, (ADGS,) = (AVD) <p A”
as required. m

Exercise 8.3.16 If A >7 0 isr.e. and C >1 0 isr.e. in A then there is a B <p A such
that B' = C. Indeed we may also make B <p A. Hint: Build 3, finite extensions that
obey a coding rule for columns for e < ¢(s) < s (so that we can enumerate C' recursively
in A) except that we can violate this rule so as to force jump as above; search below
ma(s + 1) for extensions forcing the jump for e < s that obey rule. Also search for
extensions with ®. giving different answers and allow violations in columns > e when we
satisfy this requirement by choosing one that gives an answer other than A.

We can now deduce a result that plays a major role in our analysis of definability in
D(<L0'). ?7definition of the Turing jump in D and many related results.??

Theorem 8.3.17 Ifb <; a and a € GLy(b) and T is a BF ideal in D(<b) then there
18 an exact pair for T below a.

Proof. By Theorem E 315 (relativized to b) there is a ¢ such that b <c <a and a is
r.e. in c. So Z is also ¥ Now by Theorem % o I we Eave the desired exact pair. m

Theorem 8.3.18 If A € a €GLy and S € X4 then there is an embedding of a nice
effective successor model (with the appropriate partial lattice structure) in the degrees
below deg(A) and an exact pair x,y < a for the ideal generated by the d,, with n € S.
(Remember that the d,, are the degrees representing n € N in the effective successor
model.

12rre
Proof. Given A € GL, and S € X4, Theorem @ngves us a B < gsu%}%)ltg;c%n efsls S
r.e. in B and A is GLy(B). Since A’ > AV 0 and is r.e. in it, Theorem 8.3.10 relativized
to B gives us a B < A (with B <p B) such that B’ = A’ and so 233 = ¥4, Moreover,
ré fs r.e. in B bec 1ise 1tb¥vas r.e. in B <; B. The result now follows by using Theorem
and Exermsg?_fﬁrgﬁﬁed an effective successor model between B and A and then
Theorem %_Z_ﬁm_to_plfk out the ideal generated by the associated d,, for n € S as the set
{e|3n(®B € d,)} is itself T8 = 24 as is then {e|(3n € 5)(@* € d,)}. =
77Simplify second or as corollary to first??Below a H; or GH; degree?? Minimal
degree in 77 others here??complementation??

Exercise 8.3.19 Prove that every degree has a GLs degree below 1t.
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Exercise 8.3.20 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(<a) preserving 0 and 1 for any a € GL,.

Ngi;es: Theorem art 5 due to Martin [1966]. Its very useful consequence, Proposi-
tiog) |8.3.2 is from Jo'ckusch an§l Pou%l}go [197 1 ll;gfglwalso contains a vergl%o%% £ Qggggén
E.Sé for Cohen forcing, E)Eig%eél\&d.b and 8:3.19 as well as TE%JLU. The ver-
ion given here of Theorem 8:3.3 and the more gen Theorem B:3.9 as well as Theorem

.3.15 come from Cai and Shore [2012]. Corollary 8.3.11 was originally proved.in Shoen- .
field [1959]. The original direct proof of (a stronger version of) Theorem %‘3_[81_8%11_
Shore [2007]. Remark B.3.8 Tollows, for example, from Slaman and Steel [1989, Theorem
3.1] or Cooper [1989]. Theorem B.3.7 1s from Jockusch and Posner [1978].

8.4 Definability and Biinterpretability in D(< 0')

We already know that the theory of D(<0') is (recursively) equivalent to true first order
arithmetic and so as complicated as possible. We now want attack the problem of de-
termining which subsets of, and relations on, D(<0’) are definable in the structure. The
interpretation of D(<0’) in N gives a necessary condition. Only subsets and relations
definable in arithmetic can possibly be definable in D(<0"). Our goal is to prove that, if
they are also invariant under the double jump, then the are, in fact, definable in D(<0’).

Definition 8.4.1 A relation R(x1,...,x,) on degrees is invariant under the double jump
if, for all degreesxy, ..., X, andy,...,y, such thatx! =y! foralli <n, R(xi,...,%,) <
R(y17 s 7yn)

We begin with the subsets of D(< 0’) and, in particular, with the basic question of
definably determining the double jump of a degree a < 0’. (This would actually suffice to
show that all subsets of D(<0’) invariant under double jump and definable in arithmetic
are definable in D(<0’) but as we prove more later we omit this argument.) The crucial
point is that the sets we can code below an r.e. or GLjy degree a are precisely the ones
¥4, We use this to determine a” via the following characterization of the double jump.

Proposition 8.4.2 For any sets A and B, A" =¢ B" if and only if ¥4 = X5, Indeed,
for any n > 1, A™ =5 B™ if and only if E;;‘H = ZEH.

Proof. The hierarchy theorem %Tlglar—zs%fs that, for any set X and n > 1, &X, | = & “.
On the other hand, for any Z and W, 7 = SV iff Z = W since the equality implies
that both Z and Z (W and W) are Xy, i.e. r.e., in W (Z) and so each is recursive in the
other. Thus if 4, = %5, then ¥4 = ¥ and so A™ =, BM™ as required. m

Theorem 8.4.3 The set Ly = {x < 0'|x” = 0"} is definable in D(<L0').
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. o . . . %%1_9938_3 :
Proof. O]I]ﬁ (%nsml%/sw of coding in models of arithmetic in Proposition 6.4.9 and preceding

<
Theorem [7.3.5 (which is really part of the proof of that theorem), shows that we have

a way to, definably in D(<0'), pick out, via correctness conditions, para eters p.that,
define structures M(p) isomorphic to N. (The crucial point here is Theorem 8:27] [ which
says that there is an exact pair for the XE° ideal generated by the standard part of the
Co(c)igéaésbelow 0’ as it is r.e. in and strictly above py.) Also note that, by Proposition
E.ZI.Q, any set S coded in M(p) them by a pair go, g; and a coding formula ¢¢(z,p) is
34 as long as the parameters q for the nice effective successor structure determining the
domain of the model and g, g; are recursive in A.

We now claim that x € L if and only for any such q, g9, g1 <7 x the set S coded by
20, g1 is X3. Moreover, this property is definable in D(<0’) and so proves the Theorem.

First suppose that x € Ly. Then our initi Slireggggks show that S € X for any
iat%m%i éls "= { ”1, %]15( = Y3 by Proposition %5“2 Next? if x ¢ L.Z, then by Exercise
77 an eorem R&.3. ere are parameters q e(}%@%];lg a nice effective successor model
with join ¢ < x with ¢’ = 0. By Theorem [7.3.4, we can extend these parameters to
ones p defining a standard model of arithmetic which, of course, q_aztsi§ﬁ£§3‘gg§cgeﬁnable
properties guaranteeing that it is such a model. Now, by Theorem 8.3.17, for any S € 25
there are gg, g1 <r X \évlhirgg]aggde S in this model. Since x” > 0” there is an S € L5 — 3
again by Proposition %._A%TZW} so a code for such an S below x as required.

Finally, note that, as we are working in definable standard models of arithmetic, we
can definably say that a set is >3 simply by using the translation into our degree structure
of the corresponding sentence of arithmetic. =

efdjclasses| Theorem 8.4.4 For every h > 0" which is r.e. in 0", the set {x < 0'|x” = h} is defin-
able in D(<0').

Proof. The previous theorem handles the case that h = 0". For.h > 0" Let £ €

e € [0',0”] be such that £’ € h. There is such an £ by Corollary 411 and we can

fix a definition of one in arithmetic. Consider the formula which says that for any

d, 8y, 81 < x and p which define a standard model of arithmetic and a set S coded in the
model as in the proof of the Theorem, S € £ and for any set S € %5 (again as giv nby ...
a definition in arithmetic) there are such q, g, g1< x and p defining S. Proposition 8&2
and calculations already described now show that this guarantees that ¥ = % = %F
and so x” = € = h as required. =

jef jclasses| Corollary 8.4.5 The jump classes L, (a®™ = 0™) and H,, (a®™ = 0"V are definable
in D(L0') forn > 2.

Proof. In the proof of Theorem %%%e instead of £/ € h that E1) =, 0™ for
L, and E®Y =7 0D for H,. =

By a separate additional argument that requires results beyond the scope of these
lectures we can also get the definability of H;. While we could make such an argument
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defH1
at this point it will be easier later. We do so in Corollary m The definability of L,
in D(<0’) is an important open problem.

If we now wish to deal with arbitrary relations on D(<0’) rather than simply subsets,
we are faced with the problem that our analysis so far has, for each degree a, produced
various models of arithmetic in which we code the sets ¥4. To discuss even binary
relations we must have a way to analyze any a and b (or equivalently the sets coded
below them as long as we are only working up to invariance under the double jump) in a
single model (perhaps with additional correctness conditions). The basic formulation of
this issue is given by asking about the biinterpretability of the structure (here D(<0’))
with arithmetic (here first order). A similar notion applies to other structures (such as
the r.e. degrees, R) still with first order arithmetic and to ones such as D but for second
order arithmetic.

Definition 8.4.6 A degree structure S is biinterpretable with true first (second) order
arithmetic if it is interpretable in first (second) order arithmetic anclltg)re have formulas
in parameters p (including a correctness condition) as specified in §¢7.7_w%ich provide an
interpretation of true arithmetic in S (i.e. the models M(P) satisfying the correctness
condition are all standard). For second order arithmetic, we also have a formula pg(z,7)
which defines sets (coded) in the model given by p. We require that the sets defined by
wg(x,y) as y ranges over all parameters in S are all subsets of N.

Moreover, for both first and second order arithmetic, there is an additional formula
or(x,y,p) such that S E YxIypgp(z,y,p) and for every a,g € S, S Fyr(a,g,p) if and
only if the set {n|ps(d,,&,P)} (where d,, is the nth element of the model M(p) coded
by the parameters p) is of degree a. These last conditions then say that the set coded in
M(D) by g is of degree a and that all degrees a in S have codes g for a set of degree a.

We say that S is biinterpretable with true first (second) order arithmetic up to double
jump if we weaken the second condition on g so that for every a,g € S, S Fpx(a, b, p)
if and only if the set {n|pg(d,,g, D)} has the same double jump as a.

It is not hard to see that, if a degree structure S is biinterpretable with first or
second order arithmetic, then we know all there is to know about definability in, and
automorphisms of, S.

Theorem 8.4.7 If a degree structure S is biinterpretable with first or second order arith-
metic then it is rigid, i.e. it has no automorphisms other than the identity, and a relation
on S is definable in S if and only if it is definable in first or second order arithmetic,
respectively.

Proof. We first prove rigidity. Let p satisfy all the formulas required for it to determine
a standard model of arithmetic via the given formulas. Consider any a €S with some g
such that S F ¢x(a, g, p) and any automorphism ¥ of S. The image V(p) = T satisfies
all the same formulas as p and so also defines a standard model of arithmetic. The image
h of g under ¥ also determines a subset of this model via ¢ and it must be the “same”
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subset in the sense that they correspond to the same subset of N via the isomorphisms
among M(p), M(T) and N. Of course, pr(b,h,T) (where b =¥(a)) is also true in S
since ¥ is an automorphism. Our definition of biinterpretability now says that a = b as
required for rigidity.

Now consider any relation Q(Z) on S. By the assumption that S is interpretable in
first or second order arithmetic, we know that () is definable in those structures. For the
other direction, suppose ( is definable by a formula © of first or second order arithmetic.
If this is first order arithmetic then we expanded it by a sequence X of second order
parameters (of the same length n as z) whose intended interpretations are some subsets of
the model. If it is second order arithmetic then we simply assume that the formula already
contains a sequence X of free second order variables (of the same length as z). In any
case, © defines the property that the sequence of the degrees of X satisfies ).) @ is then
defined in S by the formula ¥(z) = 3p, go . . . Fgn_1(p.(P) & A ©r(zi, G, p) — O (i, p))

i<n inter

where T' is the translation of formulas of second order arithmetic given in §+7._1._%Iere
our correctness condition ¢, guarantees that the model M(p) is standard and we also
assume that the requirements of the definition of biinterpretability are satisfied. So the
translation of © asserts (because of the properties of ) that a sequence of sets of degree
z; satisfy © (in N), i.e. @Q holds of z. =

Our goal now is to prove that D(<0’) is biinterpretable with arithmetic up to double
jump and so every relation on it invariant under the double jump is definable in it if and
only if it is definable in first order arithmetic.

Theorem 8.4.8 D(<0) is biinterpretable with arithmetic up to double jump.

defL2 defdjclasses

Theorem mand Theorem W_smhat we can define the double jump classes
of degrees in D(<0’) by talking about the sets that are coded (by our usual formula
vg(z,8)) 0. Bandard models M(P) of arithmetic with @,g below a as in the proof of
Th corem %71_3' The point here is that these sets determine X4 and so a” by Proposition
%._Z%'Z_I'f‘vlve wish to define the relations needed for biinterpretability up to double jump, we
need to be able to talk about the sets that are ¥4' for an arbitrary degree a simultaneously
in a single model. Our plan is to provide a scheme defining isomorphisms between
two arbitrary standard models satisfying some additional correctness condition. Such
isomorphisms would allow us to definably transfer (codes for) sets in different models to
ones for the same sets in a single model and so define the required relation ¢ . We begin
with a lemma that is used to build such isomorphisms by interpolating a sequence of
additional models between the two given ones and isomorphisms between each successive
pair of models.

Lemma 8.4.9 If c <0, c € Ly , ap,a; € Ly and P is a recursive notion of forcing,
then there is a G < C which is 1-generic for P and such that Ay & G and A1 & G are
both low.
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Proof. Let D, > be the usual dense sets for making GG 1-generic for P. They, and the
density function for them, are uniformly recursive in 0. Now consider, for i € {0, 1}, the
sets Dy; = {p|®a*® P (n) | or (Vg < p)®n'® D (n) 7). As the A; are low, thes sets
and their density functions are also uniformly recursive in 0. Thus, by Theorem %‘3%,4
there is a 1-generic sequence (py) and an associated generic set G both recursive in C
meeting all these dense sets. Any such G clearly has allnt%geg{(gpgggies required in the
theorem. (Follow, for example, the proof of Proposition 6.2.18 using these D, ; in place

of Di..) m

DObiintDJ
Proof (of Theorem W In addition to the previous correctness conditions for
our standard models M(p) we require for the rest of this section that pg, the first of
the parameters p, which bounds the parameters q defining the nice effective successor
structure E)g%ygding the domain d,, of the model, is in Ly. (This condition is definable by
Theorem 8.4.3.) Given two such models M(pg) and M (p4) we want to show that there
are additional models M(py) for & € {1,2,3} and uniformly definable isomorphisms
between the domains of these models taking d;,, to dit1, for i < 4. (Given parameters
Py defining a model M(py) we write dy, for the degree representing the nth element of
this model. Similarly, we write Py o for the first element of p;, and gy, for the parameters in
pr determining the effective successor structure which provides the domain of M(py).)
Thus (as we explain below) we produce a single formula 6(z,y, z, z2’) which uniformly
defines isomorphisms between any two of our standard models M (pg) and M(p,) (with
z and Z’ replaced by po and py).

We begin by choosing q; < 0" as given by f -e%%l}eglc over Py sequence and function
for the recursive notion of forcing (Exercise [77) that embeds a nice effective successor
model with @ o, the first element of g;, being the bound on all the othel_‘LQrfcguired para-
meters. As poo € Lo, 0" is La(po) and so such g exists %y ;Egg)g g}ﬁﬁ_&gﬁ"ela‘civized
to poo). Note that ; (and so @1 ) is in L; by Proposition 6:2.18 as 1t 1s associated with
a l-generic sequence recur é‘{ﬁ ier%1 0’. We may 0% eéltend q; to py defining a standard
model M (p;) by Exercise 735 and Theorem B35 a8 0 is GL2(q;). Similarly, we see
that thefe are 613_and p3 bearing the same relation to M£Pf52e%§v‘_é£ and, p; do to M(pﬁgﬁ; emblsen
Now as q o and q3 o are both low we may apply Lemma 8.4.9 to the forcing of Exercise %—L
to get Qs < 0’ (again as 0’ € Ly(@1,0), La(s,0)) such that both ;0 ® §z0 and 20 D T30
are in L; and then extend S(_%% té)nf)g defining ./\/{ ghgnas we did for q;.

We now apply Exercise h%?ind Theorem §T3T3gf_0 get the desired schemes defining our
desired isomorphisms: Given any n € N and ¢ < 4, consider the finite sequences of degrees
(dio,...,din) and (dit10, .- ., dit1,,). We want to show that there are parameters ¥, < 0’
such that the formpla.o,(z,y,T;) (Where ¢,(z, y, Z) ranges over binary relations as Z varies
as in Theorem [7.2.3) defines an isomorphism taking d;j to d;;1 for each £k < n. By
the results just cited it suffices to show that the @@ d;x & € d; i1 are in Lo for each

k<n k<n
1 < 4. For ¢ = 0, note that q; is a S%%ieartﬁ:dlovv}fzilth a 1-generic/poo sequence which is
recursive in 0’. Thus by Proposition %2 [ (suitably relativized) (@:1©Pg)" = Py and

80 (G1,0P Do) = Poo- As Poo € Lo, 0" = Pg o = (@1,0®Po,)” as required. The argument
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for 7 = 3 is similar. For the other pairs, we have already guaranteed that q; o ® gz and
Q2,0 @ g3, are both Lj.

We can now define the desired isomorphism 6(n, m,pg, p4) between M(pg) and
M(p4). We say that an n in the domain of M(pg) (i.e. ¢p(n,Py)) is taken to m
in the domain of M(p,) if and only if there are degrees py for k € {1,2,3} defining mod-
els of arithmetic M(py) and ones T; for i < 4 as above such that each y,(z,y,T;) defines
an isomorphism between initial segments of (the domains of) M(p;) and M(p;41) where
the initial segment in M (Py) is the one with largest element n and that in M(p;) has
largest element m. Clearly this can all be expressed using the formulas ¢ (z, px) and
o (x,y, px) defining the domains of M(pj) and the orderings on them. Note that the
definition of this isomorphism is uniform in py and ps and that we have shown that for
any po and p, defining our standard models of arithmetic, there are parameters below 0’
defining all these isomorphisms. In other words, we have described the desired formula
0(x,y,z,7).

We now wish to define the formula ¢g(x, 7, po) required in the definition of biinter-
pretability u E(l)n%louble jump (for M(Pg) a model of arithmetic). (We have replaced p
in Definition 8.4.6 by pg 5& atch our current notation.) First, pp says that, if z € Ly
(as defined by Theorem , then § defines (via our standard ¢g) the empty set in
M(Py). In addition, pp says that if v ¢ Ly and S is the set defined in M(po) by 7,
then for every set S € X5 (with S defined by other parameters h in M (py) and S € ©5
expressed in the translatlon of arithmetic into M(py)), there are g < x and Py w1th
Pso < x such that g codes a set S, in M(py) and, for every n and m, 6(n, m, p,, P4)
implies that ¢g(n,h, py) <¢g(m, g Py), i.e. S =S,. By all that we have done already,
this guarantees that every S e Y7 is B¥. For the other direction, ¢p also says that if
g < x and p4 with psy < x are such that g codes a set S4 in M(p4) then there is a set
S (coded in M(Py) by some h) which is 5 (as expressed in M (py)) such that S = S,
as expressed as above using f. So again by what we hasve already done, this guarantees
that every Sy € ¥ is ¥5. Thus, by Proposition %7%{“2_5‘%&8 the same double jump as
X as required. m

Theorem 8.4.10 A relation on D(<0') which is invariant under the double jump is
definable in D(<L0') if and only if it is definable in true first order arithmetic.

biintdef DObiintDJ
Proof. Follow the proof of Theorem %.ZI.? but use Theorem %.4.8 in place of the assump-
tion that the structure is biinterpretable with arithmetic. m

Corollary 8.4.11 H; is definable in D(<0').

Proof. This follows immediately from the Theorem and fact that x < 0 is in H; if and
only if D(<0') EVz3y < x(2” = y”). This fact is proven for r.e. x in Nies, Shore and
Slaman [1998, Theorem 2.21] but (as indicated there on p. 257) repl Cigg  last use
of the Robinson jump interpolation theorem in the proof by Theorem &:3. 10 prov1des a

proof for D(<0’'). =
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The analogous theorems hold for both D and R, i.e. they are biinterpretable with
second or first order arithmetic, respectively, up to double jump. (Moreover, in D the
jump is also definable.) Their definable relations which are invariant under the double
jump are then characterized in the same way. Indeed, every jump ideal Z of D (i.e. an
ideal that is also closed under the jump operator) which contains 0 is biinterpretable
with second order arithmetic up to double jump if one takes the second order structure
to have sets precisely those with degrees i% %'naégd the jump is definable in 7 as well.

By more extensive uses of Theorem 8.3.9 we can prove our biinterpretability and so
definability results for D(< x) for any x < 0" in Lo.

Exercise 8.4.12 For every x <0 in Ly, Th(D(<x) is biinterpretable with true first
order arithmetic and so its theory is 1-1 equivalent to that of true arithmetic. Moreover,
for everyx < 0" a relation on D(< x) invariant under double jump is definable in D(< x)
if and only if it is definable in first order arithmetic. (Forx € Lo, this last result is trivial.
Otherwise, it follows from biinterpretability as before.)

The Biinterpretability Conjectures for D(<0’), R and D assert that these structures
are actually biinterpretable with first, first and second order arithmetic, respectively.
As we have seen proofs of these conjectures would show that the structures are rigid
and would completely characterize their definable relations. These are the major open
problems of degree theory.

Notes: The definitions of biinterpretability for different degree structures and the
associated conjectures aﬁeeg&e to H&rirél%gfgsnsgg(.i Slaman and Woodin (see Slaman [1991]
and [2008]). Theorems 8.4.3 and 8.4.4 are originally due to Shore [1988] but for triple
jump in place oésgio%lgl:%]ump. The improvement of one jump is essentially an application

8£ f]Hoposition 4.2 as pointed out in Nies, Shore and Slaman [111%%%]9 gzvhere Corollary
%.71.—1‘1 also appears. Slaman and Woodin also 5%‘{?91;5511301"3“1 4.7 (again see Slaman
[1991] and [2008]). Plans for proving Theorem %.4.8 were proposed in both Shore [1988]

and more concretely in Nies, Shore and Slaman [1998] but neither actually provided the

definitions of the required CO@%E{%S%@ Inaps nor the proofs that they exist as we have

done here. Thus Theorems B.4.3, B.4.10 a deTi}{% tgglprovement to initial segme E%lgg D3
D(<0') bounded by any x € Ly of Exercise B.4.12 are new. A proof of Exercise g.zl. [2

is in Shore [2014]. Biinterpretability up to double jump for the r.e. degree R is proven
in Nies, Shore and Slaman [1998]. Slaman and Woodin (see Slaman [1991] and [2008])
proved it for D. A very different proof that also gives the results described for jump
ideals containing 0 is in Shore [2007]. The definability of the jump is proven in Shore
and Slaman [1999] based on the results of Slaman and Woodin. This reliance is removed
in Shore [2007] where the jump is also defined in every jump ideals containing 0,
??forward references??
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8.5 Array Nonrecursive Degrees

The notion of array nonrecursiveness was originally introduced in the context of r.e.
degrees to capture certain types of arguments in which one needed multiple permissions
from (changes in) a given r.e. set to construct a desired set. (DJS I) It was phrased
in terms of the r.e. set meeting (intersecting) the elements of certain types of arrays
of uniformly given finite sets. It was later (DJS II) generalized to all degrees with a
definition based on a domination property involving functions weak truth-table reducible
to 0’ and shown to have many of the properties of GL, degrees.

Definition 8.5.1 A degree a is ANR if for every function g <.,u 0" there is an f <r a
such that f is not dominated by g.

Exercise 8.5.2 Ifa ¢ GL; then a € ANR.

This notion is actually equivalent to two related ones, one seemingly weaker and the
other seemingly stronger. (DJS and CSh)

Proposition 8.5.3 The following are equivalent for a degree a:
1. ais ANR.

2. There is a function f <; a which is not dominated by the least modulus function
my for 0.

3. For any A € a and g = ®.(A @ ') such that there is a function r <r A bounding
the use from 0’ in the computation of ¢ at each z, there is a k <7 A which is not
dominated by g.

Proof. That (1) implies (2) and (3) implies (1) are immediate from the definitions. We
prove that (2) implies (3).

Without loss of generality we may assume that f, g and r are increasing. We define
the required k£ <7 A as follows: To calculate k(n) compute, for each s > n in turn,
Do pr(s) (ABOY, ;) (i.e. compute fr(s) many steps in the standard enumeration of 0" and
then, using this set as the second component of the oracle (and A for the first), compute
. at n for fr(s) many steps) until the computation converges and then add 1 to get the
value of k(n). This procedure must converge as ®.(A @ 0’;n) converges. Now, as my
does not dominate f, there are infinitely many n such that there is a j € [r(n),r(n+ 1))
with f(j) > mg(j). For such n we have fr(n+1) > f(j) > mg(j) > mgr(n). Thus
0 [ 7(n) = 0" | r(n) for every s > n. So the computation of ¢.(A @ 0';n) is,
step by step, the same as that of ®.(A & T(s);n) for each s > n as all the oracles
agree on the actual use of the true computation. So eventually we get an s > n such
that @, sr5)(f @ O’fr(s);n) | and the output must be ®.(A & 0’;n). Thus, for these n,
k(n) = g(n) +1 > g(n) as required. m
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Exercise 8.5.4 There is an a € ANR with a € L, 'an[r% act, there is a Cohen 1-generic
A whose degree is ANR. Hint: use Proposition 18.5.3(2) and the principal function

?2definition?? of A.

Exercises on f is AN R, relativizations and uniformity

That there are Cogfzgl 1-generics bel W, SYery a € ANR fol'lovvs immediately from
the proof of Theorem 8:3.3 and Remark %.3.4. ['his, as usual, gives one whole array of

corollaries. We now rove Stehe analog for ANR. of the stronger version given for GL,
degrees in Theorem & %fg Fhis allows us to carry out almost all of the known forcing
constructions for GLy degrees for ANR ones.

Theorem 8.5.5 If A is of ANR degree, P is an A-recursive notion of forcing, C = (D,,)
a sequence of sets dense in P (including the ones {p| |V(p)| > I} for each 1) with a
density function d(x,y) = V(A®0';x,y) such that the use from 0 in the computation of
V(A ®0;z,y) is bounded by a function 7 <r A, then there is a C-generic sequence (ps)
recursive in A. Indeed, ¥Vn3s(psi1 = d(ps,n)).

Proof. Without loss of generality we may assume that 7(z,y) is increasing in both x
and y. Next Jote that the nondecreasing function mg7 (s, s) satisfies the hypotheses of
Proposition 8.5.3(3), i.e. it is computable from A & 0" and its 0’ use is bounded by a
function (7(s, s)) recursive in A. Finally note that the maximum of the running times
of W(A@ 0;z,y) for z,y < s is also is such a function. (We run ¥ on each input and
then output the sum of the number of steps needed to converge.) Finally, we let r baeIl Elele
maximum of these three functions so it too is of the desired form. By Proposition 8.5.3,
we now have an increasing function g <7 A not dominated by r. We use ¢ to construct
the desired generic sequence p, by recursion.

We begin with p; = 1. At step s + 1 we have (by induction) a nested sequence
(pili < sy with p; < s. We calculate ()iq(S 41y and see if there are any changes on the use
from 0’ in a computation based on which some D,, was previous declared satisfied. If so,
we now declare it unsatisfied. Suppose n is the least m < s+ 1 such that D,, is not now
declared satisfied. (There must be one as we declare at most one m to be satisfied at every
stage and none at stage 1.) We compute Wy, 1)(A @ 0;(S+1);ps, n). If the computation
does not converge or gives an output ¢ such that ¢ > s+ 1 or ¢ £p ps we end the stage
and set psy1 = ps. Otherwise, we end the stage, declare D,, to be satisfied on the basis
of this computation of the output ¢ and set psy1 = q. Of course, (ps) <7 A.

We now verify that(ps) is C-generic and indeed Vn3s(psi1 = d(ps,n)). Clearly if
we ever declare D, to be satisfied (and define p,,; accordingly) and it never becomes
unsatisfied again then p,.; = d(ps,n). Moreover, if we ever declare D,, to be satisfied
(and define py,1 accordingly) and it remains satisfied at a point of the construction at
which we have enumerated 0" correctly up to r(ps,n), then by definition psi1 = d(ps, n)
and D,, is never declared unsatisfied again. We now show that this happens.
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Suppose all D,, for m < n have been declared satisfied by sq and are never declared
unsatisfied again. Let s+1 > sq be least such that g(s+1) > r(s+1). If D,, was declared
satisfied at some ¢ 4+ 1 < s on the basis of some computation of Wyq41)(A ® O;(Hl);pt, n)
and there is no change in 0’ on the use of this computation by stage g(s + 1) then the
computation is correct, p;11 = V(A®0;p,,n) € D, and D,, is never declared unsatisfied
again. (The point here is that by our choice of s, g(s+1) > mgr(s+1,s+1) > mgr(p:, n)
and so 0y, [ 7(p;,n) = 0" [ r(p;,n).) Otherwise, D, is unsatisfied at s and the least
such. By construction we compute Wy, 1)(A ® O;(s L1)5 Ps: n). The definition of r along
with our choice of g and s guarantee that this computation converges and is correct and
so unless d(ps,n) > s + 1 we declare D, satisfied, set p,y1 = d(ps,n) and D, is never
declared unsatisfied again. If d(ps,n) > s+ 1, we set ps11 = ps and, as D, remains
unsatisfied and the computations already found do not change, we continue to do this
until we reach a stage v + 1 > d(ps,n) at which point p, = ps and we set p,.1 = d(p,,n)
declare D, satisfied and it is never unsatisfied again. =

Exercise 8.5.6 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(<a) preserving 0 and 1 for any a € ANR. (DJS)

Exercise 8.5.7 Prove that every a € ANR has the cupping property.

jump inversion others Exercises??

Our goal now is to characterize the ANR. degrees a; f:é}orsee degrees a such that every
b > a is RRE. We begin with the analog of Theorem 8:3.15 which provides one half of
the equivalence.

Theorem 8.5.8 Ifa € ANR then a is RRE.

Proof. We use an A-recursive notion of forcing P with conditions p = (pg, p1,p2),
p; € 2<% such that

1. |po| = |p1l, po(d,) = A(n — 1), pi(d,) =1 — A(n — 1) where d,, is n'" place where
po, p1 differ and

2. (Ve < |po @ p1|)(e € po ® p1 & Fx({e, x) € pa)).

Extension in this notion of forcing is defined simply by ¢ <p p < ¢; 2 p; but note that
this applies only to p and ¢ in P. Membership in P and <p are clearly recursive in A.

Our plan is to define a class C of dense sets D, with a (aiggsé%efunction d(p,n)
recursive in A @ 0" with 0’ use recursively bounded. Theorem &.5. en supplies a C-
generic sequence (ps) <r A from which we can define the required G <7 A in which a is
r.e. If ps = (P50, D51, Ps2) we let G; = U{ps;|s € N} for i =0,1,2 so G; <r A. Then, if
we can force Gy and G to differ at infinitely many places, Go @ G1 =7 A. On the other
hand, the definition of the notion of forcing obviously makes Gy & G r.e. in G,. Thus a
is be r.e. in g =deg(Gy). We also have other requirements that make g < a as well.
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We begin with the dense sets that provide the differences we need:
Do, = {p € P : py, py differ at at least n points}.

We define the required function d(r, 2n) by recursion on n. Given r and n+ 1, we suppose
we have calculated d(r,2n) = p = (po, p1,p2) € Do, with p <p r. If p & Dy, .5, we need
to compute a ¢ = (qo, q1, ¢2) € Dany2 With ¢ <p p. Let qo = po"A(n), ¢ = p1" (1 — A(n)).
Choose i € {0,1} such that ¢;(|po|) = 1. Define g2 D py by choosing x large and setting
@2((2|po] +4,2)) =1 and ¢a2(z) = 0 for all z ¢ dom(ps) and less than (2|py| + i, z). Now
q = {qo, q1, q2) satisfies the requirements to be a condition in P. It obviously extends p
and is in Ds, 5. This computation is clearly recursive in A.

We must now add dense sets to guarantee that A ﬁT Go:

Doy = {peP: (P (x) |# A(x)) or V(oo, 01 2 p2)[Fa(®7°(z) |# 7 () |=
(Fi € {0,1})(3{e,z))(e < |po & p1| & o4({e,x)) =1 # (po ® p1)(e)]}.

Of course, the first alternative guarantees that ®52 # A while the second that ®¢2, if
total, is recursive. The point here is that if some p, in our generic sequence satisfies the
second clause then, we can, for any z, calculate ®¢2(z) by finding any o O p,, such that
®9(z) | and taking its value as ®2(z). There is such a 0 C G as ®¢2 is assumed to
be total and Gy D pso. If there were some other 7 O p, o with ®7(2) |# ®7(z) | then,
by our choice of s and the definition of Ds, 1, there is no (e, x) with e < |py @ p;| such
that 7({e,z)) = 1 # (po ® p1)(e). Thus we could form a condition g <p p, with ¢go = 7
by extending py and p; by setting ¢;(w) = g(w) = 1 (for w > |pgl|) if either (2w,v)
or (2w + 1,v) is in 7 for any v. In this way no new differences between ¢y and ¢; (not
already in po and p;) occur and the definition of being a condition is satisfied. Thus ¢ is
a condition extending ps o with ®%(z) |# A(z) contradicting our choice of s.

We compute the required density function d(g,2n + 1) as follows. Given g we ask one
question of 0’ determined recursively in ¢: Are there extensions og, 07 of ¢z that would
show that ¢ does not satisfy the second disjunct in the definition of Dy, ;. If not, let
d(q,2n+ 1) = ¢ which is already in Dy, 1. If so, we find the first such pair (appearing in
a recursive search) and ask A which o; gives an answer different from A(x). We now need
a condition r = d(q, 2n + 1) extending ¢ with third coordinate ry extending o;. For each
(e, x) with e > |¢1 ® ¢2|) and 0;({e, z)) = 1 we define r;(z) = 1 for both j € {0,1} for the
z that makes (1o @ r1)(e) = 1 and otherwise we let 7;(u) = 0 for all other u less than the
largest element put into either rg or r; by the previous procedure. We now extend o; to
the desired 5 by putting in (k,y) for a large y for all those & > |q1| put into rq & r; for
which there is no (k,w) in ¢;. Otherwise we extend o; by 0 up to the largest element put
in by this procedure. It is clear that this produces a condition r as required. (No points
of difference between ry and gﬁraggsgreated that were not already present in q.)

We now apply Theorem B.5.5 10 get a C-generic sequence (ps) <r A. As promised,
we let G; = U{p,,|s € N} for i =0, 1,2 and, as described above, A =1 G, & G; which is
r.e. in Gy. In addition, the conditions in Ds,,; guarantee (as above) that ®52 #£ A as
well. m
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Exercise 8.5.9 Prove that everya € ANR has the cupping property. Hint? Indifference
set, i.e. f: N —{0,1,2} approach??

ch sraé:;cgggn%’%ion as all above are RRE reference notions and terminology about trees
from §L9'2

general definability issues forward refs od

77Exercises on Relativization via Proposition F""

Definition 8.5.10 A function f is AN R if it is not dominated by m. It is AN R relative
tohif h <p f and f is not dominated by my,. A degree a is ANR relative to b, ANR(b),
if there are [ € a and h € b such that f is ANR relative to h, ANR(h).



Chapter 9

Minimal Degrees and Their Jumps

9.1 Introduction

We now return to extension of embeddings problem. We saw that as long as we do
not attempt to put a new degree el}I{]t écnlligz extension below a given degree, then anything
consistent is possible (77Exercise m We now turn toward the issue of whether one
can put new degrees below given ones. The answer is strongly negative. In fact, strong
enough so that we can rule out all the extensions not constructed by ??Exercise )5 2.22
for finite lattices P. Clearly embedding every finite lattice P as an initial segment of D
suffices as then if Q adds elements below any of P then there can be no extension to Qalse
the embedding of P as an initial segment. We prove this and more in Ch ;U [his

suffices to decide the truth of all two quantifier sentences in D (Chapter %’%71% dt i lso
to show that the set of true three quantifier sentences is not decidable Chauptera]Ta_%1

We begin with the simplest case.

Definition 9.1.1 A degree a > 0 is minimal if, for anyb < a, b =0 orb = a. A degree
18 a s a minimal cover of ¢ > a if for any b withc <b <a,b=c orb=a.

We cannot hope to construct a set of minimal degree by forcing with finite conditions
like Cohen forcing as we have seen that generics for such forcings have every countable
partial order embedded below them. We move then from approximations (conditions)
that are clopen sets in Cantor space (all extensions of a o € 2V) to ones that are prefect
subsets instead.

9.2 Perfect forcing and Spector minimal degrees

We represent perfect subsets of Cantor space, 2% (i.e. nonempty sets with every point a
limit point) by binary perfect (i.e. always branching) trees T' (with no dead ends). The
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perfect subsets of Cantor space are then the paths [T'] through these trees. We present
such trees as functions 7' : 2<% — 2<% with certain properties. 7?7 define Cantor space
and relevant topology perfect trees etc. early on??

Definition 9.2.1 A binary function tree is a (possibly partial) function T : 2<% — 2<¥
such that

1.0 C7=T(0) CT(r) (for 7 € dom(T), so, in particular, if T(T) | and o C T
then T'(o) |) and

2. o|lt = T(0)|T(7) (for o,7 € dom(T)).

Definition 9.2.2 We say that a binary string T is on T if there is a o such that T'(o) = 7.
We say that T is on T above p if there is a o O p with T(o) = 7.

Exercise 9.2.3 If T is a binary function tree then (for o € domT), |T'(o)| > |o|.

t
Exercise 9.2.4 If T is a binary tree in the sense of Definition b??e?l then [T'] is perfect
if and only if there is a total binary function tree S such that [S] = [T]. If T is recursive
(as a subset of 2<%) then we may take S to be so as well.

Definition 9.2.5 For total binary function trees, we let T|C] = U{T'(c)|oc C C} for each
set C' and call it the path in T determined by or following C'

Exercise 9.2.6 If T" is a total binary function tree then {T[C]|C € 2N} = [T, the set of
paths in T as defined for general trees in Definition [7.2.1.

Exercise 9.2.7 If S and T are total binary function trees then [S] C [T] if and only if
Vo3r(S(e) CT(7)).

Exercise 9.2.8 If S is a total binary function tree and C € 2N, then S[C] =r C® S. If
T is also a total binary function tree, [S] C [T] and S[C] = T[D] for some D € 2N, then

Exercise 9.2.9 Prove there is a total binary tree T <7 0" such that VC(T[C) =r C V')
and so if o 0 then T|C] = C. This provides a proof of the Friedberg Jump Inversion
Theorem 15.3.1 that exposes some of the uniformities in the proof.

Definition 9.2.10 We define an order <s on the binary function trees by S <s T <
Vo(S(o) |= 3r(S(o) =T(7)), in which case we say that S is a subtree of T

Remark 9.2.11 In the remainder of this chapter all trees are partial recursive binary
function trees (unless otherwise specified) and we just call them trees. In the rest of this
section they are also total unless otherwise specified.
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Our forcing conditions, in this section, are these trees. The order relation S <gs T is
then equivalent to Vo3r(S(o) = T(7)).

The function V required in the definition of a notion of forcing is given by V(T') = T'(0)
but the notion of extension makes it clear that the only possible generic sets G extending
the condition T" are the G’ € [T]. This notion S of forcing with perfect recursive binary
function trees is often called Spector forcing. Its analog in set theory is often called Sacks
forcing or perfect forcing. Note that this notion of forcing is only recursive in 0”. The
crucial point here is that it takes 0” to determine if ®, is total. Once we know it is total,
0’ suffices to determine if it is a binary function tree as this is then a II; property. If S, T
are conditions in S then 0’ can also determine if S <g T as this too is a II; property.
The point here is that if there is any 7 such that T'(7) = S(o) then it must be of length
at most |S(o)| by Exercise 9.2.3

The requirements for a set G' to be of minimal degree are as follows:

e N.: G# ®, and
e M.: If ¢ is total then either ®¢ is recursive or G <r ®F.
The N, requirements are very easy to meet.

Lemma 9.2.12 For each e the set of conditions {T|T I+ =(®. = G)} is dense in S. In
fact the smaller set D, = {T|—~(®. = T(0)(x))} is already dense in S.

Proof. Given any tree 7" and ®., note that —(7'(i) = ®.) for ¢ at least one of 0 or 1
as T'(0)|7°(1). Thus we may take as the desired extension S of T" the subtree such that
S(o) = T(i"0), i.e. it starts with 7'(¢) for the appropriate ¢ and then continues on as
doesT. m

. di\{aVe formalize the operation that provides a witness to the density required in Lemma
Definition 9.2.13 For any partial tree T and o € 2<%, the full subtree of T" above o,
Fu(T, o) or sometimes simply T,, is the tree S defined by S(1) =T (o ).

Proposition 9.2.14 If T is (partial) recursive then so is T, and an index for it can be
found uniformly recursively in one for T.

Proof. Immediate. =

" . , %%1% .
Proposition 9.2.15 There are density functions for the D, of Lemma 19.2.12 which are
uniformly recursive in 0' on the set of (recursive binary function) trees.

Proof. Given any 7', find an x such that T(6"0)(z) # T'(c"1)(x). Then ask 0" if ®.(z) |.
If so compute its value. In any case take ¢ € {0, 1} such that ~(7'(¢"i)(z) = ®.(x)) and
take Fu(T,0"i) as the desired extension. m

We must now see how to satisfy the minimality requirements M,. We have seen
several times how to make sure that ®¢ is recursive. To do this we want a be in a
situation in which there are no extensions of the current approximation that e-split.
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Lemma 9.2.16 IfT is a partial tree such that there are no o and T such that T'(c)|.T(T),
G € [T] and ®Y is total then ®F is recursive.

Proof. As usual, to compute ®%(x) we search for any o such that L) () |. Since
®%(z) | there is an initial segment ~ of G such that ®)(z) |= ®%(x). As G € [T] there
is a 7 such that v C T(7) C G and so 7 is a string as desired. We then note that, for
any such o, &t 7 (z) = &I (z) = ®%(z) as otherwise T(c)[.T(7). =

We must now argue that if we cannot extend a given T" to one with no e-splits on it
as above, then we can guarantee that, if total, ®¢ > G. To this end, we define another
operation on trees that proceeds by searching for e-splits.

Definition 9.2.17 The e-splitting subtree, Sp(T,e) = S, of a partial recursive tree T
is defined by recursion. S(0) = T(0). If S(o) = T(7) then we search for To,71 2 T such
that the T'(1;) e-split. We let 7o and 71 be the first such pair found in a standard search
and set S(o"i) = T(1;). A partial recursive tree S is an e-splitting tree if, for every o,
if one of S(0°0), S(c"1) is convergent then both are and they form an e-split.

Proposition 9.2.18 Sp(T,e) is a partial recursive subtree of T with an index given
uniformly recursively in one for T. If Sp(T,e) is not total then there is a T such that
there are no e-splits on T above T for some 7. Indeed, if Sp(T,e)(7) | but Sp(T,e)(7°0) 1
and T(1) = Sp(T,e)(7), then there are no e-splits on T above T. Moreover, for any o,
Sp(T,e)(c"0) |« Sp(T,e)(c"1) | and so Sp(T,e) is an e-splitting tree.

Proof. The assertions about the uniformity of the procedure of forming the e-splitting
subtree and the equiconvergence of Sp(T, E)(¢"i) for i € {0,1} are immediate from the
definition. As for the rest, if S(0) 7 then T'()) T and we are done trivially. Otherwise, let
7 be such that Sp(T,e)(7) |= T(p) for some p but Sp(T,e)(r i) T for some (equivalently
both) ¢ € {0,1}. If there were an e-splititng on 7" above p then we would have S(777) |
for both i € {0, 1} by definition. m

T.hus to satisfy the minimality requirement M, 2ol ﬂltfgices to prove that if TJ' haﬁs
e-splits for every o (and so we cannot use Lemma [9.2.16 to force ®¢ to be recursive if
total) then Sp(T,e) forces G <p ®¢ if the latter is total.

Lemma 9.2.19 (Computation Lemma) If S is a partial recursive e-splitting tree,
G € [S] and ®F is total then G <p ®F.

Proof. We compute an ascending sequence +,, of initial segments of G (and so G itself)
from ®¢ by recursion. We begin with v, = S(()) which is an initial segment of G since
G € [S]. Suppose we have v, = S(0,) C G. As G € [S], one of S(c,"0) and S(0,"1) is
also an initial segment of G. Thus S(o,,"0) and S(o,," 1) are both convergent and e-split.
We may then recursively find an z on which &2 9(2) |# & Y(z) |. Exactly one
of these two agrees with ®%(x). We choose that i € {0,1} and set 0,1 = S(0,,"i). ™

We have thus proven the density of conditions needed to satisfy the minimality re-
quirements.
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Lemma 9.2.20 The sets C. = {T| either there are no e-splits on T or T is an e-
splititng tree} are dense in S. Moreover, there are density functions for these sets which
are uniformly recursive in 0" on the set of (recursive binary function) trees.

Proof. By the above Lemmas, either there is a ¢ such that Fu(T, o) has no e-splits
or SP(T,e) is a total tree and so the C, are dense. As the two options are 3, and Il
properties, respectively, 0” can decide which option to take and, if the first is chosen then
even (' can find a suitable o as there being no e-splits on T, is a II; property. If the
second is chosen then the index is given recursively. m

Theorem 9.2.21 There is a minimal degree g < 0”. Indeed, for every degree c there is
a g < c” which is a minimal cover of c.

Proof. Take any generic sequence (T,) meeting all the D, and C.. The associated
generic set G = UT,(() is of minimal degree. By the above results on the complexity
of the density functions we may take the sequence and so GG to be recursive in 0”. The
remark abouts r%nli%tglal covers, now follows by simply relativizing the proof to c. =

Theorem 9.2.2T says that every degree ¢ has a minimal cover, and indeed one recursive
in ¢”. Our usual question at such a point is can we do better in in terms of the complexity
of the minimal cover we construct (or equivalently in terms of the minimal degree the
basic construction provides). Before turning to this line of analysis, we point to a deeper
question: Which degrees are minimaﬁsiovers? We provide a lot of information and partial
answers to this question in Chapter 77. The analysis there will, in part, however, depend
on the answer to the complexity question that we give in the next section.

The most obvious question about the complexity of minimal degrees is whether we
can produce one below 0'. It seems clear that we cannot use Spector forcing for this
as the notion of forcing (indeed even the set of conditions) is of degree 0”. Given the
work that we have already done, however, one would try to_use tgart'c%lmr(fg%give trees
instead. The basic lemmas that we have already proven (ETZ'.PIG_and E‘Z%Qj_still work.
The problem is that once we hit a partial tree, there may be no further extensions. We
construct a sequence of trees that satisfy all the requirements and construct a minimal
degree below 0’ in the next section. The crucial new facet of the construction is that we
use partial trees but when we discover we have reached a terminal point we backtrack
and revise the previous trees in our sequence. A priority argument is then needed to
show that the sequence stabilizes and so we satisfy each requirement.

Another improvement that we can deal with in the setting of Spector forcing is saying
something about the double jump of G. In particular, we can show that G” =1 0”. As
we have often seen, we can either introduce new dense sets (requirements) that directly
control the double jump or cleverly argue that we have already done so. We present a
direct proof an leave the indirect one as an exercise. The idea here is that G” =, Tot® =
{e|®¢ is total} and so we want conditions that decide if e € T'ot®. The route is similar
to that taken to splitting trees. The first alternative is that we have a tree T" and an x
such that ®F (z) T for every o. Obviously in this situation we have forced that ®%(x) 1
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and so it is not total. The second alternative is to produce a tree T' such that ®%(z) |
for every x and every G € [T]. The analog of the Sp(T,e) is Tot(T,e):

Definition 9.2.22 If T is a (partial) tree then S = Tot(T,e) is defined by recursion
beginning with S(0) = T(0). If we have S(c) = T(r) then search for a p O T such
that ®I )(|a|) L. If there is one we let p be the first found in a standard search and set
S(c"i) =T(p"i) fori e {0,1}.

Proposition 9.2.23 An index for Tot(T,e) can be found uniformly recursively in one

for T. If Tot(T,e) is not total then there is a o and an = such that CIJeT(p)(:U) T for every
p2o0.

Proof. This is immediate from the definition of Tot(T,e). m

Proposition 9.2.24 The sets B, = {T|32¥o (L7 (z) 1) Y{T|(Vo)(Va < |o|)(®L (2) |
)} are dense in S and uniformly recursive in 0" and so have density functions uniformly
recursive in 0”.

Proof. To see that the B, are dense consider any T'. If Tot(T), e) is a total function we
have the desired extension. If not, then there is a o and an z such that &% (x) 7 for
every p O 0. So T, is then the desired extension. That the B, are uniformly recursive in
0” is immediate from their definition. =

Proposition 9.2.25 If G is a generic defined from a sequence (T,,) <r 0" meeting all
the B. then G" =1 0".

Proof. To decide if e € Tot® =, G”, find an s such that T, € B, and see which clause
of the definition of B, is satisfied by 7. m

Theorem 9.2.26 There is a minimal degree g with g’ = 0".

Proof. Add the dense sets B, to those C, and D, considered before. There is a generic
sequence recursive in 0” meeting all these sets and the generic G associated with it has
all the desried properties. m

Of course, as might be naively expected, functions of minimal degree ca nat, he%\é%
any strong domination properties. For example, none can be GLy by Theorem 7 7 fen
more striking is the fact that there is a single function of degree 0’ that qgmmates every
function of minimal degree. This follows from the proof of Theorem [7 (SO T particular,
by Proposition 853 and Theorem %‘5’%, the least modulus function for 0’ is such a
function. For the minimal degrees we have constructed so far, we can say even more.

. . . . intOt .
Exercise 9.2.27 Show that the minimal degree constructed in Theorem %.2.26 S
dominated, i.e. every function recursive in G is dominated by a recursive function.
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intot

Exercise 9.2.28 Show that the Go Ci:mgﬁstructed m Theorem 19.2.26 has minimal tt and
. . omtt
wtt degree. (Hint: Recall Exercise 8.1.2.)

. o . spminde
Exercise 9.2.29 Show that the minimal degree constructed in Theorem 9.2.91 has double
gump 0". Hint: show that meeting the dense sets C. guarantees that the sequence meets
the B. as well.

Exercise 9.2.30 (Posner’s Lemma) Show that meeting the dense sets C. also guar-
antees that a generic sequence meets the D, as well. Hint: Consider an n such that, for
every o and z, ®7(z) = 0 if =(Fz < |o|)(0(x) # Pco)(x) |) and ®7(2) = 0(2) otherwise.

Exercise 9.2.31 Show that for every d > 0 there is a minimal degree g <7 d’V0" such
that g <1 d. ?2Improvement in Ezercise 77

Exercise 9.2.32 There are continuum many minimal degrees. Indeed, there is a binary
function tree T <7 0" such that every G € [T] is of minimal degree. Hint: Use conditions
(T,n) where T is a (recursive binary function) tree, n € N and extension is defined by
(S,m) < (T,n) if S <s T, m>n and S(c) =T (o) for every o of length < n.

Exercise 9.2.33 Use the previous Ezercise to show that any maximal antichain in D
has size 2%,

t fmi
Exercise 9.2.34 Show that in Fxercise 9?26?302?01;1 may also gquarantee that G" =7 GV 0"
for every G € [T1.

Exercise 9.2.35 Show that for every ¢ > 0" there is a minimal degree g with g’ =
c=gV0"

Definition 9.2.36 A binary tree T is pointed if every A € [T computes T. It is uni-
formly pointed if there is an e such that ®2 =T for every A € [T).
spminde

Exercise 9.2.37 Relativize Theorem 9.2. 0 an arbitrary degree c to prove that every
degree ¢ has a minimal cover, i.e. a g > ¢ such that the open interval (c,g) is empty.
Hint: One can proceed as usual by adding a C' € c into all oracle computations or one
can use uniformly pointed trees recursive in C'. In this case, just use binary function
trees recursive in C which are subtrees of the tree T' defined by T'(c)(2n) = C(n) and
T(o)2n+1) =0o(n).

Exercise 9.2.38 All of the other results of this section now relativize.
Exercise 9.2.39 Prove that every strictly ascending sequence of degrees has a minimal

upper bound g. Hint: If the given sequence is c,, use uniformly pointed trees of degree
c, for some n.
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Exercise 9.2.40 Show that the g of the previous exercise can be constructed so that
g// < @Cg‘

Exercise 9.2.41 Show that one can also get two minimal upper bounds gy and g, for
the ¢, of the previous exercise with (go V g1)” < @cl.. Note that these g; form an exact
pair for the ideal generated by the c,.

Exercise 9.2.42 Thus if in the previous two exercises ¢, = 0 then one gets a minimal
upper bound g for the 0 such that g” = 0% and indeed two such (which then form an
exact pair for the arithmetic degrees) with (g, ® g1)" = 0,

Exercise 9.2.43 Prove that there is a tree T such that each path on T is a minimal
upper bound for the ascending sequence c,,.

Definition 9.2.44 A tree T is a delayed e-splitting tree if for every n there is an m > n
such that the strings T'(o) for |o| = m are pairwise e-splititng.

Exercise 9.2.45 Prove the computation lemma for delayed e-splitting trees.

Exercise 9.2.46 Uniform trees; strongly uniform = 1-trees. one every path of minimal
degree, F': N — {0,1,2}. minimal degrees generate D minimal m-degree Perhaps write
out??

Exercise 9.2.47 other applications??

9.3 Partial trees and Sacks minimal degrees

Theorem 9.3.1 (Sacks) There is a minimal degree below 0.

Our plan is to use partial rggU{gicveOIlgiggr tsreflstis% 2 é:(gllsctrll‘ci.:ion gsecillrgsive in 0. We
have already seen (Lemmas B.Z. [0, 5.2 [9, ééé() and Fgroposmlon bTﬁS_that we can
handle both the diagonalization and minimality requirements by using subtrees of the
form Fu(T,o) and Sp(T,e) even if they are partial as long as we do not run into a
node with no convergent extensions on the trees we are using. Now 0’ can recognize this
situation when it occurs. Thus the problem is what to do when we arrive at a node with
no extensions on a tree. Of course, we must change the tree we intend our set to be on
but we must do so in a way that eventually stabilizes so that, for each requirement, we
remain, from some point onward, on some partial tree that satisfies the requirement.
Proof. At stage s, we have already specified an initial segment « of the set A of minimal
degree that we are building and a sequence (of indices for) nested partial recursive trees
Tos >s Ths >s -+ >s Tk, s with ag on each of them (i.e. there are o;, such that
Tis(0is) = as). In fact, as = T} 5(0). T is the identity function on binary strings.
(Indeed, as will become clear, Tj, is the identity function for every s.) Each Tj s is
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either Sp(Fu(T;s,7),1) for some j € {0,1}or Fu(T;,, o) for some ¢ and is devoted to
satisfying the minimality requirement for ®; with the choice of j devoted to satisfying
the diagonalization requirements.

We now find the least i < k, such that T; ;(0;5"0) 7. Let k541 = i if one such exists,
and let k,, 1 = ks + 1 otherwise. Note that this can be done recursively in 0’ as we have
indices for each T; ; as a partial recursive function.

e In the first case, we know that 7} ¢(c;s"0) T while T;_1 s(0,-15°0) |. Note that
in this case T; obviously cannot be of the form Fu(T;_;,0) and so (by the rules
of the construction which we are maintaining by induction) must be of the form

N ., E‘% t .
Sp(Fu(T;s,7),i). Thus by Proposition 9.2 here are no extensions of «, on
T;—1 which é-split. We now let T, 1 = Fu(T;_15,0;-15 0) (with the intention of
satisfying the minimality requirement for ®; by being on a tree with no i-splits).

e In the second case, we let Ty, 11 541 = Sp(Fu(T}, s, j), ks) where we choose j so that
D@y, # Th,+1.5+1(0) ( to be specific, say we choose j = 1 if (T}, 5(1) # Pk, (z) |)
and j = 0 otherwise) and with the hope that we remain on this tree and so satisfy
the minimality requirement for ®;_ by being on a k,-splitting tree.

o In either case, we let T} ;11 = T} 4 for i < ksy1 and a,q = Tk5+1,s+1(®>' The trees
T; are, of course, not defined at s + 1 for ¢ > ks 1.

We now claim that the 7; ; stabilize, i.e. there is a tree T; = lim,_,o, T; s and all the
requirements are satisfied. Note that if T} ; reaches its limit by stage ¢ then k, > ¢ for
s > t. Suppose, by induction, that T; , first reaches its limit 7; at stage s. At s+ 1 we set
Tit1,5+1 = Sp(Fu(T;s,7),1) (for some j) and we satisfy the diagonalization requirement
for ®,. If we never change 7,11, at at > s tﬁceorlln Tiga = Sp(Fu(Tis, j), 1)) and we satisfy
the minimality requirement for ®; by Lemma 9.2.19. If there is a stage after s at which we
first change 1.1, i.e. Ti114 # Tit1.441 it must be because we are in the first case at stage
t and we set k1 =i+ 1 and i1 41 = Fu(T;,0,4°0) because Sp(Fu(T;,7),1)) (04147 0)
is divergent. In this case, we can never change T;,; again. (No smaller one ever changes
by our choice of s and it can never be chosen as the least point of divergence as long as
it is a full subtree of the previoue Strffg.)s Moreover, «, remains on 7; on which there are
no ¢-splits abov% Qo g’sroposition 2.18). Thus we satisfy the minimality requirement for
®; by Lemma B‘Z‘EIG_I

Note that, in contrast to the Spector minimal degrees, o set, goengzursive in 0 (and so
even those of minimal degree) is 0-dominated by Theorem g.?.g. In 77 we actually need
to know a bit more about the set A of minimal degree that we have just constructed.

Corollary 9.3.2 The set A of minimal degree constructed above is actually <, 0.

Proof. To see that A <,;; 0/ we need a recursive function f such that f(n) bounds use
from 0’ needed to compute A(n). An abstract view of the above construction is that at
each stage s we have a number k; < s+ 1 and a sequence of indices for partial trees T; g
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for i < ks. (Note that as = Ty, s(0).) We then ask for each i < k; if T} s(0;°0) | where
this question is equivalent to the one that asks if I7(T; (1) = Tk, s(0) & T;s(770) |).
Each possible set of answers to these questions determines 0 < kg1 < ks +1 < s+ 1 and
the indices for the T; ;.1 for ¢ < kyiy except when they say that ks1 = ks + 1. In this
case, we need to ask one more question of 0': is there an x such that T}, (1) # @y, (x) |7
Thus we can recursively lay out all possible routes of the construction as a tree which at
level s is (at most) s + 1 branching along with the (at most s + 1 many) questions of 0/
needed to determine at each node of the tree at level s what stage s+ 1 of the construction
would be if the given node corresponds to the actual stage s of the construction. Now to
compute A(n) note that we extend ay at every stage of the construction so we only need
a recursive bound on the questions asked in any possible run of the construction for n
many stages. As the indices for all the possible 7} ; are uniformly computable from the
various assumed answers at the previous stages, it is clear that there is a recursive bound
on the questions that are needed in all possible runs of the construction for n many steps.
|

Sacksmin inwtt0’
Exercise 9.3.3 Theorem [9.3.1 and Corollary 9.9.9 above relativize to arbitrary degrees
c to give a minimal cover g of ¢ with g <,,c’. Moreover, for any C there is a G _which
. . . . . . . . ome are
is uniformly gl N C' such that g is a minimal cover of c. (Recall Definition [7.3.12
and Exercise l7.3.15.) 77 do out for later?? Also this earlier exercise??

Exercise 9.3.4 ??Show that for every d > 0 there is a minimal degree g <p d V 0’ such
that g <7 d. Hint my construction in L p. 19297 only for d < 0'??otherwise below d' #?

Exercise 9.3.5 Construct a tree T' <7 0 such that every path on T is of minimal degree.

Cone avoiding?? join 77 Complementation??

9.4 Minimal degrees below degrees in H; and GH;

We want to prove that if h € GH; then there is a minimal degree a < h. The proof builds
on the construction of a Sacks minimal degree with highness giving us an approximation
to but is unusual in that it relies on the recursion theorem to make the approximations
work.

Remark: Not below every Hy Lerman [?7]).
Question 9.4.1 If A >1 0 is r.e. then there is a minimal degree below A [??]. Can one

construct such a degree with the techniques presented in this chapter and the previous one
or some variation of them?

cone avoiding, join, complementation results?
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9.5 Jumps of minimal degrees

spectormin

At the end of §}‘9}.')2mlyzed the possible double jumps of Spector minimal degrees. In
this section we want to investigate the possible single jumps of arbitrary minimal degrees.
Note first that every minimag g%%%%e is GL;, because every GL, degree has a 1-generic
degree below it by Theorem 8.3.3. We show later 77 that there are minimal degrees in
both GL; and GLy; — GL;. Finally, we completely characterize the jumps of minimal
degrees by giving a new proof due to Lempp, J. Miller S. Ng and L. Yu of Cooper’s jump
inversion theorem that every ¢ > 0’ is the jump of a minimal degree. The situation below
0’ is more complicated. While there are both L; and L, — L; minimal degrees, not every
degree ¢ which is r.e. in and low over 0’ is the jump of a minimal degree below 0’ (refs??
Shore noninversion theorem, Cooper).

9.5.1 Narrow trees and GL; minimal degrees

To produce a minimal degree not in GL; we must combine a diagonalization of A’ against
®.(AD0). The key idea here are the narrow subtrees N (7).

Definition 9.5.1 The narrow subtree N(T') of a total tree T is defined by recursion.
N(T)0)=T@®). If N(T)(o) =T(7) then N(T)(c"i) =T(7°0"1).

Proposition 9.5.2 If T is recursive so is N(T') and an index for it can be found uni-
formly recursively in one for T. Of course, as with any recursive tree the question of
whether A € [N(T)] is I1; in A and the index for N(T') and so uniformly recursive in
A’ i.e. there is a recursive f such that (VA)(A € [N(T)] < f(n) € A") where n is any
index for N(T).

Our plan is to use narrow subtrees to diagonalize. Intuitively we stay on some N(7T)
with index 7 until we see that ®2®Y(f(4)) |= 1. At that point we make A go off N(T')
and so guarantee that A’ # ®4®" Formally we prove that diagonalization is dense.

Lemma 9.5.3 The sets F, = {T|(VG € [T])~(®2®" = A")} are dense in the Spector
notion of forcing and there is a density function which is uniformly recursive in 0/ on
(the indices for) recursive trees..

Proof. Let n be an index for 7" and consider N(7') = S. If there is a ¢ such that
CIDES(U)@OI(f(n)) |=1 then the desired extension T" of T"is Fu(T,7"1) where T(7) = S(0).
The point here is that no A € [T] is on S = N(T) while ®2Y(f(n)) |= 1 for every
A e T and so ®49% £ A’. On the other hand, if there is no such ¢ then N(T) is the
desired extension of T as f(n) € A’ for every A € [N(T)] while ~(®2®Y(f(n)) = 1) for
every A € [N(T)] by our case assumption. It is clear that finding the desired extension
of T is recursive in 0”. m
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Theorem 9.5.4 There is a minimal degree g < 0" with g ¢ GL,. We may also guar-
antee that g”" = 0".

]s?ﬁ%?cfé Simply add the dense sets F. to the ones D, and C, in the proof of Theorem
b.é.?l to be met ilE ott}aeen%%nstruction of G. To guarantee that g” = 0” add in the dense

B, of Proposition 9.2.24. =

. . sacksmin o
Exercise 9.5.5 Modify the proof of Theorem 19.3 to construct an A <7 0 of minimal
degree with degree not in Ly. Hint: intersperse stages at which one puts Ti 1 511 = e{1\[ (g;i s*g
and then stays in this tree until ®%+(f(n) |= 1 where e and n are as in Lemma 0.5.9 for
Tis.

9.5.2 Cooper’s jump inversion theorem

We want to prove that every degree ¢ > 0" is the jump of a minimal degree. To do this
we modify the definition of the e-splitting subtree in an attempt to force the jump when
we can.

Definition 9.5.6 The e-jump splitting subtree of T, JSp(T,e) = S is defined by
recursion. S(0) = T(0) which is labeled w. Suppose S (o) = T(7) is defined and is labeled
some m < w. We search simultaneously for To,71 2 7 such that T'(1o)|.T(T1) and for a
p 2 7 and an n < m such that @Z(p)(n) | but &1 (n) T. If we first (in some canonical
search order) find an e-split then we let S(o"i) = T(1;) and label them both w. If we first
find a p and n as described we let S(o°0) = T(p) and label it n. S(c"1) is undefined in
this case. (Of course, if neither search terminates, S(c"i) T for both i =0,1.)

Proposition 9.5.7 If T is (partial) recursive then so is JSp(T,e) and an index for it
can be found uniformly recursively in one for T.

Lemma 9.5.8 If JSp(T,e) = S, then there are no isolated paths on S, i.e. if A € [5]
then there are infinitely many o such that S(c) C A and S(c"i) | fori=0,1.

Proof. This is immediate from the fact that whenever S(o) | but not both of S(o ") are
defined then only S(c°0) is defined and its label is in N and remains strictly decreasing
until we reach a 0" 0" such that both S(c"0"0) and S(c"0""1) are defined and their labels
are w. Thus we can continue to extend only one side (necessarily the 0 one) as we follow
A on S only finitely often. m

Lemma 9.5.9 If S = JSp(T,e), G € [S] and ®F is total then G <r ®F.

complemma
Proof. As for the basic Computation Lemma bTZ'.EIQ,_We compute an ascending sequence
7,, of initial segments of G' (and so G itself) from ®¢ by recursion. We also compute
o, and 7, such that T(r,) = S(0,) = 7, and its label m, on S. We begin with
Y = T(0) = S(@) which is an initial segment of G since G € [S]. Suppose we have
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Yo = S(on) = T(1,) C G and m,,. As G € [S], one of S(c,"0) and S(o,,"1) is also an
initial segment of G. We follow the procedure given in the definition of JSp(T)e)(o, 7).
If we first find an e-split then both S(o, i) are convergent. As they e-split we can decide
which one is an initial segment of G using ®¢ as in the basic Computation Lemma and
continue our recursion. If instead, we first find a new convergence for @g(p )(ﬁ) for n < n,
only S(0,"0) is defined and it is then the next initial segment v, ,; of G as required. Of
course, 0,11 = 0, 0. This also supplies us with the next 7,,,; and m,.; =n.m

Theorem 9.5.10 There is an A of minimal degree with A" =1 0’

Sacksmin
Proof. The construction is similar to that for Theorem 9.3.T except that we use e-jump

splitting subtrees instead of e-splitting subtrees and we have to be a bit more careful
about how we go off the partial trees.

At stage s, we have an already specified initial segment o of A and a sequence (of
indices for) nested partial recursive trees Ty s >s 115 >s -+ >s Tk, s With a on each of
them, indeed with as = T} (D). Tos is the identity function for every s. Each T;.; is
either JSp(Fu(T}s,0),i) for some o or Fu(T},, o) for some o.

We begin our search for kg1 with Ty, 5. We ask if T, (1) |. If it is, so is Tk, s(0).
We then set Ty, ., = JSP(Fu(Ty,,j), ks) where we choose j so that @, (z) # Ty, s(j)(2)
for some x and set ks = ks + 1. If Ty, s(1) T we ask if TﬁdO 1. If so we repeat
our procedure with Ty, replaced by Fu(T}, 0). By Lemma B_mhls process eventually
terminates either with an m such that Ty, (0™"1) |= Fu(Ty,,0™)(1) | and so a definition
of key1 = ks + 1 and Ty, = JSP(Fu(Ty,,0m"j), ks) or an m such that T; (0™) |
but T (0™) 1 (m could be 0 and we take 0° = ). In the later case, we move to
Ty.—1 beginning with the oy such that Ty, _1(01) = T}, (0™) and asking if T}, _1(01"1) |.
Continuing in this way we eventually reach | and m such that 7 ,(¢"0™"j) | for some
o and each j € {0,1} as Tp is always the identity function and so defined at ¢"1 for
every 0. We now let kypy =1+ 1 and Ty, = Fu(T}s,0°0™"). We conclude the stage
by setting a5 11 = Tj,,, (). Note that we extend «ay at every stage and A = Uay <7 0.

It is clear that the construction and so A is recursive in 0. We must now verify that
the T; s stabilize to trees 7;, all the requirements to ggcekgln i%f minimal degree and that
A" <7 0'. We argue much as in the proof of Theorem b.3.| for the first two claims:

Note again that if 7} ; reaches its limit by stage ¢ then ks > ¢ for s > ¢t. Suppose,
by induction, that T;, first reaches its limit 7; at stage s. At s + 1 we set Tj11 411 =
JSP(Fu(T;,,0m"j),i) for some m and j as the only other possibilities change 7;. This
action satisfies the diagonalization requirement for ®;. If we never change T;.;, at a
t > s then T, = JS{’(&’U T;,0™"j),i)) and we satisfy the minimality requirement
for ®; by Lemma BTQP;H_ﬁhere is a first stage after s at which we change T}, i.e.
Tiv1t # Tit14+1, then it must be that we reached a situation with 7;,(c” 0m°3) | for
some ¢ and both j € {0, 1} with [ the first such we find in our search starting with %; and
moving downward and m the least such for [. As we now redefine T, it must be that
[ =1 by our induction hypothesis. As t is the first stage after s at which we change T}, 1,



130 CHAPTER 9. MINIMAL DEGREES AND THEIR JUMPS

Tiv1e = JSP(Fu(T;s,0™j),4). As we did not end our search for this [ with [4+1 = i+1, if
T1+(0) = Tip14(7) then T;1 1 ,(7°0) T. By the definition of T}, = JSP(Fu(T;s,0m"j),1)
this means t.ha,t thelje are no ¢-splits on T s = T; ahove 0. As A. € [Fu(T;,0)] we satisfy
the minimality requirement for ®; by Lemma BTZ'.ERTOnce T;11 is a full subtree of T; (as
it is at ¢ + 1), it can never be changed again as that would change some T} for k < i
contrary to our choice of s < ¢.

To compute A’ from 0" find a stage of the construction s at which we end the con-
struction with | < ks and 7;4(c"0™"j) | for j € {0,1} and we let ksyy = [+ 1 and
Tii1.501 = Fu(Ty5,070™ ). In this case we have Tj14(770) T where Tj 11 4(7) = T).4(0).
If n is the label of T}y 4(7), this means that there is no extension p of Tj.; 4(7) on
T, such that ®(7) | but &7 (A) 1 for 7 < n. We now claim that, for 7 < n,
neAs @?“’S(T)(ﬁ) l. As long as a; stays on 1}, for ¢t > s (as it is now) the claim
is obvious. The only way «; can leave T; ; for the first time after s at ¢ is for the same
situation to occur with /; < [. In this case, the associated label must be n; > n (as no
new convergences below n can occur as long as we remain on 7; ). In this case, no new
convergences below n; can occur as long as we remain on 7j, ;. This process must halt
and so we eventually stay on some tree 7 ; on which there are no new convergences below
some 1 > n. To see that our original search in this procedure must find such stages s with
arbitrarily large n, fix an r and start with a stage u by which Ve < r(®“(e) | < ®%(e) |).
Now consider a v > u for which ®, is the empty function. When we reach the first stage
w at which k, = v + 1 for the first time after 7T; has reached its limit for ¢ < v we set
Tyi1w11 = JSP(Fu(T,,,,0™"j),v)) for some m and j. This tree has Ty ,41(7"1) T for
every 7 and so we would act as described above and for ann > r. =

Theorem 9.5.11 There is a binary function tree T <r 0 such that every A € [T] is of
mianimal degree and, moreover, A’ =1 AV (.

Proof. We define T' by recursion heginning with T(0) = (). Along each path in 7" we are
using the construction of Theorem 9.5.10 with the change that when we would have chosen
one j € {0,1} and set Ty, 1 = Fu(S, j) for some S we follow both possibilities and define
the next branching in 7" as the result of the two choices of j in the original construction.
Thus at any node p when we have T'(p) defined we have an associated run of the above
construction during which we have chosen j = p(m) at the mth instance where we had
to choose a j in the construction. To define T'(p"i) we now continue the construction
as in the previous theorem until we reach the next stage s at which we must choose a j
and set Ty, 11 = JSp(Fu(Tk, s,7), ks). We now let T(p"j) = JSp(Fu(Ty, s, 7), ks) () for
j €{0,1} and associate the version of the above construction in which we choose j with
T(p"j). w

Corollary 9.5.12 (Cooper’s Jump Inversion Theorem) For every ¢ > 0" there is
a minimal degree a such thata’ =c=aVv 0.

Proof. Take C' € candlet A=UT(C [ n). =
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remark not all degrees REA in 0" and low over it are jumps of minimal degrees below
/
0’ references. lowmin | . '
Theorem b.S. [0 originally by Yates showed minimal below every nonrecursive r.e.

degree and was already known (Theorem ?77) that there are low nonrecursive r.e. degrees.
Then ...

9.6 The minimal degrees generate D

Our goal in this section is to prove that the minimal degrees generate D under join and
meet. More specifically we prove that for every a there are minimal degrees mgy, m;, my
and mgy such that a = ( mp V m;) A (myV mg3). Our forcing conditions in this section
are all recursive binary trees but we need a yet more restricted notion of tree. We begin
with uniform trees (which play a crucial role in the next chapter) and strongly uniform
trees or 1-trees.

Definition 9.6.1 A binary tree T' is uniform if for every n there are p,, 4, p,, 1 € 2% such
that T(c"i) = T(c)"p,; for every o of length n. T is strongly uniform if, in addition, for
every n, p, o and p, ; are adjacent, i.e. there is evactly one j such that p,(j) # p,1(J)-
Strongly uniform trees are also called 1-trees.

In this section all trees are recursive 1-trees and they are the conditions in our basic
notion of forcing P with the usual notion of subtree as the extension relation. As Fu gT 4 lga)
is clearly a 1-tree for any 1-tree T', the diagonalization requirem I{%tsspiet Sof Lemma bPT[f
are still dense so we can meet those conditions as usual. Lemma [77 applies to any binary
tree and so if our generic filter includes a ree Wig}&ano e-splits then again, if ®¢ is total
it is recursive. The cogloggﬁxécis%{;eg% \ma, (9.2 l§i also applies quite generally and so if
the sets C, of Lemma [9.2.20 are dense then any generic for forcing with 1-trees is also
of minimal degree. Thus we must show that if the 1-tree 7" has no extensions without
e-splits then it has an extension which is e-splitting. It is actually helpful in this setting
to first provid 55&1% Izlabsl}ealog of Tot(T, e) that forces totality and proves the density of the
B, of Lemma %.2.24.

Lemma 9.6.2 The sets B, = {T|32¥a (L7 (z) 1) or (Vo)(Vz < |o|)(®L7(z) |)} are
dense in P.

Proof. Given a 1-tree 7' we define a partial recursive function S = T'ot, (T, €) by recursion
beginning as usual with S(0) = T'(0). Let {o;]i < 2"} list all the strings of length n and
assume that S(o;) = T'(7;) has been defined for all i < 2". To define S for all p of

length n+ 1, we search first for a y, such that pLrom 0)(n) |. Then we recursively search

for y1; such that ¢ 0~ #) () | If we eventually find f; for all i < 2", then we let
=ty .. Hon_y and set S(o;"j) = T(r;"u"j) for j € {0,1}. As T is a 1-tree it is easy
to see that, if total, so is Tot; (T, e) and it satisfies the second clause of B,. If it is not
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total then there is some n, 7; and v such that T'(7;"u) T for every u O v. In this case,
Fu(T, ;"v) satisfies the first clause of B, with z =n. =

We can now prove the remaining lemma that shows that all (sufficiently) generic G
for P are of minimal degree.

Lemma 9.6.3 The sets C. = {T| JzVo (P J)(x) 1) or there are no e-splits on T or T
is an e-splititng 1-tree} are dense in P.

ltotdense
Proof By Lemma b‘B‘ZTemay assume that the second clause of B, is satisfied by T,
e. (Vo)(Vo < |o|)(® oL (x ) 1. We may also assume that there is no extension of 7" that
satlsﬁes the second clause of C. so we can find e-splits on any R C T. We now wish
to define an e-splitting 1-tree Sp;(T,e) = S C T. We begin with converting arbitrary
e-splits into ones that are adjacent and then defining two new operations on 1-trees.

Claim 9.6.4 For any R C T there are adjacent o and T such that R(c)|.R(T) and so,
in particular, for any p there are o, 7 2 p which are adjacent such that R(o)|.R(T).

Proof. By our second assumption on 7" there are y and v such that R(u)|.R(v). Without
loss of generality we may take |u| = [v| > n where R(u) and R(v) e-split at n. Consider
then the sequence (0;|i < k) of adjacent binary strings of length n such that oy = p and
o = v. By our first assumption on 7' D R, @f(gi)(n) | for every ¢ < k. As the first and
last of these have different values there must be an i such that ®2°" (n) | # ploi1) (n) |.
Our desired adjacent e-split is then given by 0 = 0; and 7 = 0;,1. =

Definition 9.6.5 For any tree R and u € 2<% we define R* (the transfer tree of R over
w) for |v] < |R(D)| as the tree such that, for every o € 2, R¥(o) is the string gotten from
R(0) by replacing its initial segment of length || by p. For R C T we define a new type of
subtree S = Spo(R, e). We begz'n by using the above Claim to construct sequences o° and

o} fori € N with o? and o} adjacent such that first, R(c)|.R(c}) and then, in general,
R(agA -~ a? az+1)| R(og" -+ "0 0l,). We now define S by recursion with S() =
R(0) and S(p) = R(Xo? ( ) (where we use summation notation ¥ for concatenation and
the number of terms concatenated is |p| ).

Remark 9.6.6 Note that as R is a 1-tree and the o9 and o} are adjacent, S is also a
1-tree and, of course, S C R. Moreover, S(0)|.S(T) for any o # 7 as the strings extend
some e-split R(cf))|.R(a() or R(o) -+ 02 0% )|eR(c)" -+ "0 0pyy) fori > 0.

u

Proof continued. We now define our e-splitting 1-tree Sp;(T,e) = S C T by recursion
beginning with S(0) = T'(0). Let {o;|i < 2"} list all the strings of length n and assume
that S(o;) = T'(7;) has been defined for all i < 2". We let Ry = Spo(T+,,e) and for
0<i<2"welet Ry = Spo(RI7”,e) and R = Rgn_;. We now let S(o;"j) = RT(j).
The verifications that this defines the next level of an e-splitting 1-tree contained in T’
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are straightforward. By the definition of Spy, |R(0)| = |R;(0)| = |T'(7;)| for every i < 2"
and R(0) and R(1) are adjacent. By the definition of the transfer trees, R”(")(0) and
RT()(1) are adjacent extensions of T'(7;) = S(0;) and the extensions are given by the
same pair of strings for each ¢ as R is a 1-tree. Moreover, since R C R; for every ¢ < 2",
each RT(")(j) is a node on R; = Spo(R]*,,e) (where R_; = T') and so by the Remark
above, they form an e-splitting.

This completes the definition of level n+ 1 of S and so, by recursion of S = Sp; (T, e)
which is an e-splitting 1-tree extending 7T as required to establish the density of the C..
[ ]

We have now shown the forcing with 1-trees produces a minimal degree.

Proposition 9.6.7 Any generic meeting the dense sets B., C. and D, for forcing with
1-trees is of minimal degree.

. ) ) o ltreemin
Exercise 9.6.8 Show that there are generics G as in Proposition 19.6.7 with G <p 0"

and indeed with G" =1 0".
. . . ltreemin o
Exercise 9.6.9 Show that the generic sets of Proposition [9.6.7 are of minimal m-degree.

We next want a tree of such minimal degrees, i.e. a 1-tree T suc\g ;G&%tf every path is
of minimal degree. We move to a tree of trees as we did in Exercise 9.2.

Theorem 9.6.10 If we force with the notion of forcing Py with conditions (T, n) where
T is a 1-tree, n € N and extension is defined by (S,m) <p, (T,n) if S <s T, m >n and
S(o) =T(0) for every o of length < n and V((T,n)) is the finite binary 1-tree given by
restricting T to strings of length n, then any sufficiently generic G is a 1-tree such that
every path on G is of minimal degree.

Proof. It is clear that G is a 1-tree from the fact that V' (P) is a 1-tree for every condition
P and that if Q <p, P then V(Q) D V(P) as 1-trees. To prove the theorem it suffices, by
the last Proposition, to show that for each of the dense sets B., C, and D, any condition
(T,n) there is a condition (R,n) <p, (T,n) such that for each o of length n, Rp( is in
the desired dense set. List the ’gcrol%l ﬁggelseq 138 0, i < 2". Begin with Sy = Tp(s,).
By the relevant Lemma above (%.6.2(, 77 and %% iﬁ% we can refine Sy to a 1-tree S; which
is in the dense set. We can then consider SlT(Ol) and refine it to S, which is also in the
dense set. We continue in this way to define S; for i < 2" by refining SZ-T @) to get an S;yq
in the dense set. At the end we have S = Sy such that ST(9) is in the dense set for each
i < 2". We now define R by R(p) = T(p) for |p| < n and for p D o; R(p) = ST (p). It
is clear that (R,n) <p, (T,n) and for each o of length n, Rg(,) is in the desired dense set.
Let G be a generic 1-tree meeting all these dense sets. Now any M € [G] is P-geggglece nin

for the previous notion of forcing with 1-trees to the extent required by Proposition 9.6.
and so is of minimal degree by that Proposition. m
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1t fmj
Exercise 9.6.11 Show that there are generics G as in Theorem 9. 610 with G <7 0
and indeed with G" =1 0".

Exercise 9.6.12 For each n > 3, Show that there are sets @théeg%ziilmal degrees which
are ¥, but not A°. Hint: take a path in the G of Theorem [9.6.10 which follows a path

Cex,—A ie A= U{G(?[;,lrlggu%memN} (For n = 2, the result can be proven using,

among other things, Fxercise [9.3.
Finally, we use P; to prove our main theorem for this section.

Theorem 9.6.13 For every degree a there are minimal degrees my, m;, ms and mg
such that a = ( mp vV m;) A (myV m;).

Proof. For any 1-tree G and set C, we let d,, be the unique = such that G(c"0)(x) #
G(0"1)(z) for any o of length n and G¢ be the path through G such that GY(d,,) = C(n).
(As G is a 1-tree the z as required to define d,, is unique for each o and the same for all of
them.) These notions apply to finite 1-trees as G and finite binary strings as C' with the
obvious comment that there may only be 1@9&2%%f£1any d,, involved. If GG is sufficiently
generic for Py, as required for Theorem bTB.TWd A is any set then it is clear that
A<y GAV G* asn € Aif and only if G*(z) = 1 where x is the nth place at which G*
and G4 differ (it is actually d,,). Thus we have two minimal degrees which join above a.
Our plan now is to take Gy and G two mutually sufficiently generic 1-trees for P, where
the notion sufficiently generic now depends on A and assures that (G3'V G35 ) A (GiHV GEY).

Formally we consider the notion of forcing Ps; whose conditions consist of pairs (P.QQ)
with each of P and Q a condition in Py,. The ordering is given by (P.Q) <p,, (P.Q)
if P <p,, P and Q <p,, Q. In addition to the dens L tsleetgogln?lﬁnned by requiring that
each coordinate get into the dense sets from Theorem bb’ [0 we have one more family
of dense sets for the new meet requirement. For (T,n) = P € Py, we let P, be the
finite 1-tree given by restricting 71" to strings of length at most n. The argument is by

now familiar. We let A, = {(P.Q)[3z(® %) (z) |£ &%V (2) |) or (V(P.Q) <p,,
(P.Q))(—EIa:(CI)ép’?vp’?)(x) 1# CIDSEQ*?VQ?)(:L') 1))}. Now if our generic meets A, in condition

((P,n),(Q,m)) and the first clause holds then clearly @éG‘?VG‘?)(x) 1# @gG?VGf)(x) | as,

by the definition of extension in Py, PAV PA and Q4V Q4 are initial segments of G4 \/Gé

Ay A : : (G VGg)
and G7' V G7, respectively. On the other hand, if the second clause holds and ®¢

A A
and <I>£;G1 VET) are total and equal, then we claim they are recursive in A. To compute

A A
<I>£G° V& )(x) find any finite extension R,, of P, to a 1-tree of height m that is a subtree

of P and such that CIDéRﬁVRé)(x) |. This R,, then extends to a full 1-tree R such that

A A
(R,n) <p,, (P,n). There must be one as P, C Gy and the computation of LGV )(x)
only requires finitely many levels of Gy C P. If this were not the correct answer then,
as for P and G, there would be a finite extension S, of @),, contained in () which gives

vou
the same answer as ®\C1 VGf)(:c) |. Again this S, can be extended to an S such that
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(S,n) <p, (Q,n). Then ((R,n),(S,n)) <p,, (P, Q) but satisfies the first clause of A, for
the desired contradiction. m

Exercise 9.6.14 Show that the minimal degrees in GL, generate D.
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Chapter 10

Lattice Initial Segments of D

Known results, history. Plan and goals here. Include all finite lattices and all countable
distributive ones two of the major steps in previous process. new proof based on ...
sufficient for all Applications. do two quantifier theory decidable and three undecidable.

First present the proof for recursive lattices which suffices for all our applications.
Then indicate how to extend argument to cover all sublattices of any recursive lattice
and so, for example, all distributive lattices.

7?7Explain intuition for construction: combine lattice tables as used to embed lattices
and tree constructions used to build minimal degrees. What problems arise when try to

merge and how adjust forcing conditions to overcome them. some done below do more.
27

10.1 Lattice Tables, trees and the notion of forcing

latre
Our plan is to use lattice tables like those of %7378'}%0 provide the ba 'g% é)nllfb%gg embeddings
of lattices as initial segments of D. For simple embeddings in §6.3 we used a Cohen
like forcing with conditions that w geefcigg’%% Sequences of elements of our representation.
In light of our move to trees in §9.2 to construct minimal degrees, it should not be
surprising that we now move to conditions that are trees built on lattice tables O, i.e.
maps T : <% — @i:tte%g)sr&vide the appropriate notions of forcing. The generic G that is
built is then, as in §k)“.3,a—nlﬁﬁnite sequence of elements from O. As a first approximation,
the embedding is given as before. For x € £, x —— G, where G,(n) = G(n)(x). (Recall
that the elements o 195 are maps from £ to N.) Order, nonorder, join and meet are
handled much as in §6.3. The key idea for making the embedding onto an initial segment
again uses a type of e-splitting tree. While we want to deal with infinite lattices, a crucial
component of the computation lemma for e-splitting trees (even in the minimal degree
case) is that the trees are finitely branching. As long as they are finitely branching, one
has a hope of determining the path taken by using ® to choose among the e-splits. Thus
we approximate our table by finite subsets ©; and consider trees T that at level ¢ branch
according to the elements of ©;. We also have an associated decomposition of our given
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lattice £ = UL;. Now if one ignores the meet operation and the required interpolants it
is easy to get a finite lattice table for a finite lattice. We call these upper semilattice
(usl) tables. We postpone the meet interpolants for £; to ©;, ;. While this is not strictly
necessary, it makes the construction of the tables much easier. Moreover, we need a new
type of interpolant to make the embeddings constructed be onto initial segments of D
and we do not know if these could be incorporated as well into a finite lattice table for
L;.

These new interpolants are called homogeneity interpolants. The idea here is that if
we intend to force ®¢ =1 G, for some x € £ then using G, we cannot distinguish among
all the nodes ¢ in the tree at a given level n as many have the same o, (be congruent
modulo x). This suggests that we want our trees to have some kind of homogeneity
guaranteeing that what happens above one such o is congruent to what happens above
any other 7 =, 0. Of course, we need this property for every x € L.

With the above as a brief motivation, we now formally define the lattice tables that
we use and the associated trees.

Definition 10.1.1 Let © be a set of maps from an usl L with least element 0 and greatest
element 1 into N. For o, f € © and x € L, we write o =,  (« is congruent to B modulo
z) if a(x) = f(x). We write o =, (8 to indicate that a is congruent to f modulo both x
and y. Such a © is an usl table for L if it contains the function that is 0 on every input
(which we, by an abuse of notation, denote by 0) and for every a,f € © and x,y,z € L
the following properties hold:

1. «(0) =0.

2. (Differentiation) If x £ y then there are 7,0 € © such that v =, 0 but v #, 6
3. (Order) If x <y and o =, B then o =, S.

4. (Join) If NV y =z and o =, 5 then a =, (.

Notation 10.1.2 If © s an usl representation for L and L C L then we denote the
restriction of © to £ by © | L = {« | L|ow € ©}. We also say that © is an extension of
O] L. Note that as all our (upper or lower semi)lattices contain 1, the order property
guamntees that if « | L =08 L then a = . Thus when we ea:tenuﬁ an, dsl representation

© for L to one © for L (as in the constructions for Proposition we can use the
same o € © to denote its unique extension in ©.

Definition 10.1.3 If ©" and © are usl representations for L' and L, respectively, LC
E’ CLand f:0 — O, then f is an L-homomorphism if, for all o, 3 € © and z € L,

= 0= fla) = f(ﬁ)-

repthm
Theorem 10.1.4 (see Theorem }ﬁ)pTl) If L is a countable lattice, then there is an
usl table © for L along with a nested sequence of finite sublower semilattices, slsls, L;
starting with Lo = {0,1} with union L and a nested sequence of finite subsets ©; with
union © with both sequences recursive in L with the following properties:
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1. For each 7, ©; | L£; is an usl table for L;.

2. There are meet interpolants for ©; in 0,1, i.e.if a =, f, x Ay = z (with o, f € O;
and z,y, z € L;) then there are 7y, 7,7, € ©;41 such that o =, 7o =, 71 =2 72 =y

3.

3. For every sublowersemilattice L of L, L Cis1 L;, there are homogeneity interpolants

for ©; with respect to L in O;41, i.e. for every ag,aq, 8y, 8; € ©; such that Yw €
ﬁ(ao =, a1 — B¢ = [4), there are v,,7v; € 0,41 and ﬁ—homomorphisms f,g,h:
©; — ©;11 such that f : ag, a1 — By, 71, 9 @ @o, 1 — Y, 71 and b @ ag, 1 — 7y, By,

ie. f(ao) = By, flan) =, ete.

lattablesec
We prove this theorem in §10.3.”Our goal in this and the next section is to prove that
we have initial segment embeddings for all recursive lattices.

Theorem 10.1.5 FEvery recursive lattice L is isomorphic to an initial segment of D.

For the rest of this section and all of the Dext we fix a recursive lattice £ and a
sequence (L;, ©;) for it as specified in Theorem [[0.3.I. We now move on to the definition
of the trees that are the conditions in our forcing relation.

Definition 10.1.6 A tree T (for the sequence (L;, ©;)), which we call simply a tree in
this chapter ,is a recursive function such that for some k € w its domain is the empty

n=m
string ) and all strings in the Cartesian product []| Opyn for each m € w. We denote

n=0
n=q
this number k by k(T). For each o € domT, T(o) € [] O, for some ¢ > |o| — 1.
n=0
Moreover, T" has the following properties for all o, 7 € domT':

1. (Order) o C 7= T(c) CT(7).

2. (Nonorder) o|t = T(o)|T(7). In fact, we specifically require that, for every o €
[] ©k4n and o € O i1, T(0"a) D T(0) .

n=0

3. (Uniformity) For every fized length | there is, for each o € Oy, a string p;, so
that, for a gwen [, all the p,, are of the same length independently of o and if
lo| =1 then T(0c"a) =T(0)"p,,- Note that by the nonorder property (2), for fized
I and o # B, pio 7 P15, 0 fact, by our specific requirement, p; ,(0) = a.

Thus our trees T have branchings of width |Or),| at level n and satisfy order and
nonorder properties as for Spector forcing. In addition, they enjoy a strong uniformity
property that plays a crucial role in our verifications.

Definition 10.1.7 We say that a tree S is a subtree of a tree T, S C T, if k(S) > k(T
and (Vo € dom S)(37 € domT)[S(o) = T(7)].



prescong

140 CHAPTER 10. LATTICE INITIAL SEGMENTS OF D

We note three useful facts that illuminate the structure of subtrees. The first says
that the branchings on S follow those on T'.

Lemma 10.1.8 If S is a subtree of T then

1. S(0) =T(1) — (VYo € Ok(s)1f0)(S(0" ) D T (1)

2. V3p, No,7(lo| =1& S(o) =T(r) — S(0"a)=T(7"p,) for a € Oy and
3. [S] C[T].

Proof. The first fact follows immedi Eglcycifcromeeour specific implementation of the
nonorder property for trees (Definiti %h@ The second follows from the uni-
formity requirements (3) of Definition ;(l. [.6 for S and 7" as well as property (2). the last
is immediate from the definition. m

Transitivity of the lsgrl?tree relation should be clear but an even stronger claim is

trans
proven in Proposition ho—rn We mention some specific operations on trees that we use
later.

Definition 10.1.9 If T is a tree and o € domT then Fu(T,o0) or T, is defined by
T,(t) =T(c"7). Clearly, k(T,) = k(T) + |o| and T, C T. Note that for o € domT

=q
and 7 € dom7T,, (T,); = T,~. For a string p € [] ©, with ¢ < |T(0)] — 1, we let
n=0

TH (the transfer tree of T' over u) be the tree such that, for every o € domT, T"(o)
is the string gotten from T(o) by replacing its initial segment of length ¢ + 1 (which is
contained in T'(D)) by p. We write T# for (T,)*. Finally, if T is a tree with k(T) = k
and o € domT then we let T} =T, [ domT. Clearly, k(T}) = k(T) and T C T. Note
that for c € domT and 7 € dom T}, (T}): =Tk .

A crucial notion for our constructions is that of preserving the congruences of specified
slsls of our given lattice L.

Definition 10.1.10 Ifﬁ 1s a finite slsl of L we say that a subtree S of T preserves the
congruences of £, S C, T, if £ C Ly and, whenever x € L, S(o) =T(1), a =, B,
S(c"a) =T(rt"pn) and S(c"p) =T (7"v), then u =, v. Here a and 5 are members of the
appropriate ©; and p and v are sequences (necessarily of the same length m) of elements
from the appropriate ©;’s. We say that such sequences |1 and v are congruent modulo x,

w =y v, if p(j) =2 v(j) for each j < m.
Proposition 10.1.11 If R Cp, S Cp, T and then R Crinp, T

Proof. To see that R C T note first that k&(R) > k(S) > k(T'). Next suppose that
p € domR and a € Op)4)p- As R C S we have a o such that R(p) = S(o) and
R(p"a) 2 S(c"a). As S C T we have a 7 such that S(o) = T'(7) and S(o"a) D T(7" ).
Thus R(p) =T(7) and R(p"a) 2 T(7"«) as required. As for the preservation of £ N Ly
congruences, suppose R(p) = S(0) =T(7), x € L1 N Ly, g, 01 € Op(py1|p| and g =, 1.
Let R(p ) = S(o" ;) =T(77v;). Asx € Ly and R Cp, S, pg =2 4y As x € Lo and
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S Cp, T it then follows by induction on the (by uniformity, necessarily common) length
of u; that vg =, v1 as required.

The details of this induction follow. Write v; = 19" - - "vf where S(o " 11;(0) - - - “p;(t)) =
T.(TAV?A“‘AV';). Th(?n' inductively 110(j) = 11,(5) gives v} =, v]. For j = 0 this follows
directly from Definition [0-T.10- For the inductive step, consider, without loss of gener-
ality, the case j = 1. We have S(c " 1y(0) " 110(1)) = T(TAI/8AV(1)) and S(o";(0) " py(1)) =
T(r 2 17). Cons.id.er ﬁ (@ 10(0). éul.(1) = T(r"v3"v) for some v. By the umformlAty
clause (3) of Definition T0. ere is a ¢ such that S(o"py(0)"11(1)) = S(o"pe(0))"C
and S(0"p11(0)"p1(1)) = S(0"p1(0))"¢. Thus T(r 13 v) = T(r"vg) "¢ and T(7 1] vy) =
T(r"19)°¢C. Agaln by the uniformity clause and the uniqueness of the p; , there (iterated
4 tlmes) v = vi. Finally, by Definition again, v =, v} as ,ul(l) =, (1) and
so v] =, v} as required. m

We now present the notion of forcing for constructing our embedding of £ as an initial
segment of D.

Definition 10.1.12 The forcing conditions P our notion of forcing P are trees T (for
(L£i,0;)). We say Ty <p To,if Ty Ckry) To where, as often, we denote Lyry by K(T).
We let V(T) = T(0). The top element of P consists of the identity tree Id (which has
k(Id) =0).

Lemma 10.1.13 If T is a tree, c € domT and L C Ly, then T, Cp T. If 0,7 €
dor(n)T are of the same length and S <p T, then ST() <p T.. We also have that
TF =T,

Proof. The first assertions follow directly from the definitions. The last two follow from
the uniformity assumption on our trees. m

It is easy to see that sets C,, = {P| |V(P)| > n & k(P) > n} are dense. Just extend
to some P,. We assume that any generic filter G we consider meets these sets. It then

determines a generic function G € [[ ©,, , i.e. a function on w with G(n) € ©,. On

. . . n=0 . . ... _[latembsec
this basis we could naively try to define our embedding of K into D as we did in §%‘37
For x € K C L we let G, : w — w be defined by G,(n) = G(n)(x). The desired image
of x would then be deg(G,). Now the order and join properties of usl representations
guarantee that this embedding preserves order and join (on all of £ even). If x < y then
by the order property we can (recursively in the table (0;)) calculate G,(m) from G, (m)
by finding any a € ©,, with a(y) = Gy(m) and declaring that G,(m) = a(z). (Such an
a exists since G(m) is one.) Similarly if z V y = z then, by the join property, we can
calculate G,(m) from G,(m) and G,(m) by finding any o € ©,, such that a(z) = G,(m)
and a(y) = Gy(m) and declaring that G,(m) = a(z). (Again G(m) is such an o.)

Were congruences modulo x always preserved for every x, we could directly carry
out the diagonalization and other requirements as well for this definition of G,. In
actuality, however, not all congruences are preserved as we refine to various subtrees in
our construction. Thus we must modify the definition of the images in D and provide
nice representations of the degree corresponding to .
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Definition 10.1.14 If G is a generic filter meeting the dense sets C,,, G the correspond-
ing generic element of [[ ©,, P € G and x € K(P) then G is the sequence (o, |n € w)

n=0
where P({ay|n < m)) C G for every m. (Thus («,) is the path that G follows in the
domain of P. In particular, G = G'. It is obvious from the definitions that G is a path
on (i.e. in the range of ) Q for every Q € G.) We define GL'(n) as a,(z).

The crucial point is that the degree of G does not depend on P once x € K(P).
Lemma 10.1.15 Ifz € K(P), K(Q) for P,Q in a generic G, then GE=7G9.

Proof. As there is an R <p P, in G by the compatibility of all conditions in a generic
filter, it suffices to consider the case that Q@ <p P. Let G¥ = (a,) and G° = (3,).
By the definition of subtree there is for each n an m(n) such that Q((5,|s <n)) =
P({as]s < m(n))) and we can compute the function m recursively in the trees. (By the
uniformity of the trees, there is, for each n, a unique m(n) such that |Q(o)| = |P(7)| for
every o of length n and every 7 of length m(n).) Moreover, by our definition of subtree,
B, = @@y Thus G¥(n) = B,(z) = amm)(x) = GE(m(n)) and so GY <;, G. The other
direction depends on the congruence preservations for x implied by @ Cgp) P.

Suppose that we have, by recursion, determined GZ(i) = «;(z) for i < m(n).
The next step followed by G in @ is 3,,1 = qmm)+1. It corresponds to the sequence
(a;lm(n) +1 <i <m(n+ 1)). The definition of C x(py implies that (o;(z)|m(n) +1 < i < m(n+ 1))
is uniquely determined by /3, ,,(x) to continue the recursion. m

Thus given a generic G we can define a map from £ into D by segdin &z e%bsﬁe Lo
deg(GT) for any P € G with x € K(P). Our proof plans above as in §%.3 for the
preservation of order and join now work here as well simply by applying them to G¥ on
P (in place of G on Id) for any P € G with z,y,z € K(P). Thus we only need to verify
the preservation of nonorder and that our map is onto an initial segment of D. (Note
that meet is preserved once we know that the mapping is an order isomorphism of the
lattice £ onto an initial segment of D as meet is definable from order. Of course, this
argument would apply to join as well but no new work is needed to note that join is
preserved. It is also worth commenting that we use the join structure in the usl tables as
well as the meet interpolants in the proof that the embedding is onto an initial segment

of D.)

10.2 Initial segment conditions

To assure that our embedding preserves nonorder we want to show, for any z £ y in K,
condition P with z,y € K(P) and ®,, that there is a Q <p P such that for any G € [Q)]
(I)erj # GP and a Q <p P and x € K(Q) such that for any G € [Q] for which ®¢ is
total, ¢ = GY¥. These two results would then fi ish . the proof of our theorem. We
begin with the analog of total subtrees of Deﬁnitionr%TZTZZ and the corresponding dense
sets that make our task simpler.
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Definition 10.2.1 Let T be a condition in P. If for every o € domT and every x there
is a2 o such that &I () | then we define a subtree S = Totl(T,e) with the same
domain by recursion on the length of o € domT. We begin with S(0) = T'(0). Suppose
for every o; € domT of length n there is a T; such that we have defined S(o;) = T(7;)
for i < m. We now list the a such that we must define S(p;"«) to get the next level of
S as (a;|j < s). We proceed to define p, for each | = (i,j) withi < m and j < s. (For
convenience we assume these are the | <r =m-s.) Forl =0 = (0,0) we search for the
first p 2 such that ® 7 ?)(|o|) |. One exists by our assumption. We then set p = p,.
If we have defined p; for | < q and p, = p,” ... p, then we let p,,, where ¢+ 1 = (i,])

be the first p such that QJGT(”A%A“‘IAP)(\UD L. We now let p be the concatenation of the p,
forl <r and set S(o; ;) = T(1;" ;" ).

Definition 10.2.2 If T is a tree and (Vo)(Vx < |0|)(<I>6T(0) (x) |, we say that T is e-total

and we denote L) (n) for n < |o| by qr(n,o).

Lemma 10.2.3 If T and Totl(T) = S is defined then S <p T and S is e-total.

Proof. The second claim is immediate from the definition of Totl(T). As for the first,
it is immediate that dom S = dom 7" and that, since T is a tree, that S is a subtree of T'.
As the definition of S has S(o; a;) = T(7;"a; ") for a single p over all the nodes o, a;
of level n + 1, it is also clear that S preserves all the congruences of K(7'). m

Lemma 10.2.4 The sets B, = {P|E|J}VO'<(I)5(U) (x) 1) or P is e-total} are dense in P.
Proof. Suppose we are given P and e. If there is an  and a o such that o™ () 1
for every 7 O o, then clearly P, (or P¥) satisfies the first clause in the definition of B..
Otherwise, T'otl( P, e) satisfies the second clause by the last Lemma. m

Proposition 10.2.5 (Diagonalization) For any x £ y in £, e € N and condition P
P
with x,y € K(P), there is an Q < P such that VG € [Q], if ®¢ is total then o # GYL.

. , GF totl
Proof. There is clearly an j such that ®.¥ = QDJG. By Lemma m.4 we may assume
that P is j-total. We then choose any g, a; € Oy p) such that ag =, ag but ay %, .
Such ag and «; exist by the differentiation property of usl tables. Let 3; = (a;)!, i.e.
the concatenation of |o| many copies of a; for i € {0,1}. Consider then the conditions
Ps, and pny G; € [Ps). Of course, (Gi)7(|o]) = ay(x) while & (|o]) | for i = 0,1 by
Lemma M10.2.4. As the j3,, for i = 0, 1, are congruent modulo y and y € K (P), the initial

P
segments of G that Pz, (()) determine are equal. Thus the @fﬂi(w)(\a]) = P (lo|) are
’ o a;(x). For that 7, Pjs. 1s the

Ps. (0) For that i, Py is the Q

i

convergent and equal. So for one i € {0,1}, ®
required in the Lemma. m
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We turn now to the requirement that the image of K under our embedding form an
initial segment of D. This argument is somewhat more complicated than those above
and uses both the meet and homogeneity interpolants.

We begin with the notion of an e-splitting appropriate to our trees and a lemma about
such splittings.

Definition 10.2.6 Given a ®. and an e-total tree Q. we say that o and T with |o| = |7|
are an e-splitting or e-split on ) (modulo w) if (0 =, T and) there is ann < |o| such that
qr(n,o) # qr(n, 7). If R < Q,R(u) = Q(0), R(v) = Q(7) and o and T e-split (modulo
w) on @ then we also say that 1 and v e-split on R (modulo w ).

Lemma 10.2.7 Given an e-total condition @), there is a p € dom Q) such that the set
Sp(p) = {w € K(Q)| there are no o, 7 that e-split on Q} modulo w} is maximal. More-
over, this maximal set is closed under meet and so has a least element z.

Proof. Let k = k(Q) and K = K(Q). As K is finite there is clearly a p such that Sp(p) is
maximal. Note that then Sp(u) = Sp(p) for any p 2 p with p\p € dom Q7 as Q7, Cx Q7.
Consider any z,y € Sp(p) with 2z Ay = w. As K Ciy £, w € K. To show that Sp(p)
is closed under meet it suffices (by the maximality of Sp(p)) to show that there is no e-
splitting on @7-; modulo w. Remember that, by definition, k = k(Q5-,) = k(Q}) = k(Q).
Suppose there were such a split 1 and v, each of length m. By our definition of @7-,

TS ]:[ Oktn - In ()} at the corresponding levels, however, there are branchings for
n=0
all elements of Oy ,.1. (That is there are, for example, successors of Q5(0"p [ n + 1)

for every element of Oy, 1 while in Q7(x [ n + 1) there are ones only for the elements
of Oyy.) Thus, by the existence of meet interpolants for Oy, in Oy,.1, there are

n=m

Yo, V1> 72 € [] Oksna1 such that for each j < m, the 7,(j) for i € {0,1,2} are meet
=0

interpolants for (j) and v(j), ie. i = Y9 =y V1 =z Vo =y V. As i and v form a
e-splitting on (7., so do one of the successive pairs such as 0°7,, 07y, on 7. But then
0"%, and 0°%; would be an e-split on @} congruent modulo y for a contradiction. (The
situations for t.he other pairs are the same ]out perhaps with x 1.n.pla%% qfl gﬁle L

We now build the analog of the e-splitting subtrees of Definition bﬁ [7.

Proposition 10.2.8 .Given an e-total Q with k(Q) = k and K(Q) = K with p and z
as in Lemma HU._Z._}%,There is a condition S < Q7 with k(S) = k such that any 0,7 €
dom S(= dom Q) with o #, 7 e-split on S. (Of course, by the choice of p and z there are
no e-splits on Q7 which are congruent modulo z.) Such a tree S is called a z — e-splitting
tree.

Proof. We define S(o) (with k£(S) = k) by induction on |o| beginning, of course, with
S(@) = Q;(0). Suppose we have defined S(o) = Q%(7,) for all ¢ of length n. We
must define S(o"«) for all such o and appropriate o as extensions Q(7,-a) of @5(7, )
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obeying all the congruences in I@, ie if z € K and o =, [ then 7, =, 7,-3. We

=n
list the o of length n + 1 as 0;,"q; for i < m = |]H O] and define by induction on
j=0

r <l =m(m+1)/2 (the number of pairs {, j} with ¢, j < m) strings p; . simultaneously
for all i < m. At the end of our induction we set 74,0, = 7o, @i p;o" ... p;;_1- For this
to succeed it suffices to maintain uniformity and guarantee, for every ¢, 7 < m and w € K,
that a; =, aj = p;, = pj, for every r < [ and that if o; #, «; then To; O Pig - Pig
and 7o, ;" p;o" ... "p;, e-split on Q) where r <[ is (the code for) {i, j}.

By induction on 7 < [ we suppose we have 7,,"p; " ... p;,_; = v; for all i <m and
that {p, ¢} is pair number r. If oy, =, o, there is no requirement to satisfy and we let
pir = 0 for every i. Otherwise, let w be the largest y € Ly, such that a, =, a. (To
see that there is a largest such y, first note that £, is a lattice as it is a finite 1sl. As
Op4n is an usl table for Ly, if o, =, o for v,v € Ly, then o, =, o, where t is
the least element of Ly, above both u and v (their join from the viewpoint of Ly,).
Thus, there is a largest y as desired.) Of course, z £ w. By our choice of z there are

t=c
0,7 € [[ ©k4+ such that v, extended by o and 7 form an e-splitting congruent modulo w
£=0
on Q. (We can find such a split on ij by the definition of p and z and our assumption
on w. It translates into such ¢ and 7.) Consider v,"7. It must form an e-splitting on Q@
with one of v,"c and v,,"7 by the basic properties of (). If it splits with the latter string
then we can set p,; .., = 7 and clearly fulfill the requirements for this pair {p, ¢} both
for congruence modulo w (as all new extensions are identical) and e-splitting. Of course,
uniformity is maintained as the p, ,.,; are the same for all 7. Thus we assume that v," o
and v, 7 e-split on ();. We now use our homogeneity interpolants.

We know that w is the largest y € L,1 such that o, =, a, and that o0 =, 7.
g?eh%gmfor any r € K C Lyyn it o, =; a4 then 2 < w and so ¢ =, 7. By Theorem

-3.1(3) we can now find homogeneity interpolants v,(s), v,(s) in O 41 and associated
K-homomorphisms fssGss hs © Opys — Opysyr such that fo : ap,ap — 0(s),71(s), gs :
ap, g — Yo(8),71(s) and hy : ap,ap — Yo(s),7(s) for each s < |o] = |7]. (We let
ap = ap, a1 = g, By = 0(s), B, = 7(s), L =K and i = k + s in the Theorem.) Note
that the branchings in @)} are at some levels up from the corresponding ones in Q;p
or Q’;q on which we chose o and 7. Thus these homogeneity interpolants are available
within the branchings in Q5. As v,"0 and v, 7 e-split on (), one of the pairs v," o, v, 7;;
Vp YosVq V1 and vy 7o, v, T must also e-split on ()5, Suppose, for the sake of definiteness,
it is the second pair v, %,,v,"%,. In this case, we let p;, . ,(s) = gs(a;) for every i
and s. Note that uniformity is maintained as p,,,,(s) depends only on ;. We use f;
or h, in place of g, if the e-splitting pairs are v, o,v, ¥, or v, %, v, T, respectively.
By the homomorphism properties of the interpolants these extensions preserve all the
congruences in K between any «; and «; as required to complete the induction and our
construction of an e-splitting tree . m

We now conclude the proof that our embedding maps onto an initial segment of D.
by showing that for G € [S] with S a z — e-splitting tree, ®¢ = G%. The proof is
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1
analogous to that of the Computation Lemma (bC?Zm. 199,
Lemma 10.2.9 If S is a z — e-splitting tree and G € [S] then ¢ = G%.

Proof. We first show that ®¢ <; G%. Consider any n. Using GY we can find all the
o € dom S of length n such that o(l) = G%(1) for every | < n. All of these o are congruent
modulo z and so all S, force the same value for ®¢ at n. As S(o) is an initial segment of
G for one of these o, this value must be ®%(n). We next argue that G5 <7 ®¢. Consider
all 0,7 € dom S of length n. If o #, 7 then S, and S, force different values for ®¢
at some [ < n. Thus using ®¢ | n we can find the unique congruence class modulo z
consisting of those o such that S(¢) is not ruled out as a possible initial segment of G.
For one ¢ in this class, S(o) is an initial segment of G' and as all the o in this class are
congruent modulo z, they all determine the same values of G | n which must then be
the correct value. m

We have now completed t.he proof that anﬁg&c%leric filter G (d.e(.:idin% laall senten sesl%ldr ce
meeting the dense sets provided by Lemma 10.2.4 and Propositions 10.2.5 and l“.Z.Sti
provides an embedding of £ onto an initial segment of D that sends. x to deg(GL) (for
any P € G with v € K(P)). This gstablishes Theorem &UTTglVWour lattice taﬁrleeclatiso
theorem whose proof we provide in §10.3. We now indicate how to modify Theorem/??
so as to apply to any sublattice I of a recursive lattice.

clatticeiso| Theorem 10.2.10 If K is a sublattice of a recursive lattice L then K is isomorphic to
an initial segment of D.

reclatticeiso

Proof. The changes needed to the proof of Theorem h’()mstly notational. The
forcing conditions are now pairs (T, K) where T is a tree (for (£;,©;)) and K is a finite
slsl of IC N Liry. We say that (11, K1) <p (To,Ko) if Ty Ck, To and Ky 2 Ky. We
let V((T,K)) = T(0). If P = (T,K) is a condition we let K(P) = K, Tr(P) = T and
k(P) = k(T). In following much of the original proof, one should often simply replace
a condition P by Tr(P) when K(P) is fixed. Along these lines, for example, we use
P,, Px, P™ and P to stand for (T'r(P),, K(P)), (I'r(P)%, K(P)), (I'r(P)", K(P)) and
(T'r(P)r,K(P)), respectively. The top element of P consists of the identity tree Id
(which has k(Id) = 0) and the slsl £, = {0,1}.

The basic dense sets C,, that we assume are met by any generic are now extended to
include, for each x € K the sets { P|x € K(P)}. to see that these are dense, consider any
Q € P and x € K. Let K’ be the slsl of I generated by K(Q) and x and let i > k(Q)
be such that X' C L£;. Define S with k(S) = i by S(0) = Tr(Q)(0"*@ ). Clearly,
(S, K'Y <p @ and is in the required set.

The definition of the embedding, now from K, into D is the same as before noting
that K (P) is now the second coordinate of P rather than simply Lypy. The operations
on trees and proofs used to verify the diagonalization (for x,y € K) and initial segment
properties (with ®¢ = G for 2 € K(Q) C K) are now essentially the same. Just keep in
mind that they are applied to Tr(P) and K (P) does not change. =
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This version of the theorem provides initial segment embeddings for many nonrecur-
sive lattices. As an example we have the following corollary.

Corollary 10.2.11 FEwvery countable distributive lattice is isomorphic to an initial seg-
ment of D.

Proof. There is a recursive universal countable distributive lattice. In fact, every count-
able distributive lattice can be embedded into the atomless Boolean algebra.?? m

Exercise 10.2.12 Prove that the embedding of our recursive lattice L can be taken to
be into D(<0") and, indeed that the generic G constructed has double jump 0". For
embeddings of a sublattice IC of L determine where the embedding lies and what can be
said about G".

Exercise 10.2.13 Prove that the embedding of our recursive 6%@1%% L is onto an initial
segment of both the tt and wtt degrees. (Hint: recall Exercise 8.1.2.)

. reclatticeiso
Exercise 10.2.14 Theorem [T0.1.5 relativizes to any degree a and so every countable
lattice L (with 0 and 1) is isomorphic to a segment of D, i.e. to [a,b] = {x]a < x < b}
for some b where a is the degree of L. Indeed, we may take b” = a”.

10.3 Constructing lattice tables

Theorem 10.3.1 If L is a countable lattice then there is an usl table © of L along with
a nested sequence of finite slsls L; starting with Lo = {0,1} with union L and a nested
sequence of finite subsets ©; with union © with both sequences recursive in L with the
following properties:

1. For each i, ©; | L; is an usl table of L;.

2. There are meet interpolants for ©; in ©,41, i.e. ifa =, 5, t Ay =z (in ©; and L;,
respectively) then there are g, 71,72 € Oip1 such that o =, vy =y 71 =2 Vo =y B-

3. For every L Ciq L; there are homogeneity interpolants for ©; with respect to L in
O;41, t.e. for every o, a1, By, 51 € O; such that Yw € ﬁ(ao =u 01 — By =w 1)
there are vy,7v; € ;11 and ﬁ-homomorphisms f,9,h : ©; — O;11 such that f :
ag, a1 — By, V1, 91 o, a1 — Yg,71 and h g, aq — g, By

Proof. We first define the sequence L£; of slsls of £ beginning with £, which consists
of the 0 and 1 of £. We let the other elements of £ be x, for n > 1 and L,, be
the (necessarily finite) slsl of £ generated by {0,1,z1,...,2,}. As for ©, we choose a
countable set «; and stipulate that © = {«;|i € w}. We begin defining the (values of)
the a; by setting ag(x) = 0 for all z € £ and «(0) = 0 for all & € ©. We now define
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©,, and the values of a € ©,, (other than ) on the elements of £, (other than 0)
by recursion. For ©y we choose a new element 5 of © and let Oy = {ag, S} and set
B(1) = 1. Given O,, and the values for its elements on £,, we wish to enlarge O,, to ©,,11
and define the values of a(z) for o € ©,,.7 and x € L, so that the requirements of
the Theorem are satisfied. To do this we prove a number of general extension theorems
for usl representations in the Propositions below that show that we can make simple
extensions to satisfy any particular meet or homogeneity requirement and also extend
usl represenﬁagégglgtgrlg)m smaller to larger slsls of £. To be more specific, we first apply
Proposition T0.3.5 successively for each choice of x Ay = z in £, and o, € 6, with
a =, ( choosing new elements of © to form O/, extending O,, and defining them on £,
so that ©/, | £,, is an usl table for £,, containing ©,, and the %‘?ﬁ%%%%d meet interpolants
for every such z,y, z,a and . We then apply Proposition FfD_B_GﬁEccessively for each
L Ciy L, and each ap, a1, By, 81 € ©,, such that Vw € E(ao =, a1 — [y = [;) to get
larger subset ©! of © which we also define on £,, so as to have an usl table ©” | L,
for £, that has the required homogeneity interpolants and L-homomor hlsm§1 from ©,,
into O for every such «y, a1, 5y, 5; € O,. Finally, we apply Proposition to define
the elements of ©) on L,;, and further enlarge it to our desired finite @nﬂ C © with
all its new elements also defined on £, 1 so as to have an usl table of £, with all the
properties required by the Theorem. It is now immediate from the definitions that the
union O of the ©,, is an usl table of L. m

Notation 10.3.2 If a finite Lisaslslof £, L Ciy L, and x € L then we let & denote
the least element of L above x. The desired element of L exists because L is a slsl of L
and so the meet (in L or, equivalently, in L) of {u € ,C|x < wu} isin L and is the desired
& As L s finite it is also a lattice but join in L may not agree with that in L. We denote
them by V; and V. respectively when it s necessary to make this distinction.

Lemma 10.3.3 With the notation as above, & = x for x € L and so it is an idempotent
operation. If x <y are in L then & < §. If xVpy =z are in L then 2 =2 V; 7.

Proof. The first two assertions follow immediately from the definition of . The third is
only slightly less immediate: z,y < x V. y = z and so by the second assertion, z,7 < 2
and so & V; ¢ < 2. For the other direction, note that as x < 7, y < ¢, we have that
z:x\/gygi\/ggjgi\/ﬁyéﬁandsoigj\/ﬁg]. ]

Proposition 10.3.4 If © s a finite usl table for LCL (finite) then there are exten-
sions for each a € © to maps with domain L and finitely many further functions B with
domain L such that adding them on to our extensions of the o € © provides an usl table

O of L with ® C O | Aﬁ Moreover, these extensions can be found uniformly recursively
in the given data (©, L and L).

Proof. For « € © and x € L set a(x) = a(z). We first check that we have maintained
the order and join properties required of an usl representation. If z < y arein £, o, 5 € ©
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basichat
and o =, [ then by definition o =; J and so o =;  as £ < § by Lemma mnd O’s
being an usl table of £. Thus, by definition, o =, 3 as required.

Next, if z Vo y = z are in L %ggighix,y £ we wish to show that o =, 5. Again bAy
definition o =; 5 5. By Lemma &0_3_3,_@ Vi 9§ = %, so by © being an usl table for £,
a =; [ and so by definition, a =, .

All that remains is to show that we can add on new maps with domain £ that provide
witnesses for the differentiation property for elements of £ — £ while preserving the order
and join properties. This is a standard construction. For each pair £ y (in £ but
not both in £) in turn we add on new elements gy and 5, with all new and distinct
values at each z € L except that they agree on all z < z (and at 0, of course, have value
0). These new elements obviously provide the witnesses required for the differentiation
property for an usl representation. It is easy to see that they also cause no damage to the
order or join properties. There are no new nontrivial instances of congruences between
them and the old ones in © (extended to £). Among the new elements the only instances
to consider are ones between o, and 3, , for the same pair z,y and for lattice elements
z less than or equal to z. As o, =, 3, for all z < x, the order and join properties are
immediate. m

Proposition 10.3.5 Ifa, 5 € O, an usl table for a finite lattice L, o« =, f and x Ny = z
in L then there are vy, 71,7, such that a =, Yo =y V1 =z Yo =y B and © U{vg, 71,72} s

still an usl table for L. Moreover, these extensions can be found uniformly recursively in
the given data.

Proof. If x < y, there is nothing to be proved. Otherwise, the interpolants can be
defined by letting v,(w) be a(w) for w < z and new values for w £ x; v, (w) = 74(w) for
w < y and new values otherwise; and v,(w) = S(w) for w < y, y5(w) = v (w) if w < z
but w £ y and new otherwise. m

Proposition 10.3.6 If L Cu L, a_finite lattice, and © is an usl table for L with
o, a1, B, 31 € © such that Yw € L(ag =w o — By = B1), then there is an usl

table © O O for L with vy,v, € © and L homomorphisms f,g,h : © — © such that
f @ ag,a1 — By,v1, 9 ¢ o, 1 — Y,y and hooag, a1 — vy, B, Moreover, these
extensions can be found uniformly recursively in the given data.

Proof. For each a € © and = € L we set f(a)(x) = fy(z) if @ =; ap and otherwise we
let it be a new number that depends only on «(z), e.g. «(z)*. Note that which case of
the definition applies for f(«)(z) depends only on (%) and it can be an “old” value (i.e.
one of some ( € O) only in the first case. Thus, for «, 5 € O,

(a) a=; & fla) =, f(B) and (b) f(a) =, b= a=; oo = f(a) = By-  (10.1)

Let ©; = O U f[O]. We claim that ©; is an usl table for £ and f is an L-homomorphism
from O into ©;. That f is an £-homomorphism is immediate from the first clause in
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0.1) and the fact (Lemma h'0_3_3h)_fhat 2 = x for x € L. We next check that O, satisfies
the propertles required of an usl representation. Of course, f(a)(0) = 0 by definition for
every « and differentiation is automatic as it extends ©.

First, to check the order property for ©; we consider any = < y in £. As © is already
an usl table for £, it suffices to consider two cases for the pair of elements of ©; which are
given as congruent modulo y and show that in these two cases they are also congruent
modulo z. The two cases are that (a) both are in f[©] and that (b) one is in f[©] and
the other in ©. Thus it suffices to consider any «, § € ©, assume that (a) f(a) =, f(F)

or (b) f(a) =, B and prove that (a) f(a) =, f(8) and (b) f(a) =, B, respectively. For
(a), we have by (10.1) that a =; § and so by the order property for ©, a =; 3. Thus
f(@) =, f(B) by definition as required. As for (b), (10.1) tells.us here that o =5 ag and
B =, fla) =, B, (and therefore § =, ;). Now by Lemma iU 33 a=; apso fla) =, By
and so f(a) =, [ as required.

Next we verify the join property for x Vy = 2z in £ and two elements of ©; (not
both in ©) in the same two cases. For (a) we have that fla) =, f(5) and so as above

a =;4 3. Now by the join p{operty in® and LL nma .33, 7a =: g and so f(a) =, f(5)
as required. For (b) using ( EO 1b) and Lemma again we have that f(a) =,, 8 =
a =5 a0 = a =5 o = fla) =, B, while it also tells us that 5 =, f(a) =, 5, as
required. Note that clearly f(ag) = 3, We let v, = f(ay) and so have the first function
and (partial) extension of © required in the Proposition.

We now define h on ©; as we did f on © using a; and (3, in place of o and S,
respectively: h(a)(z) = 5,(z) if @« =; oy and otherwise we let it be a new number that
depends only on a(%), e.g. a(2)™. Let Oy = ©; U h[O,]. As above, O, is an usl table
for £ and h is an £-homomorphism from ©, (and so ©) into ©, taking oy to 3;. We let
Yo = h(ao) and so have the third function and (partial) extension of © required in the
Proposition. As above in (II0.1), we have for any «, € ©; and = € L,

(a) a =; < h(a) =, h(B) and (b) h(a) =, f = a = an = h(a) =, f;.  (10.2)

Applying the second clause to v, = h(ag) and first to any 5 € ©; and then, in particular
to v, we have

(@) Yo =2 B = g =3 oy = f(ay) =7, =2 By and (b) vy =2 71 © ap =5 a1 (10.3)

To see the right to left direction of the second clause, note that ag =; «; implies that
Yo =« [1 and v, =, B, by the definitions of h and f, respectively, while it also implies
that 8, =; [, by the basic assumption of the Proposition. Thus, as O is an usl table of
Land x <z, B, =, f; and v, =, 71

Finally, we define g on @ € ©4 by setting g(a)(z) = vo(x) if @ =z ap. If o #; ap but
a =; oy then g(a)(z) = v,(x). Otherwise, we let g(a)(x) be a new number that depends
only on (), e.g. a(2)*; Note that if & =; oy then we always have g(a) =, 7, as if
a =; ap as well then, by ( hO 3b), 7o =& v1- Thus g(ag) = 7, and g(ay) = 7y, as required.
It is also obvious that ¢ is an £-homomorphism of ©, (and so ©) into O3 = O, U ¢[O,]
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ich
as by definition and Lemma ia(fZIS.cB,aEz =; 0 = g(a) =; g(B) for any x € L. Indeed, for
any o, 3 € Oy and x € L

a=; e gla) = g(p). (10.4)

To see the right to left direction here, note that if either of g(«) or g(53) is new for g
at = (i.e. of the form §(¢)***) then clearly both are. In this case, & =; (8 by definition.
Otherwise, either they are both congruent to g or both to a; and so congruent to each
other mod z. The point here is that if one is con guent to g and the other to «; but
not oy at & then by definition 7, =, ; and so by (I0.3b), ap =; oy for a contradiction.

Thus we only need to verify that O3 is an usl table of £. We consider any «, 5 € O,
and divide the verifications into cases (a) and (b) as before with the former considering
g(a) and g() and the latter g(«) and 3. These cases may then be further subdivided.

We begin with the order property and so z < y in L.

(a) If g(a) =, g(B) then, by (20 4), a =5 and so a=; [ as 1z < § (Lemma Ftl%%%n)g
and O, is an usl table of £. Thus, again by O 4) g(a)) =, g(B) as required.

(b) If g(or) =, 5 then by definition they are congruent modulo y to v, (for some
i € {0,1}) and « is congruent to «; at 3. Thus o =; o; as & < § and O is an usl table
so g(a) =, 7, by definition. Similarly, as = <y, f =, 7, as well.

Now for the join property for x Vy = 2z in L.

(a) If g(@) =,y 9(B) then, as above, a =5 3. As x\/y = 2 by Lemma %%%l%tn d O,
is an usl representation, o =; [ and so by—h =, ¢(B) as required.

(b) If g(o) =, [ then again o =; «; and a =; «; for some 7,5 € {0,1} and
g(a) =, B =, v, while g(a) =, 8 =, v;- Ifi = j then a =; 4 o; and so a =; o; and
g(a) =, v, =. B as required.

On the other hand, suppose, without loss of generality, that (x) o =; «y and so
B =s g(a) =z, vy = h(ag) while o #; o =5 oy and so =, g(o) =y 71 = f(ou). If
[ € ©; then by ( %O 4a) ap =3 o and so a =; . As our assumption is that a =5 aq

e have (by the join property in O,) that « =; a; and so g(@) =, 7. As ap =z o
hO 3b) tells us that v, =, 7;. Our assumptions then say that § =, , v, and so § =, 1,
as requlred Thus we may assume that 5 = h(¢) for some 6 € ©.

We now have h(6) = f =, g(a) =, 7o = h(ag) € ©1 and so by ( hO 2a) applied to
h(8) =, h(ap) with ¢ for o and ag for 5 we see that § =; ap. We also have h(5) = 8 =,
g(a) =gy 71 = f(a1). Applying (10.2b) to h(d) =, v, with 6 for v and 7, £ O for 3, we
see that 6 =5 ayand h(d) =, f; and so 5, =, 7, = f(a1). Now applying ( hO 1b) with oy
for a and 3, € © for 3, we have that a; =; ag. As this contradicts (x), we are done. |

10.4 Decidability of two quantifier theory

10.5 Undecidability of three quantifier theory.

Also two quantifier with V and A.?7
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Other results establishing borderlines in other languages e.g. with jump? If so in
different chapter/section?
comments on what known below 0’



Chapter 11

H(l) Classes

11.1 Binary trees

We now return to the basic our basic notion of a tree as a downward closed subset of N<“.
In this context we use T, to denote the subtree of T" consisting of all strings p compatible
with o: T, = {p|p € 0 or ¢ C p}. Recall that the sets of paths in such trees are the
closed sets in Baire space NY. In this chapter we are primarily concerned with infinite
binary trees, i.e. the infinite downward closed subsets T" of 2<“. We endow each binary
tree with a left to right partial order as well as the order of extension. It is specified by
the lexicographic order on strings so o is to the left of 7, 0 <, 7 if o(n) < 7(n) for the
least n such that o(n) # 7(n) if there is one. (This order extends in the obvious way to
one of 2 which we also call the left to right or lexicographic order.) The sets of paths
[T] = {A €2V :Vn(A | n€T)} through these trees are precisely the nonempty closed
subsets of Cantor space, 2V.

Exercise 11.1.1 For any binary tree T, [T] is a closed set in Cantor space.

7?7Prove??

To see that every closed subset of 2V is of the form [T for some tree T, consider
the open sets in 2V. They are all unions of basic (cl)open sets of the form [0] = {f €
2Nlo C f} for o € 2<%, So given any closed set C its complement C is a union of such
neighborhoods. Let T' = {o|[o] € C} = {o|[c] N C # 0}. It is clear that T is downward
closed. If f € C and o C f then clearly 0 € T and so f € [T]. On the other hand if
f€[T) and o C f then 0 € T and so the closed set [0] N C # (. As Cantor space is
compact N{[o] N Clo C f} is nonempty, and only f can be in it so f € C as required.
Note that, by Konig’s lemma (Lemma 4.2.4), C is nonempty if and only if 7" is infinite.

7?Move this material to Trees section and recall here??
In this chapter we want to investigate the recursive versions of these two notions.

Definition 11.1.2 A class C C 2V is effectively closed if it is of the form [T] for a
recursive binary tree T'.

153
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We can also characterize the effectively closed sets in terms of the complexity of their
definition. We use the same notation based on the arithmetic hierarchy for classes of
sets or functions as we did for individual sets and functions.??say more now or before
Go back and check definitions for X2 especially ¥y and how interpret for ¢ in place of A
...bounded quantifiers??

Definition 11.1.3 A class C C 2V of sets is ¥, ( I1,,) if there is a ¥, ( II,,) formula
©(X) with one free set variable X such that C = {A|N Fp(A)}. Similarly for classes
F C NN of functions and formulas with one free function variable.

The primary connection with trees is the following Proposition.

Proposition 11.1.4 The I1Y classes of sets are precisely the sets of paths through recur-
sive binary trees. Again, the nonempty classes correspond to the infinite recursive binary
trees. Moreover, there is a recursive procedure that takes an index for a T1° formula to
one for a recursive tree T such that [T is the corresponding 11§ class.

Proof. If T is a recursive binary tree then [T] = {A € 2 : Vn(A | n € T)} is clearly
a I19 class. If T is infinite, [T] is nonempty by Konig’s lemma while if T is finite [T is
clearly empty. For the other direction consider any II{ class P = {A : VzR(A,x)} for
a X relation R. Let T = {0 € 2<¥|~(3x < |o|)=R(c,z)} where we understand that
we are thinking of o as representing an initial segment of A. Formally we replace t € A
by o(t) = 1 and declare the formula R(o,z) false if some term t > |o| occurs in it as
described in 7?7. It is then immediate that P = [T] and that an index for T" as recursive
function is given uniformly in the index for R as a 3§ formula. If P is nonempty, 7" has
an infinite path and so is itself infinite. Otherwise, T is finite. m

Exercise 11.1.5 The 1Y classes of functions are precisely the sets of paths through re-
cursive trees (on N<¢).

We can now index the II{ classes (of sets) by either the indi(i%sl torfeg}sle 119 formulas or
of the trees derived from them as in the proof of Proposition TT.1T.4 as partial recursive
functions which are actually total. A natural question then is how hard is to tell if a
recursive tree is infinite or a I1? class is nonempty. It might seem at first that these
properties are II9 and so only recursive in 0”. If we know that the tree is recursive as we
do for the trees derived uniformly from ITY classes, however, then the question is actually
uniformly (on indices) recursive in 0’. This observation depends on the compactness of
Cantor space and plays a crucial role in almost every argument in the rest of this chapter.

Lemma 11.1.6 IfT is a recursive binary tree (say with indexi so'T = ®;) then T' being
finite is a Xy property (of i). Thus we can decide if T is finite or infinite recursively in
0. Indeed, T is finite if and only if there is an n such that o ¢ T for every o of length n.
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Proof. Clearly, T is finite if and only if there is an n such that o ¢ T for every o of
length n. Clearly this is a ¥; property for any recursive binary tree and the associated
Y formula is given uniformly in a recursive index for 7. m

While deciding if a given recursive binary tree is infinite or a II9 class nonempty
requires (', we can actually make a recursive list of the nonempty II{ classes and so one
of corresponding infinite recursive binary trees (up to the set of paths on 7).

Exercise 11.1.7 There is a uniformly recursive list of the nonempty 119 classes in the
sense that there is a recursive set Q) such that, for each e € Q, ®. is (the characteristic
function of) an infinite binary tree T, and for every nonempty 119 class C there is an e
such that C = [®.] = [T.]. Hint: For each e consider the r.e. set W, viewing its elements
as binary strings o. We now form a recursive tree I, by putting in the empty string at
stage 0 and then at stage s > 0 exactly those strings T of length s with no o C 7 in W,
unless there are none (equivalently U{[o]|lc € W.} = 2V), in which case we declare all
immediate successors of strings in T, of length s — 1 to be in T, as well. Note that T,
is uniformly recursive. For one direction prove that each T, is infinite (and so [T,] is a
nonempty 11V class). For the other direction, if C is a nonempty 119 class then the set
{o|le]NC = 0} is r.e. and so equal to some W,. Now show that [T,] = C.

We now present some important I1{ classes.

Example 11.1.8 DNRy, = {f € 2V : f is DNR}. Recall that DNR means f(e) #
®.(e). In other words, VeVs—(f(e) = ®.s(€)). Thus, DNRy is a IIY class.

Example 11.1.9 Let H be any recursively azxiomatizable consistent theory. The class
Cu={f €2V : f is a complete extension of H} is a 11{ class. By the assertion that f “is
a complete extension of H” we mean that we have a recursive coding (Gddel numbering)
@, of the sentences of H such that Ty = {¢,|f(n) = 1} is deductively closed, contains all
the axioms of H and is consistent in the sense that there is no ¢ such that f assigns 1
(true) to both ¢ and —p. The only point to make about this being a 119 class is perhaps the
requirement that Ty be deductively closed. This says that for all finite sets ® of sentences
and each sentence ¢, and proof p, if p is a proof that ® F ¢ and f(n) = 1 for every
0, € ® then f(k)=1.

Example 11.1.10 If A, B are disjoint r.e. sets, then the class S(A,B) = {C : C' D
A & CN B =0} of separating sets C' (for the pair (A, B)) is a II{ class as is obvious
from its definition: S ={C :Vn(n€e A—-neC&neB—-n¢C)}. Since A,Be€ ¥,
this is a 119 formula.

We can view a IIY class as the solution set to the problem of finding an f that
satisfies the defining condition for the class. Equivalently, the problem is finding a path f
through the corresponding tree 7. For the above examples the problems are to construct
a DN Ry function, a complete consistent extension of H and a separating set for A
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and B, respectively. If we choose our theory H and our disjoint r.e. sets A and B
correctly then the three problems and so the I19 classes (and the [T'] for the corresponding
trees) are equivalent in the sense that a solution to (path through) any one of them
computes a solution for (path in) each of the others. Suitable choices for H and (A, B)
are Peano arithmetic, PA, ?7?define before?? and (Vp, V;) where V5 = {e : ®.(e) = 0} and
Vi ={e: ®.(e) = 1}. For these choices, the problems are also universal in the sense that
a solution to any one of them computes a path through any infinite recursive binary tree
and hence a solution to any problem specified by a nonempty I19 class.

Theorem 11.1.11 If T is an infinite recursive binary tree and f is a member of any of
the three 11y classes DN Ry, Cpa or S(Vy, V1) described above then there is a path g € [T
with g <r f.

Proof. We first prove the theorem for S(Vp,Vi). Suppose T is an infinite recursive
binary tree. We begin by defining disjoint r.e. sets A and B such that any f € S(A, B)
computes a path in 7. We then show how to compute a path in (any) S(A, B) from one
in S(Vp, V7).

We know that {o|T}, is finite} is r.e. sosupposeitis W.. Welet Ay = {o|3s(c"0 € W, ,
& 0°1 € W5} (the o such that we “see” that T, is finite before we “see” that Tj,-; is
finite) and A; = {o|3s(c"1 € W, & 0°0 € W, 5} (the o such that we “see” that T,-; is
finite before we “see” that T, is finite). It is clear that AgN A; = ). Let C' € S(Ap, 4;)
and define D a path in T by recursion. We begin with ) € D. If ¢ € D then we put
0" C(o) into D. We now argue by induction that if o € D then T, is infinite: If T, is
infinite then at least one of T~y and T,-; is infinite. If both are infinite there is nothing
to prove so suppose that T~ is finite but 7,,-; is infinite. In this case, it is clear from the
definition that o € Ay and so C(c) = 1 and we put ¢"1 into D to verify the induction
hypothesis. In the other case, o € Ay, C'(0) = 0 and we put 00 into D with 7, infinite
as required.

Now we see how to compute a C' € S(Ag, A;) from any D € S(Vy, V). By the s—m—n
theorem 77 there is a recursive functions h such that Vn(n € A; < h(n) € V;). We now
let C(n) = D(h(n). It is easy to see that C' € S(Ap, A1) as required. Thus S(Vp, V1) is
universal in the desired sense.

We now only have to prove that we can compute a member of S(V,V;) from any
DN R, function f and from any complete extension P of PA. For the first, simply note
that if f € DNRy then f € S(Vp,Vi): If e € V then ®.(e) = 0 and so f(e) = 1 as
required. On the other hand, e € V; then ®.(¢) =1 and so f(e) = 0 as required.

Finally, suppose P is complete extension of PA. Define C'(n) = 1 if P declares the
sentence ds(n € Vps & VYVt < s(n ¢ Vig)) to be true and 0 otherwise. Note that if
n € Vp then there is a least s € N such that n € V. This fact is then provable in PA
(computation is essentially a proof). Similarly, for each ¢t < s, n ¢ Vi, since n € V;
and so C'(n) = 1 as required. On the other hand, if n € V} then there is a least s € N
such that n € Vi, and for each t < s, n ¢ V; since n € Vi and so PA proves that
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ds(n € Vi & Vt < s(n ¢ Vps)). As P is a consistent extension of PA, it cannot then
prove that 3s(n € Vy 4 & Vit < s(n ¢ V1)) and so C'(n) = 0 as required.

Exercise 11.1.12 Show that the degree classes DNRy, Cpa and S(V, V,) consisting
of the degrees in each of the corresponding 1Y classes are all the same.

" dnrnotrec

As every DN R function is obviously nonrecursive (Proposition bmgjﬁlone of these
three classes have recursive members. So in particular there are no recursive complete
extension of PA and there is no recursive separating set for (4, V7).

Thinking of TI? classes as problems that ask for solutions, the natural question is
how complicated must solutions be or how simple can they be. In the (in some sense
uninteresting) case that there is only one path in 7' (or only finitely many) we can say
everything about their degrees.

Proposition 11.1.13 If a recursive binary tree T' has single path that path is recursive.
In fact, any isolated path ?%define?? on a recursive tree is recursive.

In general for arbitrary 7" one easy answer to the question is that there are always
solutions recursive in (.

Exercise 11.1.14 Show that every nonempty 11° class has a member recursive in 0.
Hint: it is immediate for the separating classes.

It is not hard to say a bit more.

Proposition 11.1.15 FEvery infinite recursive binary tree T' has a path of r.e. degree.
In fact, the leftmost path P in T has r.e. degree.

We, in fact, can signiﬁcimg%y improve the result of Exercise %4. The Low Basis
Theorem below (Theorem TT.1.18) gives the best answer with the notion of simplicity
of the desired solution measured by its jump class. It is called a basis theorem as we
say that a class C is a basis for a collection of problems, gglen‘%s) if every problem (set) in
the collection has a solution (member) in C. Theor%qcion.e [.19 gives another basis result
in terms of domination properties and Theorem E‘lﬂ‘.mle in terms of solutions not
computing given (nonrecursive) sets.

To prove each of these theorems we use the notion of forcing P whose conditions
are basically infinite recursive binary trees 7' with usual notion of subtree as extension
(simply a subset). To make the definition of our required function V' recursive, we
explicitly specify a stem 7 for each tree such that every p € T is compatible with o.
Thus our conditions p are pairs (7', 7) with 7" an infinite recursive binary tree and 7 € T
such that (Vp € T)(p C 7 or 7 C p). We say that (T,7) <p (S,0) if T'C S and 7 D 0.
Of course, V((T,7)) = 7. If p = (T,7) and ¢ O 7, we use p, to denote the condition
(T,,0).



ibtreepaths

158 CHAPTER 11. TIY CLASSES

The complexity of this notion of forcing depends on the representation or indexing
used for the inﬁnitgerce&érsiiéff binary trees. While,at one end we could use the recursive
listing of Exercise h‘lT?fp_lt_would then be more difficult to describe various operations
on trees that determine subtrees in the natural sense but do not obviously produce an
index of the type required. In this case we would also want to define the %%1}%1%1}%% rg%%téion
T C S in terms of [T] C [S] which would then be a II relation (Exerciseﬁ'ﬂm SO
only recursive in 0”.

Exercise 11.1.16 If e and @ are indices for infinite binary recursive trees I' and S then
the relation [T C [S] is 113, and, in fact,it is IS complete.

At the other end, we can simply use indices for recursive functions that define infinite
binary trees. While this set is only recursive in 0” (because it takes 0” to decide if an
index is one for a recursive tree), operations on trees become easy to implement on the
indices. On this set of indices, the standard subtree relation 7" C S is then H(l) and so
recursive in 0/. We adopt this representation of trees for our notion of forcing. In fact,
while the notion of forcing is then only 0”-recursive, some of what we want to do can be
done recursively in 0’ by analyzing the required density functions. As an example, we
have the following Lemma.

Lemma 11.1.17 There is a density function f for the class V,, = {(T,7)| || > n} of
dense sets in P which is recursive in 0.

_ £in0’
Proof. Given p = (7,7) € P and n € N, Lemma h‘lTG tells us that we can find a
o €T (0 2 7) of length m > n such that T, is infinite. Clearly p, = (7,,0) € P and
Vips) =n. =

Theorem 11.1.18 (Low Basis Theorem) IfT is a recursive infinite binary tree then
it has a low path, i.e. there is a G € [T] with G' =¢ 0. Equivalently, if C is a nonempty
1Y class, then it has a low member. Moreover, we can compute such a path uniformly
recursively in 0’ and the index for T' or the class.

Proof. As usual we want to show that the sets of conditions deciding the jump (D,, =
{p|®r P (n) | or (Vg <p p)(®% P (n) 1)}) are dense and provide a density function f < 0/
that also tells us in which way f(p,n) is in D,,. By Lemma %F.Mrting with condition
po = (T,0) we can meet these sets as well as the V,, by a generic sequence recursive in ('
and so construct a G € [T] with G’ =7 0 as required.

Given an p = (T,7) € P and an n, we cannot use our usual strategy of asking for a
o €T (0 2 7) such that ®7(n) | and then taking say p, as f(p,n) because T, may be
finite. Instead we askjf ' = {0 € T|®7(n) T} is infinite. This question can be answered
by 0’ by Lemma h_l_l_G If so, we let f(p,n) = (T, 7) and note that we have satisfied
the second clause of the definition of D, as well as guaranteed that ®%(n) 1 for every

A

G € [T] including, of course, the generic G we are constructing. If not, then clearly there
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is a k > |7| such that ®7(n) | for every o € T of length k. T, must be infinite for one
of these o as T is infinite. Again by Lemma h‘lTG, 0’ can find such a ¢ and we then
set f(p,n) = p,. In this case, it is clear that we have satisfied the first clause of D,, and
®%(n) | for every G € [T,].

The assertion about members of the corresponding I1 classes as well as the uniformity
claim in the theorem are now immediate. m rodepres

Note that we cannot make a similar improvement to Proposition th.ngAny element
of DNRy, Cpa or S(Vy, V1) of r.e. degree has degree (/.77

We next give a different answer to how simple a path we can construct on an arbi-
trary infinite recursive binary tree. Now the notion of simplicity is specified in terms of
domination properties.

Theorem 11.1.19 (0’-dominated Basis Theorem) If T' is an infinite recursive bi-
nary tree, then there is an G € [T such that every f <rp G is dominated by some
recursive function.

Proof. We use the same notion of forcing with new dense sets. In place of the D,
we have E, = {(T,7)|(3z)(Vo € T)(®%(z) T or (Vz)(3k)(Vo € T)o)=1(®%(z) |)}. To
see that the F,, are dense consider any condition p = (7', 7). If there is an = such that
S ={o € T|®%(x) 1} is infinite then choose such an = and S. The desired extension of p
in E, is then (5, 7). Note that in this case, ®Y(x) 1 for any G € [S]. If there is no such
x, then, by Lemma h’lj_ﬁ, p = (T, 7) satisfies the second clause in £, and is itself the
witness to density. Note that in this case ®C is total for any generic G. Indeed, we can
now also define a recursive function h which dominates ®¢ for any G € [T]: To compute
h(z) find a k such that (Vo € T')5=1(®7(x) |. This is a recursive procedure since by
our case assumption there is always such a k. Now set h(z) = max{®?(x)|c € T and
lo| = k} + 1. This function clearly dominates ®¢ for any G € [T]. =

. . 0’domb .
Exercise 11.1.20 Show that we may find a G as in Theorem [T1.1.19 with G" <7 0".

We next turn to finding paths in trees which are simple in the sense that they do
not compute some given (nonrecursive) set C' or, more generally, any of some countable
collection C; of nonrecursive sets.

Theorem 11.1.21 (Cone Avoidance) If T is an infinite recursive binary tree and
{Ci} is a sequence of nonrecursive sets, there is an A € [T] such that C; %1 A for
all 7.

0’ domb
Proof. We modify the proof of density of the F, of Theorem h'l_l_l'{) to get L, ,, that
guarantee that ®¢ £ C,,. Welet E,,,, = {(T, 7)|(3z)(Vo € T)(®2(z) T or (Jz)(®7 (x) |#
Cn()) or (Vx)(3k) (Yoo, 01 € T)joo|=k=|o1| (P (x) |= ®7(x) |)} . Given any condition
(T, 7) we first extend it to ¢ = (S,0) € E,. If we satisfy the first clause of E, we
satisfy the same clause in E, ,,. Otherwise, we satisfy the second clause of E,. We
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now ask if there are py,p; € S with p; O o and an x such that the S, are infinite and
2 (x) |# @it (x) |. If so, we choose ¢ € {0,1} such that ®7/(z) # Cy,(2) and take g, as
our extension of ¢ (and so of p) which gets into E,, ,,, by satisfying the second clause. If
not, we claim that ¢ itself satisfies the third clause of E,, ,, and that there is a recursive
function h such that ®¢ = h for every G € [S]. As for ¢ satisfying the third clause of
E, .., consider any x and note that it already satisfies the second clause of E,. If there
were infinitely many k such there are og,01 € T of length k with ®7°(x) |# &' (x) |
then we would have been in the previous case as there would then be infinitely many
o € T with ®7(x) |# Cy,(z). Thus we may define h(z) by finding a k as in the third
clause of E, ,,, and setting h(z) = ®7(x) for any ¢ in S of length k. We then have that
®% = h for every G € [S]. As C,, is not recursive,® # C,, for any G € [S] and so we
also satisfy the requirements of the theorem. m

i01
Exercise 11.1.22 Show that we may construct a G as required in Theorem 7. Z.CZOHZe;ZCh
that G <1 0" @ (;C;) and indeed uniformly.

Exercise 11.1.23 For one nonrecursive C' z'n%tead OJ a countable set of C; show that we
. ) 1i0lconedv )

may construct a G as required in Theorem %2. .21 such that G <7 0" (but without the

uniformity). Hint: use the following exercise.

Exercise 11.1.24 Prove that for any infinite recursive binary tree T' there are Gy, G €
[T such that any C <r Gy, Gy is recursive. Moreover, we may find such G; with G =r
0".

Exercise 11.1.25 Nonempty 119 classes such as DN Ry that have no recursive member
are called special I19 classes. Prove that any such class has 2%° many members.

Exercise 11.1.26 Strengthen some of previous theorems producing a path in T with
some property to producing 2% many if T is special.

11.2 Finitely branching trees
Also trees recursive in A (f). Relativizations.

Finitely branching trees, f-bounded, (recursively bounded) essentially the same as
binary (recursive) binary trees relativize results to f.

Given a recursive recursively bounded tree can get recursive binary tree which has
same paths up to degree by padding.

The sets of paths through infinitely branching trees T' C N<“ correspond to closed
sets in Baire space. Even for recursive trees finding paths is much more complicated in
this setting. Whether such trees even have paths is a II} complete question. As for a
basis theorem, one says that if there is a path then there is one recursive in the complete
I} set O.77
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Reference for low basis theorem %%.18 and Theorem Wockusch, Soare “
Degrees of Members of I19 Classes” Pacific J. Math 40(1972) 605-616
Pseudo jump operators: Jockusch, Shore “ Pseudo jump operators I: the r.e. case”
Trans. Amer. Math. Soc. 275 (1983) 599-609; “ Pseudo-jump operators II: Transfinite
iterations, hierarchies, and minimal covers” JSL 49 (1984) 1205-1236

??Check what need for definition jump, relativization to 0, T1° classes.??
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Chapter 12

Pseudo-Jump Operators: Defining A

In this chapter we considerRﬁglé%e generalizations of the Turing jump and its iterates
(the RE rggr?rators). In §&2.‘1_,Ewe prove the analog of thergreigglberg completeness
theorem H.3.T for these operators. We will also see (Theorem 12.2.4) that they include
the n-r.e .and w-r.e. operators (Definition 12.2.1) derived from the n-r.e. and w-r.e. sets
of Definitions 77 and E.3.12. The primary application that drives our int rest nllll%re is
to the operator given by the Sacks minimal degree constructi n ggéleorem .3.1) which
constructs a set 9(1; jyminimal degree with A <,;; 0" (Corollary 77).As sets X <, 0" are
w-r.e. (Exercise #.3.15), relativization gives an operator M taking any set C' to M(C) a
minimal cover of C' which is w-r.e. in C' (Exercises F*"l)_T’Iﬂs this operator will fall into
our new higrga,rg?gfmof operators. In particular, our version of the completeness theorem
(Theorem 77) will prove, f%ri I?Xample, that every degree above 0“) is a minimal cover.

. We will also prove in §12.3 an analo ofitnhe Posner-Robinson join theorem (Theorem
E’Z.S.Q) for 1-REA operators (Theorem [2.3.1) and the op rators that correspond to w-
r.e. operations such as the Sacks minimal cover (Theorem E’Z%ZE)._ThiS will provide our
major application of these operators: a natural definition in D of A = {x|3n(x < 0™},
the degrees of sets definable in arithmetic (TheoremﬂTZTIL)fOur constructions here can
be seen as variations on Cohen forcing with special attention paid to the precise collection
of dense sets that are to be met so as to mnaolgce (;chem more effective in various ways.

Our definiti n ocfoél. provides (Theorem 12:4.3) a proof of the failure of the Homogene-
ity Conjecture (.; 7 ; f%lgg along the lines of the refutat;c%n ucI)nf ’gl&galilomogeneity Conjecture
for D' in Theorem %‘3‘1’4 Combined with Theorem 7.&.5, it also pr é/e: gnslcgnrefutation
for the elementary equivalence version of the homogeneity conjecture (7 ; : In particular,
we describe a sentence ¢ (i)lghtoknllgelanguage of partial orderings such that D(> 0@)) E ¢
but D E =p in Theorem %27171_ Ks

We close this chapter with the introduction in §h’2.5 of a new type of forcing (Kumabe-
Slaman). We use it to prove versions of the join theorem for other REA operators. One
such join theore g}l%lgn lays a crucial role in the definition of the Turing jump operator
in D in Chapter % [T

163
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REA | Definition 12.0.1 For each e € w, we define the pseudojump operator J. on sets A:
J.(A) = A® WA, Such operators are also called 1-REA because the image is r.e. in
and above A. The n-REA operators are given by iterations of (in general distinct)
pseudojump operators. For p = (mg,mq,...,my_1) we define the n-REA operator J,
by Ju(A) = T (S (oo (mo(A) ...). The w-REA operators are each given by a
recursive function f such that J¢(A) = GnewJrin(A).

Example 12.0.2 If (i) is an index for the usual Turing jump for every i < n = |p|,
then J,(A) =r AM - Similarly, if f(n) is an index for usual Turing jump operator for
every n, then Jp(A) =p AW,

Notation 12.0.3 For uniformity in decoding, we use both X @Y and (X,Y) to denote
{0} x XU{1} xY". Simularly we code (Xo,...,Xn) and Xo®---®X, as U{{i}x X;li < pl.. .
This matches the definition of, e.g. ®neXn as | J{{n} x X, }|n € w} as in Notation 77,

12.1 Completeness Theorems for REA operators

We now prove the completeness theorem for pseudojump, i.e. 1-REA, operators along
the lines of the proof of the Friedberg completeness theorem (Theorem 5.3.T). Let us
recall the recursive (in a given C' > 0') procedure for that construction of a set A with
A’ =1 C. Tt proceeded by constructing finite approximations «a,, to A. At step n, it first
decided A'(n) by asking 0’ <r C'if there is an extension « of the approximation «,, that
forces ®%(n) to converge. If there is one, we let o be the first such. If not we let a be
a,. In either case we have decided the jump of A at n. Then we code C(n) into A by
setting o, 11 = a”C(n).

Here, in addition to replacing the Turing jump with an arbitrary pseudojump operator
J. we do the construction insi ¢ an C%%\égn tree T. (In this chapter trees are binary
function trees as in Definition JS.Z.I.% ['hat is, we construct a subtree S of T" by, at
each node, looking for an extension on 7" which decides the next value of J. on the path
being built in 7. We also code 7" into the path. The path S[C] in S (corresponding
to a given C' > () is then our desired inversion for J,, i.e. J.(S[C]) =r C. We also
make explicit the results of applying the operator J. to any path S[C] on the tree by a
labeling U assigning o (and so S(¢)) to a finite sequence U(o) which is intended to be
the initial segment of W that we have already decided for any C' D o. (The ﬁoga%%{
notion generalizing the labeling we do in this construction is giv rciorlln Definition T2.T.
below.) We make these additions to the simple proof of Theorem 5.3-T to lead up to our
versions of the completeness theorems first for n-REA operators and then w-REA ones.

Proposition 12.1.1 Given an index e € w and a tree T we construct a subtree S =
Se(T) of T and a labeling U = U (T) of S such that, for every set C

1. S,U <, T
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2. J.(S[C)) = S[Cl e U[C].

3. For each o, J.(S[C]) | |o] is the same for all C' D o.
4. J(SCh)eT=rCaT =r S[ClaT.

5. SeUaeT=rT.

Proof. Construction: We define S(0) and U(o) by recursion beginning with S()) =
T(0) and U(@) = (. Suppose we have defined them both for ¢ of length n > 0 with
S(o) =T(p). We define them at o"i (for i € {0,1}) as follows. Ask 7" if thereisa 7 D o
such that ®¢ " (n) |. If so let p be the first such extension found in a standard search
recursive in 7. (In this case, we have forced n € WA, or equivalently (1,n) € J.(A),
for any A € [T] with T'(p) C A or equivalently for A = T'[D] for any D D p). If not
let p = 7. (In this case, we have forced n ¢ WA, or equivalently (1,n) ¢ J.(A), for
any A € [T] extending T'(p).) We now set S(c"i) = T(p"T"(n)"i). In the first case (we
forced n € W4), we set U(c"i) = U(c)"1. In the second case (we forced n ¢ WA), we
set U(c™i) = U(0)"0.
Verifications:

1. Tt is clear from the construction that S and U are recursive in 7.

2. It is also clear from the construction that U,ccU(o) = U[C] = 21 Thus
J.(S[C]) = S[C] e U[C].

3. Indeed, by construction, U[C] = W “Vis determined up to |o| for all C' O o while
S[C] 1 |o| is, of course, determined for C' O o by o.

4. By (1), it is clear that for any set C, C & T" =r S[C] & T". By (1) and (2),

J.(SIC)eT <r CaT =r S[C]®T'. To see that J(S[C])®T >r C T,
we show, by induction on the length n of o, that we can determine the initial
segments o of C, the 7 such S(o) = T(7) and T'(n — 1). Suppose we have the o
of length n such that ¢ C C and 7 such that T(7) = S(o). We first ask J.(S[C])
for the value of W, (n). If it is 1 then we find (recursively in 7T') the first p O 7
such that eT(T)(n) l. If not, we let p = 7. In either case, the construction makes
S(e™i) =T(p"T'(n)"i).
Now for j = 0 and j = 1 the strings T'(p"j) are incompatible and so exactly one is
an initial segment of S[C]. Thus S[C] & T can determine which one is contained
in S[C] and so the value of 7"(n). Next, we can, in the same way, determine the
i such that T'(p"T"(n)"i) = S(0"i) is an initial segment of S[C] and so ¢"i C C.
The corresponding node on 7' is p"T"(n)"i. This completes the induction and our
proof of the Proposition.

5. One direction of the equivalence is (1) above. For the other, combine (2) and (4)
with C' = ().
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This completes the proof of the Proposition. m

Theorem 12.1.2 (Completeness Theorem for 1-REA operators) If C >1 0 and
e € w, then there is an A such that J.(A) =7 C =r A® 0.

L. treelcom . . .
Proof. In Proposition T2.1.1, let 7' = I, the identity tree (T'(0) = ), and congider the
corresponding tree S and labeling U. As [ is recursive and C' >7 0, Proposition [12.T.1 &]

says that J.(S[C]) =r C =r S[C] ® 0 so A = S[C] is as required in the Theorem. =

Exercise 12.1.3 For a tree T define IFr so as to make our informal usage of forcing
and deciding formulas on T agree with our usual definitions of forcing. Hint: There are
several possibilities. One takes the conditions to be pairs (o, T(c)) for o € 2<“ with the
valuation given by projection on the second coordinate.

. . . . L treelcom
Exercise 12.1.4 Prove that with the notation as in Proposition I2.1.1, S& T =1 T".

We now wish to extend the completeness theorem to n-REA operators and then to
w-REA operators. The idea of taking the result one more step from the S, (7") and U(T)
provided in Proposition [12.T.T for J, to something similar for J,, o .J, is to thin out U.(7T)
so as to decide J., applied to paths on U.(T") as we decided .J, on T" before. This then
induces a subtree S, .(T") of S.(T") and a labeling U.,,.(T) of it satisfying the analogous
properties for paths on S,.(7") that the previous theorem produced for ones on S.(7).
We first give a general definition of labelings and then state a general proposition for
working relative to a given tree 1" and labeling V.

Definition 12.1.5 An n-labeling of a tree T is a function V : 2<% — (2<)"*1 gych that
for every o, the first coordinate of V(o) which we denote, as usual by V(o)g, is T(o0)
and, for every o C 1, V(o) C V(1) by which we mean that V(1) extends V(o) in each
coordinate, i.e. for each i < n, V(c); C V(7);. (There is an obvious identification of a
tree T' and a 1—labeling of T' by the identity function, i.e. V(o) = (T(0)).)

e For an n-labeling V and C € 2N, V[C] denotes the (n + 1)-tuple of sets (V|[C];)
where V[C]; = UyecV (0);.

o IfV is an n-labeling of a tree T and U an m-labeling of a tree S for m > n, we say
that (S,U) extends (T,V), (S,U) C(T,V), if S C T and, for every o and T such
that S(o) =T(7), U(o ) = V(7); for every i < n. So, in particular, if S|C| = T|D]
then VD] = (U[Clili < n).

Notation 12.1.6 Recall Definition %7’3 of full subtrees of T' above o: Fu(T,o)(T) =

T(o" 7). We extend this in the obvious way to n-labelings V of T: Fu(V,o)(1) =V (o°T))

to get the natural n-labeling of Fu(T,o). We denote the pair (Fu(T,o), Fu(V,o)) by

Fu((T,V),0).
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The idea behind the definition of n-labelings is that, given an index p for an n-REA
operator, we are expecting to build a tree T" with an n-labeling V' such that for every set
C, V[C] = J,(T[C]) by making V[C]o = T[C] and V[C;q = W\ V7= for i < n. The
tree and labeling are to be designed so that, for every C' >¢ 00", V[C] =¢ C and so our
desired inversion of J, is V[C]y = T[C]. Before stating and proving the Proposition that
provides the inductive step of this argument we point out some simple but useful facts

about the relation between trees and paths on them.

Proposition 12.1.7 Let e € w and V be an n-labeling of a tree T and X =T & V.
There is then an extension (S,U) of (T, V) with U an (n+ 1)-labeling of S such that, for
any sets C' and D with S|C| = T[D]

1. S,U <r X".
2. J.(VID]) = U[C].

3. J.(VID]) | |o| = U[C] | |o| is the same for all C D o (and all D D 7 where
T(r) = 5(a)).

4 J(VID)eX=rCaX
5. U X =7 X'.

treelcom
Proof. The construction and verifications are similar to those of Proposition &TH_E
Construction: We begin with S(0) = 7'(0) and U(0) = V()" (0). Suppose we have
defined S(¢) and U(o) for o of length m. We ask V' < X' if there is a p O o such
that Y ¥ )(m) | . If so, we choose (recursively in V' < X) the first such p. If not we let
p = 0. We now set S(c"i) = T(p"X'(m)"i) and U(c"i) = V(p X' (m) )" (U(0)ns1"1)
in the first case and U(c"i) = V(p"X'(m)"i)" (U(0)n+1"0) in the second.
Verifications: Consider any sets C' and D such that S[C] = T'[D].

treelcom
1. As in Proposition T2.1.1, 1Tis clear from the construction that S, U < X'.

2. Tt is again clear from the construction that Wo ¥ = U [Clp41 and so J.(V[D]) =
UlC].

3. The actual step by step analysis for the previous conclusion shows again that
J.(V[D]) | |o| = U[C] | |o| is decided by each o and so is the same for all C' D o
(and all D D 7 where T'(1) = S(0)).

4. That J.(V[D])® X <7 C @ X' follows from (1) and (2). For the other direction, we
verify that J.(V[D]) & X >y C & X' essentially as before. We show, by induction
on the length m of o, that we can determine the initial segments o of C, the 7 such
S(o) =T(r) and X'(m — 1). Suppose we have the o of length m such that ¢ C C

and 7 such that 7'(7) = S(o). We first ask J.(V[D]) for the value of WP (m). If it
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is 1 then we find (recursively in V <7 X) the first p D 7 such that that &, (e) (n) |.
If not, we let p = 7. In either case, the construction makes S(c"i) = T(p" X'(n) 7).

Now for j = 0 and j = 1 the strings T'(p"j) are incompatible and so exactly one
is an initial segment of T[D] = S[C]. Thus S[C] @ T can determine which one
is contained in S[C] and so the value of X’(m). Next, we can, in the same way,
determine the i such that T'(p" X'(n) i) = S(c"i) is an initial segment of S[C] and
so 0”1 C C and the corresponding node on 7" is p"X’(n)"i. This completes the
induction and our proof of (4).

5. That U <¢ X’ is (1). Let D be such that V[D] = U[] <r U. Now apply (2) and
(4) to see that U[)] & X > X'.

This completes the proof of this Proposition. m

Remark 12.1.8 The proof of Proposition [12.1.7 shows that its conclusions hold with all
possible uniformities. To specify some of them precisely, we note that there are recursive
functions g, h, k,k,l such that for every e € w and every tree T" with n-labeling V and
X=TaV.

1. dX = S, (X), (I)})f(/e) = U.(X) which is an (n + 1)-labeling of the tree S.(X) and

g(e)

(Se(X), U (X)) is an extension of (T, V).

2. For every sets C' and D with S.(X)[C]| = T[D], J.(V[D]) = U.(X)[C], QDZ?S/[DD@X =
C® X' and ¢g(f)x’ = J.(V[D]) @& X.

3. Given o, the value of J.(S.(X)[C])(z) = U.(X)(z) for any z < |o| is the same for
all C O o and is given by &X' (z,0).

Z/{e(X)@X _ /
4. BULOX _ xr,

t 1
Also note that the trees S and U of Proposition 17.1.17 are Just the Se(X) and (U, (X)),
of this Proposition with V ="T.

indforcom
We now prove a version of Proposition [12.1.7 for n-REA operators by induction using

‘Icllégr’rcl ll?ggposition as the inductive step along with the uniformities provided by Remark

reenreacomp | Proposition 12.1.9 For any n-REA operator J,, and tree T' there is a tree T,, with an
n-labeling V,, with the following properties:

1. Both T,, and V,, are, given p, uniformly recursive in T,

2. For every set C, C & T™W =1 T,[C] ® T™ =1 J,(T,[C]) ® T = V,[C] ® T with all
the reductions given uniformly.
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3. For each o and x < |o|, the value of J,(T,[C]) = V,[C] at x is the same for all
CDo.

4. Vo T = TM,

Proof. Let J, be an n-REA operator with p = (mg,mq,...,m,_1). We define by
induction trees T; with i-labelings V; for i < n. We let Vj =Ty = T. Given T; and V; we
set X; =T, 80 V;. Let T;11 = S, (X;) and Vg = Uy, (X). We claim that T,, and V,, are
as required in the Proposition.

Let C, = C and let C; for i < n be such that T;,1[C;+1] = T;[C;]. Note that as
Ty = Vo, T,[Cn] = To[Co] = Vo[Ch).

indf
1. It is immediate from Proposition 12, lo7ri lomj that T; and V; are uniformly recursive
in : T @) b¥ induction with the desired uniformity (relative to u [ i) given by Remark
2.1 )8( []. Here, we just need the case i = n.

indforcom

2. By (1), C @ T™ =4 T,[C] @ T™. By Proposition h’ZTT(QZ)'%nd induction on i
we see that J,;;(To[Co]) = J,ui(Ti[Ci]) = V;[Ci] and so, in particular, J,(T,[C]) =
ValCh] = V4[C]. Finally,, (4) of this Proposition (proved independently below)
together with Proposition h’Z._I_.T(gZ“)_%nd (4) show by induction that J,;41(T;[Cs]) @
T = VlH[CZ“] @ T =7 Cipy @ T and so (for i = n — 1), V,[C,] @ T =r
C,®T™ =C®T™ as required.

3. Let.o = oy and choose o; such that T;(o;) = T,(0,). Applying Proposition
inductively (and the fact established in (2) here that J,;;(75[Co]) =

JW(Ti[CZ-]) = V;[C;]) we see that V;[Ci] | |o;] is the same for all C' D o;. Again the
case that 1 = n is what we require here.

df
4. That V; & T =7 T® follows immediately from Proposition 1I 7 Io?rl %SOmi E) induction.

The uniformities desired here hold for all the T; and V; (given as indices relative to
T®) by induction using those in Remark 1518, B

Tre;IFl}rlEe}agompleteness theorem for n-REA operators is now a special case of Proposition

]L;{d'foyr'co% hie one for w-REA operators is given by another induction using Proposition

2.1.7 dlrectly

Theorem 12.1.10 (Completeness Theorem for n-REA operators) If J is an n-
REA operator and C > 0, then there is an A such that J(A) =r C =p A @ 0™

t p
Proof. Let T'=1 tirréelz%“o%(%s%tion 519, Thus 70V =7 0 and T,,[C] is the desired set
A .

A by Proposition

negareacomp| Theorem 12.1.11 (Completeness Theorem for w-REA operators) If J is an w-
REA operator and C > 0%), then there is an A such that C =r A 0« =1 J(A).
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Proof. Construction: Let J = J; be an w-REA operator and C' > 0«). We construct
a sequence of trees T; with i-labelings V; such that (7}, Vi.1) extends (T}, V;) so that
UT;(0) is our desired A. We begin with Ty = Vi = I. Suppose we have (T;,V;). We code
in the next number in C' by moving first to F u((Ty,V;), C(i)). We next apply Proposition
5 50 This pair for Jyq;) to get (Tiy1, Viy1). We now let A = UT;(0).

Verifications: Note that A is on every T; and choose C; such that T;[C;] = /:an d\%\é(% com
also point out that C;(0) = C(i) as by the construction here and in Proposition h2T7_E
AD Tia(0) = T5(0) = T,(C(3)).
in deongcgllgw prove various fac@ about th(? cons.t?uctlon p.rlma?lly by appl%rgg lfl’lllrgposmon
[2.1.7 mductlvely and exploiting the uniformities described in Remark T2.T.8.

1. We begin working toward the first equivalence of the Theorem. We want to show
that 7} and Vj are recursive in 0) with indices given uniformly in each of A@0®) and
C: We begin with Ty = Vi = I. Suppose we have (7}, V;) with indices computed
as required from C and A @ 0“). The next step in the construction is to form
Ti and Vl It is clear from the construction that indices for them relative to 0
can be computed from C (indeed we only need C(i)). To see that A @ 0“) also
suffices, note that T;(0) and 7;(1) are incompatible extensions of T;(()) which are
computable from 0% and then A can decide which of them is an initial segment %g
A and so co grgeuin(%ices for T, and V; relative to 0). Now Proposition T2.1.
and RemarkI%%TF%(EIL)'tell us that we can recursively compute indices for T;,; and
Vii1 from 00D from the ones for 7; and V; from 0@ and f (i) while f is a fixed
recursive function.

The uniform computation of these indices from C shows that A = UT;(0) <r C as
0« <, C. On the other hand, the uniform computations from A & 0©) show that
T; (and V;) are uniformly computable from A @ 0&). So too then are the C;. As
C(i) = C;(0), C < A® 0 for the first of the two Turing equivalences asserted
by the Theorem.

indforcom
2. We next note that applying Proposition h’ZTT(QZT%nductively starting with A =
To[Co] = Vo[Co] shows us that Jr;(A) = V;[C;] for i > 1. By (1) here we have that V;
and T; and hence C; are uniformly recursive in A@0®) as, then are J;;(A) = V;[Cj].
Thus J;(A) <r A @ 0« for one direction of the second Turing equivalence of the
Theorem.

indf L
3. Finally, as by (2) and Proposition T ] :(A) = VIC] =r C; @00, 00 <r
Jf1i(A). The required uniformity follows from Remark 191 .)8( 3 ). Thus A® 0w <;
Jr(A).

This completes the proof of the w-REA completeness theorem. m

omegareacom
Exercise 12.1.12 Prove a tree version of Theorem [TZ. % 11, i.e. given an w-REA oper-
ator J build a tree T such that, for every set C >5 0, T[C] has the properties required
of A in the Theorem.



reop

12.2. RE OPERATORS AND MINIMAL COVERS 171

Exercise 12.1.13 The previous exercise allows extending the completeness theorem into
the transfinite. Formulate the definition and completeness theorem for w + 1-REA oper-
ators and prove the theorem.

12.2 RE Operators and Minimal Covers

In this section, we generalize the n-r.e. and w-r.e. sets of Definitions 77 and 1312 to
corresponding operators. We then show that these operators are, up to degree, all n-REA
and w-REA operators, respectively. As a corollary, we conclude that every degree above
0“) is a minimal cover.

Definition 12.2.1 An operator J : 2% — 2N is an n-r.e. operator if there is an index
e € w such that for every A € 2N, ®’N(x, s) is total; for every x, ®2(x,0) = 0 and there are
at most n numbers s such that ®2(z,s) # ®X(x,s+1) and and ASlim, 2 (z,s) = J(A).
The operator J is w-r.e. if, instead of ®2(x,s) changing at most n times for each x, there
is a recursive function g such that, for every x, there are at most g(x) many numbers s
such that ®(x,s) # ®4(z,s +1).

Exercise 12.2.2 Up to degree, the 1-REA and 1-r.e. operators are the same, i.e. for
each 1-REA operator J there is a 1-r.e. operator J such that J(A) =¢ J(A) for every A
vice versa. Indeed this result is uniform in the indices. For n > 1, however, there are
n-REA operators which are not n-r.e. ones even up to degree.

For future notational simplifications, we note that, up to degree, the function ¢ in the
definition of w-r.e. operators can be taken to be the identity function.

Proposition 12.2.3 ForAevery w-r.e. operator J with witness a recursive g there is (uni-
formly in the indices for J and g ) another one J with the identity function as its witness
such that, for every A € w, J(A) =r J(A).

Proof. Clearly we may assume that g is increasing by replacing it with n —— ¥;<,g(n).
Suppose now that J is determined by index é. We define J with index e such that, for
every A,z and s, ®?(z,s) = 0 for x € [0,¢(0)) and for i > 0 and = € [g(i),g(i + 1),
®A(x,5) = ®2(i,s). As ®L(i,s) changes at most g(i) many times, it is clear that ®*(x, s)
changes at most z many times for each = as required for J to be w-r.e. It is also clear
that for = > g(0), J(A)((1,z)) = lim, ®(z, s) = lim, ®2(i,s) = J((1,)) where is i such
that = € [g(i),g(i + 1)). As g is recursive, J(A) =¢ J(A) as well. (As J(A)(z) = 0
for = < ¢(0), it is also clear that the reductions between the two operators are given
uniformly in the indices for J and g.) m

As we are only interested in w-r.e. operators up to degree, we assume from now on
that the witness function g required in the definition is always the identity function.
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Theorem 12.2.4 For every n-r.e. or w-r.e. operator J there is an n-REA or w-REA
one J, respectively, such that, for every A € 2V, J (A) =7 J(A) and indeed the indices for
the REA operator and the required Turing reductions can be found (uniformly) recursively
in the ones for the r.e. operator. Moreover, in the n-r.e. case we have (1,x) € j(A) &
(n, (x,0)) ¢ J(A) and in the w-r.e. case we have (1,z) € J(A) & (x,(x,0)) ¢ J5.(A)
where f is as in the definition of an w-REA operator. (Of course, (0,x) € j(A) S €
A& (0,x) € J(A).)

Proof. Suppose J is an n-r.e. operator with index é. For i < n, We define operators E;:

E;(A) = {{(z, s) | the approximation ®4(z,t) has changed from its previous value for
the (n — i — 1)th time at s and ®4(z, s) # J(A4)(x)}.

It is clear that, for each i, F;(A) <7 J(A) (uniformly) as A = J(A)® by definition.

We next claim that, for i < n, E;(A) is (uniformly) r.e. in E;_;(A) (where E_;(A) =
A). For i = 0, note that as ®(z,t) changes at most n times, (z,s) € Ey(A) < the
approximation ®4(xz,t) has changed from its previous value for the (n — 1)th time at s
& Fu > s(®A(z,u) # ®(x,s)). For 0 < i < n, proceed by induction and note that
(x,s) € E; < the approximation ®’'(x,t) has changed from its previous value for the
(n — i — 1)th time at s & (3u > s)(the approximation ®*(x,t) has changed from its
previous value for the (n — i)th time at v and (z,u) ¢ F;_1).

Thus there is an n-REA operator J, where we define (i) for i < n by induction
starting with Jy,0)(A) = A ® E,_1(A) and progressing by making J,)(Jui(4)) =
Jui(A) @ En_i—1(A). All that remains is to show that j(A) <r Ju(A). In fact,
e J(A) & (2,0) ¢ EA | as ®X(z,0) = 0 and 0 is the n — (n — 1) — 1(= 0)th time
@2 (x, s) has changed for every . Thus z € J(A) & ((z,0),n) ¢ J,(A).

It is clear that all the required indices for the operators and Turing reductions are
given uniformly in é by this construction and the proof of its correctness.

Now let J be an w-r.e. operator with index é. We can now preform essentially the
same procedure for all n. Let E;(A) = {(n,s) | the approximation ®2(n,t) has changed
from its previous value for the (n—i— 1)th time at s and ®(n, s) # J(A)(n)}. The same
arguments as above show that for i >0, E;iy1(A) is uniformly r.e. in E;(A) and recursive
in.J(A Moreoveﬁ_f}_ézo (n,0) ¢ E,(A). Thus we may define an w-REA operator
J as in Definition 1 glven by the recursive f such that Jy)(A) = A® Ey(A) and for
n >0, Jimy(Jn(A) = Jpim ® En(A). The arguments above show that J(A) =¢ J(A)
and, moreover, = € J(A) < (a:, (x,0)) ¢ Jf1u(A) for every A and z, as required. =

Corollary 12.2.5 FEvery ¢ >1 0“) is minimal cover.

Proof. Asnoted at the beginning of this Chapter, there is an w-r.e. operator M such that
for every A, M(A) is a mgé]é%%ln cover of A, (This follows £ I;Eno fhe uniformities present

in the proofs of Theorem orollary [77 and Exercise . Theorem T3.2.4 says
that, up to degree, there is an - REA operator J which also produces minimal covers for
every A. Theorem [t o provides, for any given C' >, 0&), an A for whose degree

that of C'is a minimal cover.??More details here or when do Sacks minimal cover?? m
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12.3 The Join Theorem for w-r.e. Operators

We begin wi I}% etﬂee ;oin theorem for 1-REA operators (or equivalently for 1-r.e. operators
by Exercise 12.2.2)] which will serve as the basic model for our proof of the analogous
theorem for w-r.e. operators.

Theorem 12.3.1 For every 1-REA operator J. and nonrecursive set X, there is a set
A such that J.(A) =r X &0 =r A X.

Proof. As in Theorem F"%, we may assume that X has no infinite r.e. subsets. (Replace
X by the set of all binary strings ¢ such that ¢ C X. Any infinite r.e. subset contains
an infinite recursive subset which would then compute X for a contradiction.)

We now define initial segments v, of our desired set A by recursion using Z = X ¢0'.
Assume we have defined «,. Consider the set C,, = {m|(3I7 D «,,"0™"1)(®7(0) |}. This
set is r.e. and so, if infinite, contains an m ¢ X. If it is finite, there is certainly an
m € X with m ¢ C,,. Recursively in Z we can thus search for and find an m such that
meC, < m¢X. If me C, let 7 be the first extension of ,,"0™"1 such that ®7(0) |.
If m ¢ C,, let T be a;,,"0™" 1. In either case, set a1 = 7°Z(n). Thus («,) <r Z and
so A and A® X are also computable from Z. As we also decided if n € WA at step n (if
and only if ®2n+1(n) |), J.(A) <r Z.

We now prove that the sequence «,, can be computed from each of J.(A) and A @ X.
Suppose we have «,. As A <p J(A),A® X, we can find m such that «, 0™ 1 C A.
Now each of X and J.(A) can tell us if there is a 7 O «,"0™"1 such that ®7(n) |
(&m ¢ X & (1,n) € J.(A)). Given this information we can recursively find the
T 2D a, 0™"1 used at this point of the construction such that 7 € A. We then know that
Qi1 = 7" Z(n) and, of course, A (and hence J.(A) and A @ X) can compute this final
digit in av,41. Thus each of J.(A), A @ X can compute o, as required. As Z(n) is the
last digit of a;, 41, both J.(A) and A& X compute Z. =

Corollary 12.3.2 (Posner-Robinson join theorem) If 0 <p X < 0’ then there is
an A such that 0 =r A= A® X.

Proof. Take J, to be the jump operator in the Theorem. =

Exercise 12.3.3 Prove that for every e € w, nonrecursive X and C' >r X &', there is
an A such that J.(A) =r C=r A® X.

We now wish to combine the plan of the proof of Theorem 12.3.1 with the construc-
treenreacom

tions in Proposition T2.T.9.

Theorem 12.3.4 (Join Theorem for w-r.e. Operators) If J is an w-r.e. operator,
X & 0™ for every n and Z > 0“) @ X, then there is an A such that J(A) =p Z =r
AdX.
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Proof. As in Theorem i N , we may assume that X contains no infinite arithmetic
sets. As J is an w-r.e. operator, membership of n in J (A) is determined uniformly by
n-r.e. operators .J,(A) given by 2 (z,5) = ®(n, s) for every z so that Ju(A)((i,2)) =
J(A)((1,n)) for every x and 0 < i < n. By Theorem 1304 ; we (uniformly) have n-REA
operators .J, such that the J, (A) are uniformly of the same degree as J,(A). So the
J,., (A) are uniformly recursive in A and J(A)((1,n)) for every A. Also note that, as
rereao A

stated in Theorem ﬁIZ?f,E(l, n) € J(A) & (n,(n,0)) ¢ J, (A) for every n and A.

Let so = 0 and s, = S, (i + 1) = 3n(n + 1) for n > 0.

Construction. Recursively in Z we build a nested sequence of trees 7;, such that
A = UT,,(0) will be our desired set. We begin with Ty = I. Suppose we have T;, <7 0(»),
Let Ty, = Fu(T,, Z(n)"0™"1) which is also recursive in 0©*») with index computed from

%hat of T unlformly in Z(n) and m. L%cr é%ﬁ% bg the result of applying Proposition

reenrea il
5 nm and J, . By Proposition m <r (06 = Qlsnt1) < 7

treenr com

Let k: = < (n O>> + 1 and T}, = Fu(Smm,Ok") <7 0G»+1), By Proposition )
I, (Tyym (n, 00)) = Jf(Tnm )({1,n) is the same for all C' D 0*. Let this value
be jnm By Remark FEZT%% Jnm can be computed uniformly in 0¢»+1) and m. Thus by
our assumption on X, there is an m such that j,,, = 1 < m ¢ X. We choose such an
m and let T},,1 be Tnm

Verifications: Clearly the 7,, are nested and A is a path on each of them. As the
whole construction is recursive in Z, A <r Z and so A ® X <¢ Z. As the construction
also shows that j(A) (n) i8 jn.m for the m such that 7,1 = TAmm, we see that j(A) <rZ
as well.

For the other directions, we show by induction that Z(n), T, and the indices for the
reductions required to show that T, =¢ 00" =, Fu(T,, o) are uniformly recursive in
o and each of J(A) and A ® X. If we know that T, < J(A),A @ X, then using the
fact that A lies on T,, we can determine the j and m such that 7,,(;°0™"1) is an initial
segment of A. This determines Z(n) = j and the m such that Tnm =T,11. Forn =0,
Ty = I and sy = 0 so both T, and 0¢) are recursive. Thus we only have to show that
given that we have computed Z(n), m, T, and the reductions showing (given o) that
T, =7 0% =¢ Fu(T,, o) both j(A) and A ® X can compute Tnm and the reductions
showing (given 7) that it is of the same degree as 00+ and Fu(T},,,, 7). With what
we are assuming, we certainly have computed T, ,, = Fu(T,,, Z(n) 0™ 1) =¢ 067) and
SO Tnm = Fulgsnm, 0k HP <7 Spm <r (062 = O(S”“) with the last reduction given by
Proposition hZTQ'(QF)_NEOW we already know that J, ( nm W) is (unif(%rmly) recursive in
T [W] and J (T}, [W])(1) = jnm for every W. Thus by Proposition 510 C,omn,m[W]
@jnm @ 0lsn) _computes (OS")(”) = 00n+1) uniformly for every W. If we take W = 0,
Tnm[W] <r Tnm and so 7 nom =T 00nt1) ag required. For the uniformity needed in our
induction, note that A € [1},,,] and both J(A) and A @ X have comnrl)uted A and jpum
uniformly and so compute 0¢»+1) uniformly by Proposmon

Thus we have the required computations of Z(n) and Tn,m =Thi1 =7 00n+1) from
each of J(A) and A® X. m
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12.4 The Definability of A and the Failure of Homo-
geneity

jierarch
By Theorem H’?,_t‘lﬁs%ts definable in arithmetic are precisely those recursive in 00 for
some n. We now give a first order definition in D of the class A of the degrees of these
sets. We th n use this definability result to produce faihf}ge% c%f.’glée both the Homogeneity
Conjecture % 7and its elementary equivalence version ([77).

Theorem 12.4.1 The class A of Turing degrees is definable in D. Indeed,

A ={y|(Fx > y)(Yw)(w V x is not a minimal cover of w)}.

Proof. Let C = {y[(3x > ¥)(Yw)(w V x is not a minimal cover of w)}. That C € A
follows from Theorem%ﬂ and x >y then, of course, x ¢.A. Let w be the
degree of the A of Theorem [[2.3.2 applied to X € x and Z = X @ 0“) and J the w-r.e.
operator such that J(A) is a minimal cover of A for every A. By the theorem, w V x is
the degree of J(A) and so a minimal cover of w = deg(A). Thus y ¢C as required.

For the other direction, consider any y €A. There is then an n such that y <y 0™
(which will serve as the x required in the definition). So it suffices to show that w Vv 0™
is not a minimal cover of w for any w and n. Fix w and proceed by induction on n.
Clearly w V 0 is not a minimal cover of w. Suppose that there is a least n > 0 such that
w V 0™ is a minimal cover of of w. By the minimality of n, w vV 0"~V ¢ [w,w Vv 0] is
not a minimal cover of w. Thus w V 0"~ = w. Now note that 0" 1'§e£.§kieilgl 0"=1 and

so also in w = w V 0"™1) . We now have a contradiction to Corollary 8.2.8 relativized to
w as it shows that no non Lecursive r.e. degree is minimal. =

Relativizing Theorem T2.4.Tto an arbitrary. degree x gives the definability of the
relation x is arithmetic in y (Deﬁnition%%m <7 y™ for some n.

Corollary 12.4.2 For every c, the class A® = {y > c|(Ix > y)(¥w > c)(w V X is not a
minimal cover of z)} is the class of degrees arithmetic in and above c. Thus the relation
x <.y, X s arithmetic in 'y, is definable in D.

Proof. The first assertion is just the relativization of the Theorem to c¢. Now clearly
x <,y < Ju(u €AY & x < u) which, as a relation on x and y, is definable by the first
assertion. m

Theorem 12.4.3 The homogeneity conjecture fails. Indeed, for any degrees u and v, if
D(>u) ZD(>v) thenu =,v.

Proof. Suppose u is not a g%]%glllgtic in v and choose a set U € u not arithmetic in
any V € v. As in Definition 77 Tet Ly be an effective successor structure generated by
finitely many elements with two additional elements ¢q, ¢; such that n € U < d,, < go, ¢1.
Note that it is clear from its definition that U is arithmetic in the any presentation
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of Ly as a partial lattice. Now as Ly is recursive in U, Theorem %TBT?WyS that we
can embed it (as a partial la‘&%ifggijcrﬁillu,u”} and so in A", the degrees arithmetic in
and above u. By Corollary m is precisely the class of degrees y such that
D(> u) F (Ix > y)(Vw)(w V x is not a minimal cover of w). If D(> u) and D(> v)
were isomorphic, then the isomorphism must take A" to AY because they have a common
definition. Thus Ly would also be embeddable in AY. This image is then arithmetic in
the image of the generators and so arithmetic in V' for the desired contradiction. The
argument that v is arithmetic in u is symmetric. =

While this Theorem shows that the homogeneity conjecture fails in the sense that

there is a ¢ ('e.g. 0)) such that D. is not isomorph'ic to D(> c) Lt %og% Agt supply an
elementary difference. We can provide one by by using Theorem 735,

Theorem 12.4.4 D # D(> 0“), i.e. there is a sentence ¢ in the language of partial
orderings such that D(> 0“)) E ¢ but D F —p.

Proof. As A and A are defined in D and D(> 0“)) by the same formula (Cor%]&alrlg ideal
&H%)ﬁt’sufﬁces to show that they are not elementarily equivalent. By Theorem [7.275,
it then suffices to show that the structures M and N of second order arithmetic with
set quantifiers ranging over the sets with degrees in A and Ao(u), respectively, are not
elementarily equivalent. This follows from the implicit definability of 0“): There is a
formula (X)) of first order arithmetic with one free set variable X such that the only
set X satisfying it is 0). Thus N F 3X(X) but M ¥ 3X(X). as required.

Thus we only need to specify 1(X). It says that X = @ and ¥n(XI+1 = (XM),
As we can define Z’ in arithmetic uniformly in Z, this formula is clearly equivalent to an
arithmetic one with parameter X as required. m

othomee
Remark 12.4.5 The proof of Theorem E?Mhows that A £ AO” . This theorem
does not relativize. Indeed, by Borel determinacy (a theorem of ZFC) there is a ¢ such
that (Vd > c)(A® = A9Y). Projective determinacy implies that there is a ¢ such that
(Vd > ¢)(D(> ¢) = D(> d)). Explanations.

12.5 The Join Theorem for REA operators
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Global Results

homogeneity, definability, automorphisms

177



178 CHAPTER 13. GLOBAL RESULTS



Chapter 14

Defining the Turing Jump
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Chapter 15

Appendices

15.1 Trees, Cantor and Baire space; topology; per-
fect sets

trees of sequences from alphabet (formally identify with subset of N)
binary trees, n-ary trees, finitely branching, f-branching
paths
Cantor space, Baire space
topology, open, closed, perfect sets
perfect trees
function trees
size of continuum Cantor’s theorem, |28| = [NY| = |[T]| for any perfect binary tree.

To text: A nonrecursive construction in mathematics. WKL 0 trees, paths, tree s.t.
any path is DNR. forward ref to recursively inseparable sets. completions of PA.

15.2 Structures, Orders and Lattices

structure, structure recursive if
p.o., linear, well
lattice, sublattice, usl, Isl, susl, sls
distributive
Boolean algebras
universality issues Q as example back and forth
locally finite?
partial lattices??
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-pretations] 15.3 Interpreting Structures and Theories

first and second order logic
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