# 前情提要

# 前情提要

前束范式定理

证明的难点:对公式中所含量词个数归纳

## 前情提要

#### 一阶逻辑的语义

- 语言 £ 中参数符号的语义——£ 结构
- 自由变元的语义——赋值 s: V → |X|
- 项的语义——由  $\mathfrak{A}$  和 s 唯一决定的  $\bar{s}: T_{\mathcal{L}} \to |\mathfrak{A}|$
- 公式的语义——满足关系

# 一阶逻辑的语义(续)

#### 定义 (语义蕴含)

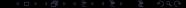
给定语言  $\mathcal{L}$ 。称公式集  $\Gamma$  逻辑蕴含(logically imply) $\varphi$ ,记  $\Gamma \models \varphi$ ,当且仅当对任意  $\mathcal{L}$ -结构  $\mathfrak{A}$  和每个  $\mathfrak{A}$  赋值 s 都有,如果  $\mathfrak{A}$  和 s 满足  $\Gamma$  中所有公式,那么  $\mathfrak{A}$  和 s 也满足  $\varphi$ 

- 以后 = 依语境主要表示满足关系和逻辑蕴涵关系
- $\blacksquare \alpha \models \beta$  即  $\{\alpha\} \models \beta$  ;  $\alpha \models \exists \beta$  (逻辑等效)
- ⊨ α 即 ∅ ⊨ α (逻辑有效)

#### 定义 (语义蕴含)

给定语言  $\mathcal{L}$ 。称公式集  $\Gamma$  逻辑蕴含(logically imply) $\varphi$ ,记  $\Gamma \models \varphi$ ,当且仅当对任意  $\mathcal{L}$ -结构  $\mathfrak{A}$  和每个  $\mathfrak{A}$  赋值 s 都有,如果  $\mathfrak{A}$  和 s 满足  $\Gamma$  中所有公式,那么  $\mathfrak{A}$  和 s 也满足  $\varphi$  约定

- 以后 = 依语境主要表示满足关系和逻辑蕴涵关系
- α ⊨ β 即 {α} ⊨ β ; α ⊨ ∃ β (逻辑等效)
- $\models \alpha$  即  $\emptyset \models \alpha$  (逻辑有效)



#### 引理(合同引理)

给定语言  $\mathcal{L}$ 、 $\mathcal{L}$ -结构  $\mathfrak{A}$ 。任给  $\mathfrak{A}$  赋值  $s_1, s_2$ 。如果它们关于在公式  $\varphi$  中自由出现的变元的赋值相同,那么  $(\mathfrak{A}, s_1) \models \varphi$  当且仅当  $(\mathfrak{A}, s_2) \models \varphi$ 

Proof.

对公式  $\varphi$  归纳

#### 引理(合同引理)

给定语言  $\mathcal{L}$ 、 $\mathcal{L}$ -结构  $\mathfrak{A}$ 。任给  $\mathfrak{A}$  赋值  $s_1, s_2$ 。如果它们关于在公式  $\varphi$  中自由出现的变元的赋值相同,那么  $(\mathfrak{A}, s_1) \models \varphi$  当且仅当  $(\mathfrak{A}, s_2) \models \varphi$ 

Proof.

对公式  $\varphi$  归纳

#### 约定:

- 我们用  $\varphi(x_1,...,x_n)$  表示公式  $\varphi$  且预设  $\varphi$  中自由出现的变元至多有  $x_1,...,x_n$
- 对  $\varphi(x_1, \ldots x_n)$  , 我们用  $\mathfrak{U} \models \varphi[d_1, \ldots, d_n]$  表示  $(\mathfrak{U}, s) \models \varphi$  , 其中  $s(x_i) = d_i$  (  $1 \le i \le n$  )

#### 约定:

- 我们用  $\varphi(x_1,...,x_n)$  表示公式  $\varphi$  且预设  $\varphi$  中自由出现的变元至多有  $x_1,...,x_n$
- 对  $\varphi(x_1, \ldots x_n)$  , 我们用  $\mathfrak{A} \models \varphi[d_1, \ldots, d_n]$  表示  $(\mathfrak{A}, s) \models \varphi$  , 其中  $s(x_i) = d_i$  (  $1 \le i \le n$  )

#### 推论

给定语言  $\mathcal{L}$ 、 $\mathcal{L}$ -结构  $\mathfrak{A}$ 。给定语言对任何闭语句  $\sigma$ ,或者

- (1) 对所有 ¾ 赋值 s 都有 , (¾, s) ⊧ σ ; 或者
- (2) 对所有 ¼ 赋值 s 都有 , (¾, s) ⊭ σ

#### 定义(真)

给定语言  $\mathcal{L}$ 、 $\mathcal{L}$ -结构、 $\mathfrak{L}$  中闭语句  $\sigma$ 。我们称  $\sigma$  在  $\mathfrak{U}$  中为  $\mathbf{q}$  ,记  $\mathfrak{U} \models \sigma$  ,当且仅当 (1) 成立

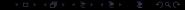
#### 推论

给定语言  $\mathcal{L}$ 、 $\mathcal{L}$ -结构  $\mathfrak{A}$ 。给定语言对任何闭语句  $\sigma$ ,或者

- (1) 对所有 ¾ 赋值 s 都有 , (¾, s) ⊧ σ ; 或者
- (2) 对所有 ¼ 赋值 s 都有 , (¾, s) ⊭ σ

#### 定义(真)

给定语言  $\mathcal{L}$ 、 $\mathcal{L}$ -结构、 $\mathfrak{L}$  中闭语句  $\sigma$ 。我们称  $\sigma$  在  $\mathfrak{U}$  中为 真 , 记  $\mathfrak{U} \models \sigma$  , 当且仅当 (1) 成立



### 例

#### 证明或证否下列命题:

- $\forall v_1 Q v_1 \models Q v_1$
- $Qv_1 \models \forall v_1 Qv_1$

#### 例

#### 证明或证否下列命题:

- $\forall v_1 Q v_1 \models Q v_1$
- $Qv_1 \models \forall v_1 Qv_1$

# 可定义性

#### Berry paradox

"the smallest positive integer not definable in fewer than twelve words"

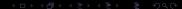
#### Berry paradox

"the smallest positive integer not definable in fewer than twelve words"

给定语言  $\mathcal{L}$  ,  $\mathcal{L}$  结构  $\mathfrak{A}$  以及  $\mathcal{L}$  中公式  $\varphi(x_1,\ldots,x_k)$  , 我们 称  $\varphi$  在结构  $\mathfrak{A}$  中定义了 k-元关系

$$\{(a_1,\ldots,a_k)\mid \mathfrak{A} \models \varphi[a_1,\ldots,a_k]\}$$

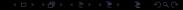
我们称一个 k-元关系  $R \subset |\mathfrak{A}|^k$  是  $\mathcal{L}$  结构  $\mathfrak{A}$  中可定义的, 当且仅当存在一个  $\mathcal{L}$  公式在结构  $\mathfrak{A}$  中定义它



给定语言  $\mathcal{L}$  ,  $\mathcal{L}$  结构  $\mathfrak{A}$  以及  $\mathcal{L}$  中公式  $\varphi(x_1,\ldots,x_k)$  , 我们 称  $\varphi$  在结构  $\mathfrak{A}$  中定义了 k-元关系

$$\{(a_1,\ldots,a_k)\mid \mathfrak{A} \models \varphi[a_1,\ldots,a_k]\}$$

我们称一个 k-元关系  $R \subset |\mathfrak{A}|^k$  是  $\mathcal{L}$  结构  $\mathfrak{A}$  中可定义的, 当且仅当存在一个  $\mathcal{L}$  公式在结构  $\mathfrak{A}$  中定义它

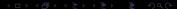


例

考虑只含有一个二元谓词符号的语言  $\mathcal{L} = \{R\}$  , 以及  $\mathcal{L}$  结构  $(\{a,b,c\},\{(a,b),(a,c)\})$  , 如图

$$b \leftarrow a \rightarrow c$$

{a, b, c} 的哪些子集是可定义的?哪些二元关系是可定义的?



例

考虑只含有一个二元谓词符号的语言  $\mathcal{L} = \{R\}$  , 以及  $\mathcal{L}$  结构  $(\{a,b,c\},\{(a,b),(a,c)\})$  , 如图

$$b \leftarrow a \rightarrow c$$

{a, b, c} 的哪些子集是可定义的?哪些二元关系是可定义的?



例

考虑只含有一个二元谓词符号的语言  $\mathcal{L} = \{R\}$  , 以及  $\mathcal{L}$  结构  $\big(\{a,b,c\},\{(a,b),(a,c)\}\big)$  , 如图

$$b \leftarrow a \rightarrow c$$

{a, b, c} 的哪些子集是可定义的?哪些二元关系是可定义的?

#### 例

考察关于数论的语言  $\mathcal{L} = \{0, S, +, \cdot\}$ 。令  $\mathcal{L}$  结构  $\mathfrak{A}$  的论域为自然数集  $\mathbb{N}$ ,其他的符号都按照自然的解释,则 <mark>序关系  $\{(m,n)\mid m < n\}$  在  $\mathfrak{A}$  中是可定义的。(为什么?)对每一个自然数 n,单点集  $\{n\}$  都是  $\mathfrak{A}$  中可定义的。(为什么?)所有素数的集合在  $\mathfrak{A}$  中是可定义的。(为什么?)</mark>

#### 例

考察关于数论的语言  $\mathcal{L} = \{0, S, +, \cdot\}$ 。令  $\mathcal{L}$  结构  $\mathfrak{U}$  的论域 为自然数集  $\mathbb{N}$  , 其他的符号都按照自然的解释 , 则  $\mathbf{p}$   $\mathbf{$ 

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の 9 で

例

考察关于数论的语言  $\mathcal{L} = \{0, S, +, \cdot\}$ 。令  $\mathcal{L}$  结构  $\mathfrak{A}$  的论域为自然数集  $\mathbb{N}$ ,其他的符号都按照自然的解释,则 <mark>序关系  $\{(m,n)\mid m < n\}$ </mark> 在  $\mathfrak{A}$  中是可定义的。(为什么?)对每一个自然数 n,单点集  $\{n\}$  都是  $\mathfrak{A}$  中可定义的。(为什么?)所有素数的集合在  $\mathfrak{A}$  中是可定义的。(为什么?)

例

考察关于数论的语言  $\mathcal{L} = \{0, S, +, \cdot\}$ 。令  $\mathcal{L}$  结构  $\mathfrak{U}$  的论域为自然数集  $\mathbb{N}$ ,其他的符号都按照自然的解释,则 **序关系**  $\{(m,n)\mid m < n\}$  在  $\mathfrak{U}$  中是可定义的。(为什么?)对每一个自然数 n,单点集  $\{n\}$  都是  $\mathfrak{U}$  中可定义的。(为什么?)所有素数的集合在  $\mathfrak{U}$  中是可定义的。(为什么?)

#### 例

考察关于数论的语言  $\mathcal{L} = \{0, S, +, \cdot\}$ 。令  $\mathcal{L}$  结构  $\mathfrak{A}$  的论域为自然数集  $\mathbb{N}$  , 其他的符号都按照自然的解释 , 则  $\mathbf{p}$   $\mathbf{f}$   $\mathbf{f$ 

#### 定义

给定语言  $\mathcal{L}$ 。 令  $\mathcal{L}$  是  $\mathcal{L}$  闭语句集。我们称

 $\mathsf{Mod}\, \Sigma = \big\{ \mathfrak{A} \ \big| \ \mathfrak{A} \not \in \mathcal{L} \ \texttt{结构且} \ , \ \mathfrak{A} \models \Sigma \big\}$ 

#### 是 $\Sigma$ 所定义的 $\mathcal{L}$ 结构类

若  $\Sigma = \{\tau\}$ , 我们记  $\{\tau\}$  所定义的结构类为 Mod  $\tau$ 

#### 定义

给定语言  $\mathcal{L}$ 。 令  $\mathcal{L}$  是  $\mathcal{L}$  闭语句集。我们称

 $\operatorname{\mathsf{Mod}} \Sigma = \{\mathfrak{A} \mid \mathfrak{A} \not \in \mathcal{L} \text{ 结构且}, \mathfrak{A} \models \Sigma\}$ 

是  $\Sigma$  所定义的  $\mathcal{L}$  结构类

若  $\Sigma = \{\tau\}$ , 我们记  $\{\tau\}$  所定义的结构类为  $\mathsf{Mod}\,\tau$ 

#### 定义

给定语言  $\mathcal{L}$  ,我们称一个  $\mathcal{L}$  结构类  $\mathcal{K}$  是  $\mathcal{L}$  初等类 ( elementary class ) ,当且仅当存在一个  $\mathcal{L}$  闭语句  $\tau$  使得  $\mathcal{K} = \mathsf{Mod}\, \tau$ 

我们称  $\mathcal{K}$  是 $\mathcal{L}$  广义初等类,当且仅当存在一个  $\mathcal{L}$  闭语句 集  $\mathcal{L}$  使得  $\mathcal{K}=\mathsf{Mod}\,\mathcal{L}$ 

广义初等类与初等类到底有何区别?

#### 定义

给定语言  $\mathcal{L}$  , 我们称一个  $\mathcal{L}$  结构类  $\mathcal{K}$  是  $\mathcal{L}$  初等类 ( elementary class ) , 当且仅当存在一个  $\mathcal{L}$  闭语句  $\tau$  使得  $\mathcal{K} = \operatorname{Mod} \tau$  我们称  $\mathcal{K}$  是  $\mathcal{L}$  广义初等类 , 当且仅当存在一个  $\mathcal{L}$  闭语句 集  $\mathcal{L}$  使得  $\mathcal{K} = \operatorname{Mod} \mathcal{L}$ 

广义初等类与初等类到底有何区别?

#### 定义

给定语言  $\mathcal{L}$  ,我们称一个  $\mathcal{L}$  结构类  $\mathcal{K}$  是  $\mathcal{L}$  初等类 ( elementary class ) ,当且仅当存在一个  $\mathcal{L}$  闭语句  $\tau$  使得  $\mathcal{K} = \mathsf{Mod}\,\tau$  我们称  $\mathcal{K}$  是  $\mathcal{L}$  广义初等类 ,当且仅当存在一个  $\mathcal{L}$  闭语句 集  $\mathcal{L}$  使得  $\mathcal{K} = \mathsf{Mod}\,\mathcal{L}$ 

广义初等类与初等类到底有何区别?

(ロ) (個) (目) (目) (目) (9)(

#### 例

- 语句 ε<sub>2</sub>: ∃x∃y(x ≈ y) 定义的结构类是什么?
- 所有含有 2-4 个元素的集合组成的类是  $\mathcal{L}$  初等类?
- 所有无穷集合组成的类是不是 £ 广义初等类?是不是初等类?

#### 例

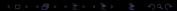
- 语句 62: ∃x∃y(x ≈ y) 定义的结构类是什么?
- 所有含有 2-4 个元素的集合组成的类是 £ 初等类?

#### 例

- 语句 62: ∃x∃y(x ≈ y) 定义的结构类是什么?
- 所有含有 2-4 个元素的集合组成的类是 £ 初等类?
- 所有无穷集合组成的类是不是 £ 广义初等类?是不是初等类?

#### 例

- 语句 62: ∃x∃y(x ≈ y) 定义的结构类是什么?
- 所有含有 2-4 个元素的集合组成的类是 £ 初等类?
- 所有无穷集合组成的类是不是 £ 广义初等类?是不是初等类?



## 定义结构类

#### 例

群论语言 
$$\mathcal{L} = \{ \approx, \circ, ^{-1}.e \}$$
 , 则

$$\forall x \forall y \forall z \ (x \circ (y \circ z) \approx (x \circ y) \circ z)$$

$$\forall x \ (x \circ e \approx e \circ x \approx x)$$

$$\forall x \ (x \circ x^{-1} \approx x^{-1} \circ x \approx e)$$

#### 定义了群 这个初等类

阿贝尔群是不是初等类?Torsion-free 的阿贝尔群呢?

# 定义结构类

例

群论语言 
$$\mathcal{L} = \{\approx, \circ, ^{-1}.e\}$$
,则

$$\forall x \forall y \forall z \ (x \circ (y \circ z) \approx (x \circ y) \circ z)$$

$$\forall x \ (x \circ e \approx e \circ x \approx x)$$

$$\forall x \ (x \circ x^{-1} \approx x^{-1} \circ x \approx e)$$

#### 定义了群 这个初等类

阿贝尔群是不是初等类?Torsion-free 的阿贝尔群呢?



我们给出了 可定义 的严格定义,意味着我们可以证明形如 "XXX 是不可定义的"的命题了。

#### 定义 (同态)

给定语言  $\mathcal{L}$ 。令  $\mathfrak{A}$  和  $\mathfrak{B}$  为两个  $\mathcal{L}$  结构。我们称函数  $h: |\mathfrak{A}| \to |\mathfrak{B}|$  是一个从  $\mathfrak{A}$  到  $\mathfrak{B}$  的同态(homomorphism),当且仅当它满足下述条件

■ 对每个 n 元谓词符号 P , 和每组 a<sub>1</sub>,..., a<sub>n</sub> ∈ |刈 , 有

$$(a_1,\ldots,a_n)\in P^{\mathfrak{A}}\Leftrightarrow (h(a_1),\ldots,h(a_n))\in P^{\mathfrak{B}}$$



#### 定义 (同态)

给定语言  $\mathcal{L}$ 。令  $\mathfrak{A}$  和  $\mathfrak{B}$  为两个  $\mathcal{L}$  结构。我们称函数  $h: |\mathfrak{A}| \to |\mathfrak{B}|$  是一个从  $\mathfrak{A}$  到  $\mathfrak{B}$  的同态(homomorphism),当且仅当它满足下述条件

■ 对每个 n 元<mark>谓词符号 P</mark>, 和每组  $a_1, \ldots, a_n \in |\mathfrak{A}|$ , 有

$$(a_1,\ldots,a_n)\in P^{\mathfrak{A}}\Leftrightarrow (h(a_1),\ldots,h(a_n))\in P^{\mathfrak{B}}$$

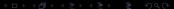


#### 定义 (同态)

给定语言  $\mathcal{L}$ 。令  $\mathfrak{A}$  和  $\mathfrak{B}$  为两个  $\mathcal{L}$  结构。我们称函数  $h: |\mathfrak{A}| \to |\mathfrak{B}|$  是一个从  $\mathfrak{A}$  到  $\mathfrak{B}$  的同态(homomorphism),当且仅当它满足下述条件

■ 对每个 n 元函数符号 f, 和每组  $a_1, \ldots, a_n \in |\mathfrak{A}|$ , 有

$$h(f^{\mathfrak{A}}(a_1,\ldots,a_n))=f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n))$$



#### 定义 (同态)

给定语言  $\mathcal{L}$ 。令  $\mathfrak{A}$  和  $\mathfrak{B}$  为两个  $\mathcal{L}$  结构。我们称函数  $h: |\mathfrak{A}| \to |\mathfrak{B}|$  是一个从  $\mathfrak{A}$  到  $\mathfrak{B}$  的同态(homomorphism),当且仅当它满足下述条件

■ 对每个常数符号 c, 有

$$h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$$



直观上,同态保持两个结构对谓词符号、函数符号和常数符号的解释。

那么,什么时候算是也保持对等词和量词的解释呢?

直观上,同态保持两个结构对谓词符号、函数符号和常数符号的解释。

那么,什么时候算是也保持对等词和量词的解释呢?

## 定义(嵌入与同构)

#### 上述定义下。

- 如果同态 h 是单射的 , 我们称 h 是一个从 ¾ 到 ৩
   的嵌入 (embedding);
- 如果 h 是双射(既是单射,又是满射),我们称 h 是一个从  $\mathfrak{A}$  到  $\mathfrak{B}$  的同构 ( isomorphism )。此时,我们称  $\mathfrak{A}$  与  $\mathfrak{B}$  同构  $\mathfrak{A}$  记  $\mathfrak{A} \cong \mathfrak{B}$

#### 定义(嵌入与同构)

#### 上述定义下,

- 如果同态 h 是单射的 , 我们称 h 是一个从 ¾ 到 №
   的嵌入 (embedding);
- 如果 h 是双射(既是单射,又是满射),我们称 h 是
   一个从 组 到 ৩ 的同构(isomorphism)。此时,我们称
   组 与 ৩ 同构,记 组 ≅ ৩

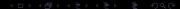
#### 定理 (同态定理)

给定语言  $\mathcal{L}$ 。假定 h 是从  $\mathcal{L}$  结构  $\mathfrak{A}$  到  $\mathfrak{B}$  的同态 , s 是  $\mathfrak{A}$  赋值。则

- **I** 对任意项 t ,  $h(\overline{s}(t)) = \overline{h \circ s}(t)$
- 对任何不含量词且不含等词的公式 α ,

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$

■ 若 h 是单射,则 α 可含等词;若 h 是双射,可含量词



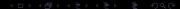
### 定理 (同态定理)

给定语言  $\mathcal{L}$ 。假定 h 是从  $\mathcal{L}$  结构  $\mathfrak{A}$  到  $\mathfrak{B}$  的同态 , s 是  $\mathfrak{A}$  赋值。则

- 对任意项 t ,  $h(\overline{s}(t)) = \overline{h \circ s}(t)$
- 对任何不含量词且不含等词的公式 α,

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$

■ 若 h 是单射,则 α 可含等词;若 h 是双射,可含量词



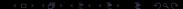
#### 定理 (同态定理)

给定语言  $\mathcal{L}$ 。假定 h 是从  $\mathcal{L}$  结构  $\mathfrak{A}$  到  $\mathfrak{B}$  的同态 , s 是  $\mathfrak{A}$  赋值。则

- 对任意项 t ,  $h(\overline{s}(t)) = \overline{h \circ s}(t)$
- 对任何不含量词且不含等词的公式 α,

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$

■ 若 h 是单射 , 则  $\alpha$  可含等词 ; 若 h 是双射 , 可含量词



### 定理 (同态定理)

给定语言  $\mathcal{L}$ 。假定 h 是从  $\mathcal{L}$  结构  $\mathfrak{A}$  到  $\mathfrak{B}$  的同态 , s 是  $\mathfrak{A}$  赋值。则

- 对任意项 t ,  $h(\overline{s}(t)) = \overline{h \circ s}(t)$
- 对任何不含量词且不含等词的公式 α,

$$(\mathfrak{A}, s) \models \alpha \Leftrightarrow (\mathfrak{B}, h \circ s) \models \alpha$$

■ 若 h 是单射 , 则  $\alpha$  可含等词 ; 若 h 是双射 , 可含量词



#### 定义

如果  $h: |\mathfrak{A}| \to |\mathfrak{A}|$  是从  $\mathfrak{A}$  到  $\mathfrak{A}$  自身的一个同构,那么我们称 h 是  $\mathfrak{A}$  上的自同构 ( automorphism )

#### 推论

令  $h \in \mathbb{N}$  上的一个自同构 , 并且  $R \subset |\mathfrak{A}|^n$  是一个  $\mathfrak{N}$  中可定义的 n 元关系 , 则对任意  $|\mathfrak{A}|$  中的元素  $a_1, \ldots, a_n$  有 ,

$$(a_1,\ldots,a_n)\in R\Leftrightarrow \big(h(a_1),\ldots,h(a_n)\big)\in R$$



上述定理为我们提示了一种证明"不可定义"的方法。

例

还是考虑

$$b \leftarrow a \rightarrow c$$

证明 {b} 是不可定义的

上述定理为我们提示了一种证明"不可定义"的方法。

例

还是考虑

$$b \leftarrow a \rightarrow c$$

证明 {b} 是不可定义的

#### 定义

给定语言  $\mathcal{L}$ 。我们说两个  $\mathcal{L}$  结构  $\mathfrak{A}$  与  $\mathfrak{B}$  初等等价 ,记  $\mathfrak{A}$  ,当且仅当对任意  $\mathcal{L}$  闭语句  $\sigma$  有 ,

 $\mathfrak{A} \models \sigma \Leftrightarrow \mathfrak{B} \models \sigma$ 

#### 一些推论:

给定语言  $\mathcal{L}$  和  $\mathcal{L}$  结构  $\mathfrak{A}$  和  $\mathfrak{B}$ 

- lacksquare  $\mathfrak{U} \cong \mathfrak{V}$  , 当且仅当对任意  $\mathcal L$  初等类  $\mathcal K$  有

 $\mathfrak{A} \in \mathcal{K} \Leftrightarrow \mathfrak{B} \in \mathcal{K}$ 

#### 一些推论:

给定语言 ℒ和 ℒ结构 Ⴁ和 ឞ

- $\mathfrak{A} \cong \mathfrak{B} \Rightarrow \mathfrak{A} \equiv \mathfrak{B}$  , 反之未必
- lacksquare  $\mathfrak{U} \cong \mathfrak{V}$  , 当且仅当对任意  $\mathcal L$  初等类  $\mathcal K$  有

 $\mathfrak{A} \in \mathcal{K} \Leftrightarrow \mathfrak{B} \in \mathcal{K}$ 

#### 一些推论:

给定语言  $\mathcal{L}$  和  $\mathcal{L}$  结构  $\mathfrak{A}$  和  $\mathfrak{B}$ 

- $\blacksquare$   $\mathfrak{A} \cong \mathfrak{B} \Rightarrow \mathfrak{A} \equiv \mathfrak{B}$  , 反之未必
- $\mathfrak{A} \cong \mathfrak{B}$  , 当且仅当对任意  $\mathcal L$  初等类  $\mathcal K$  有

 $\mathfrak{A} \in \mathcal{K} \Leftrightarrow \mathfrak{B} \in \mathcal{K}$ 

## 习题